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Abstract. Zykov proved that if G and G are complementary graphs
having chromatic numbers χ and χ, respectively then χ · χ is at least the
number of vertices of G. Nordhaus and Gaddum gave an upper bound for
χ · χ and gave both upper and lower bounds for the analogue χ + χ.

In this paper we characterize those graphs for which χ · χ and χ + χ
reach the bounds of Nordhaus and Gaddum.

1. Introduction. Unless stated otherwise, the terminology used here
will follow Diestel [4]. In particular, a graph G is a finite set of elements
V (G), called vertices, and a set E(G) of unordered pairs of vertices, called
edges. The number of vertices of a graph G is denoted |V (G)| and the
complete graph on n vertices, denoted Kn, is a graph containing the set
of all n(n − 1)/2 possible edges. Two graphs G and G having the same n
vertices are called complementary if each edge determined by the n vertices
is in either G or G but not in both. If X ⊆ V (G), the subgraph induced by

X , denoted G[X ], is the subgraph H of G with V (H) = X and E(H) =
{xy ∈ E(G)|x, y ∈ X}. The degree of a vertex x is the number dG(x) of
edges incident with it, and we denote the maximum and minimum vertex
degrees of a graph by ∆ and δ, respectively. If every vertex of a graph has
degree k then we say that the graph is k-regular.

A k-coloring of a graph G is a coloring of the vertices of G so that
no two adjacent vertices are colored with the same color and the total
number of colors used is at most k. The chromatic number of a graph G
is the smallest number of colors required to color the vertices of G. The
chromatic number of G is denoted χ(G) or simply χ while the chromatic
number of G is denoted χ; that is, χ = χ(G). The clique number of a graph
G is the largest integer ω such that G contains a subgraph isomorphic to
Kω. The clique number of G is denoted by ω or ω(G), and ω = ω(G). It
is easy to see that ω(G) ≤ χ(G) for any graph G. Moreover, it is easy to
show that χ(G) ≤ ∆(G) + 1. The following well-known theorem of Brooks
[4] characterizes the graphs that are extremal with this property.

Theorem 1.1 (Brooks’ Theorem). If G is a graph such that G is neither
a clique nor an odd cycle, then χ(G) ≤ ∆(G).

A factor of a graph G is a subgraph containing all the vertices of G,
and a k-factor is a factor that is k-regular. If we require every component of
a factor to be a complete graph, then the factor is said to be complete; thus,
a complete k-factor of a graph G is a factor of G all of whose components
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are isomorphic to Kk+1. Note that if G has a complete k-factor, then k +1
is a factor of the integer |V (G)|.

In 1949, Zykov [7] showed that |V (G)| ≤ χ(G) · χ(G). Nordhaus and
Gaddum [6] extended this result by proving the following theorem.

Theorem 1.2. Let G and G be complementary graphs on n vertices
having chromatic numbers χ and χ, respectively. Then

2
√

n ≤ χ + χ ≤ n + 1 and n ≤ χ · χ ≤
(

n + 1

2

)2

.

In this paper, we characterize the graphs in the extreme cases of the
inequalities in this theorem. Finck [5] offered a characterization of such
graphs from one point of view, which was applied incorrectly in [2]. We
find Finck’s characterization somewhat unintuitive; our characterization
approaches these graphs from a different perspective, which we explain in
Sections 2 and 3.

Finally, it is worth noting that it is not difficult to show that every
graph has a complete factor. To see this, consider a graph G and its com-
plement G. Let T1, T2, . . . , Tχ be the color classes of a χ-coloring of G.
In G, it is clear that the induced subgraph G[Ti] is complete for every Ti.
Thus, G has a complete factor, namely

χ
⋃

i=1

G[Ti].

2. Graphs Satisfying the Lower Bounds. We begin with those
graphs G for which χ · χ = |V (G)|. Clearly, any complete graph satisfies
the equation; moreover, if χ(G) · χ(G) = |V (G)|, then both χ and χ are
integer factors of |V (G)|. What is surprising is that the graphs G and G
must contain complete factors as we shall now show.

Theorem 2.1. Let G be a graph on n vertices. Then the following are
equivalent.

(1) χ · χ = n
(2) G has a complete (χ − 1)-factor
(3) G has a complete (χ − 1)-factor.

Proof. We begin by assuming (1) that χ ·χ = n, and we will prove that
this implies (2) G has a complete (χ − 1)-factor and (3) G has a complete
(χ − 1)-factor. Let S1, S2, . . . , Sχ be the color classes of a χ-coloring of
G. Clearly, each component of G[Si] has no edge and ∪χ

i=1Si = V (G). We
require the following lemma.

Lemma 2.2. |Si| = |Sj | for any i, j ∈ {1, . . . , χ}.
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Proof. Suppose |Si| > |Sj | for some i, j ∈ {1, . . . , χ}, and let St be a
set of maximum size among all sets S1, S2, . . . Sχ. Since G has exactly χ ·χ
vertices, |St| > χ. However, because G must have a subgraph isomorphic
to K|St| we obtain χ ≥ |St| > χ; a contradiction.

By Lemma 2.2, each of S1, S2, . . . , Sχ has the same size. Moreover, as
χ ·χ = n, each Si has size χ. Thus, G has a complete (χ−1)-factor, namely

χ
⋃

i=1

G[Si].

Now, if T1, T2, . . . , Tχ are the color classes of a χ-coloring of G, then
using Lemma 2.2 with G and χ instead of G and χ, it is clear that each Ti

has size χ. Therefore, G has a complete (χ − 1)-factor, namely

χ
⋃

i=1

G[Ti].

We will now show that (2) is equivalent to (3). First, suppose that (2)
holds; that is, G has a complete (χ − 1)-factor. This means that G has a
spanning subgraph H in which each component is isomorphic to Kχ. Let k
be the number of components of H , and observe that χ · k = n. Since each
component C of H is complete, every vertex of C can be colored the same
color in G. Thus, χ ≤ k.

Now, since each component of H is isomorphic to Kχ, each of the χ
colors of G is used exactly once in each component of H . Thus, the color
classes of G form χ independent sets of size k each, so G has a spanning
subgraph in which each component is isomorphic to Kk; it follows that
χ ≥ k. Thus, χ = k and G has a complete (χ − 1)-factor, so (2) implies
(3). The argument that (3) implies (2) is symmetric. Moreover, since
n = χ · k = χ · χ, we have shown that (2) implies (1), and the theorem is
established.

The next theorem characterizes those graphs for which χ + χ =
2
√

|V (G)|. Its proof relies on the arithmetic-geometric mean inequality;

namely,
√

χ · χ ≤ χ+χ
2

with equality holding if and only if χ = χ.

Theorem 2.3. Let G and G be complementary graphs on n vertices.
Then χ+χ = 2

√
n if and only if χ = χ and G has a complete (χ−1)-factor.

Proof. Suppose that χ + χ = 2
√

n.
Since 2

√
n = χ + χ, using the arithmetic-geometric mean inequality

and Theorem 1.2 we obtain

χ + χ ≥ 2 ·
√

χ · χ ≥ 2
√

n = χ + χ.
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This means that
χ + χ = 2 ·

√

χ · χ = 2
√

n.

Now, the first equality shows that χ = χ by the arithmetic-geometric
mean inequality. The second equality implies that χ · χ = n, and the
theorem follows from Theorem 2.1.

Conversely, suppose that χ = χ and that G has a complete (χ − 1)-
factor. We need only show that χ + χ = 2

√
n. Since χ = χ,

0 = (χ − χ)2 = χ2 − 2χ · χ + χ2,

χ2 + 2χ · χ + χ2 = 4 · χ · χ.

Now, by Theorem 2.1, χ · χ = n, and thus,

(χ + χ)2 = χ2 + 2χ · χ + χ2 = 4n.

This implies that χ + χ = 2
√

n, and the theorem is established.

3. Graphs Satisfying the Upper Bounds.

Theorem 3.1. Let G and G be complementary graphs on n vertices.
Then χ + χ = n + 1 if and only if V (G) can be partitioned into three sets
S, T, and {x} such that G[S] is isomorphic to Kχ−1 and G[T ] is isomorphic
to Kχ−1.

Before proving this theorem, we establish several lemmas, the first of
which is easy and is stated without proof.

Lemma 3.2. Let G be a graph on n vertices. Then G is ∆-regular if
and only if ∆ + ∆ = n − 1.

Lemma 3.3. If G is a ∆-regular graph and χ + χ = n + 1, then G is
isomorphic to K1 or C5.

Proof. If G or G is neither complete nor an odd cycle, then χ ≤ ∆
or χ ≤ ∆ by Theorem 1.1. In either case, we have the following chain of
inequalities with the last equality being from Lemma 3.2.

n + 1 = χ + χ ≤ ∆ + ∆ + 1 = n.

Since this is a contradiction, it is clear that both χ = ∆+1 and χ = ∆+1.
Thus, by Theorem 1.1, G must be complete or an odd cycle, and G must be
complete or an odd cycle. Clearly either both G and G must be complete
or both be odd cycles. If G is complete and G is complete, then G is
isomorphic to K1. If G is an odd cycle and G is an odd cycle, then it is
easy to see that G is isomorphic to C5.

Lemma 3.4. Let G be a graph on n vertices and ω = ω(G) the clique
number of G. If ω = χ and χ + χ = n + 1, then V (G) can be partitioned
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into two sets S and T such that G[S] is isomorphic to Kχ and G[T ] is
isomorphic to Kχ−1.

Proof. Let S be a subset of V (G) such that G[S] is a χ-clique in G, and
let T = V (G)−V (S), so that |T | = n−χ = χ−1. Since S is independent in
G, each member of S can be colored 1 in G. Since G has chromatic number
χ, the graph G[T ] requires at least χ − 1 colors. But G[T ] has exactly χ
vertices, so G[T ] must be complete.

Lemma 3.5. Let G be a graph on n vertices. If ω = χ− 1 and χ +χ =
n + 1, then V (G) can be partitioned into two sets S and T such that G[S]
is isomorphic to Kχ−1 and one of the following holds:

(1) G[T ] is isomorphic to Kχ, or
(2) there exists x ∈ T such that G[T − x] is isomorphic to Kχ−1.

Proof. Let H be an ω-clique in G, and let S = V (H) and T = V (G)−
V (H). Notice that |T | = n − ω = n − (χ − 1) = χ. Therefore, G[T ] has
exactly χ vertices. If G[T ] is complete, then the conclusion of the lemma is
satisfied.

Thus, we assume that G[T ] is not complete. Now, if G[T ] could be
colored with fewer than χ−1 colors, then, since V (H) is independent in G,
the entire graph G could be colored with fewer than χ colors. Therefore,
χ(G[T ]) = χ − 1.

Since G[T ] is a graph on χ vertices with chromatic number χ − 1, we
can show that G[T ] must contain a subgraph isomorphic to Kχ−1. To see
this, color G[T ] with χ − 1 colors and observe that there are exactly two
vertices, say x and y, colored the same. Since the chromatic number of
G[T ] is χ− 1, it is clear that the vertices of G[T ]− {x, y} form a complete
graph. (Otherwise, a color could be duplicated on those vertices, reducing
the chromatic number of G[T ] to at most χ− 2.) Now, if x is not adjacent
to some vertex z of G[T ] − {x, y}, then z can be re-colored with the color
used on x. But this would require that y be re-colored with the original
color on z, for otherwise we can color G[T ] with fewer colors; thus, y is
adjacent to z.

We now have a χ − 1 coloring of G[T ] where x and z are colored the
same. As before (when x and y were colored the same), G[T ]−{x, z} forms
a complete graph. In particular, y is adjacent to every vertex in T −{x, z}.
But y is also adjacent to z, as we have seen, and z is adjacent to all vertices
of G[T ]−{x, y}. This implies that G[T ]−{x} is complete, so G[T ] contains
a copy of Kχ−1.

Corollary 3.6. Let G be a graph on n vertices. If ω = χ − 1 and
χ + χ = n + 1, then V (G) can be partitioned into three sets S, T , and {x},
such that G[S] is isomorphic to Kχ−1 and G[T ] is isomorphic to Kχ−1.

Lemma 3.7. Let G be a graph on n vertices. If χ + χ = n + 1, then
ω ≥ χ − 1 and ω ≥ χ − 1.
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Proof. Let G be a minimal counterexample to the lemma with respect
to |V (G)|, and let H = G−x, where x ∈ V (G). Note that χ(H) ≤ χ(G) and
χ(H) ≤ χ(G). By the theorem of Nordhaus and Gaddum, χ(H) + χ(H) ≤
n, so in fact at least one of the inequalities χ(H) ≤ χ(G) and χ(H) ≤ χ(G)
must be strict. Thus, there are two cases.

Case 1. If only one of χ(H) < χ(G) and χ(H) < χ(G) is true, then
without loss of generality, suppose that χ(H) = χ(G) and χ(H) = χ(G)−1.
(Note that deleting a vertex will decrease the chromatic number by at most
one.) Therefore, χ(H) + χ(H) = n = |V (H)| + 1 and so ω(H) ≥ χ(H) − 1
by the minimality of G. Thus, since χ(H) = χ(G), it is clear that ω(G) ≥
ω(H) ≥ χ(H) − 1 = χ(G) − 1. By Lemmas 3.4 and 3.5, G must contain a
clique of size at least χ − 1, a contradiction to the choice of G.

Case 2. Assume that χ(G−x) = χ− 1 and χ(G−x) = χ− 1 for every
vertex x of G. This implies that dG(x) ≥ χ−1 and d

G
(x) ≥ χ−1; otherwise,

x could be restored to G − x and colored the same as some nonadjacent
vertex, giving G a chromatic number less than χ, a contradiction.

Therefore, for each vertex x of G, n−1 = dG(x)+d
G

(x) ≥ χ+χ−2 =
n−1. In order to achieve this, we must have dG(x) = χ−1 and d

G
(x) = χ−1

for every vertex x of G, which means that both G and G are regular. By
Lemma 3.3, G must be isomorphic to K1 or C5, a contradiction as these
both satisfy the statement of the lemma.

We now prove Theorem 3.1, the characterization of the case χ + χ =
|V (G)| + 1, which we restate here for convenience.

Theorem 3.8. Let G and G be complementary graphs on n vertices.
Then χ+χ = n+1 if and only if V (G) can be partitioned into three sets S,
T , and {x} such that G[S] is isomorphic to Kχ−1 and G[T ] is isomorphic
to Kχ−1.

Proof. First assume that V (G) can be partitioned into three sets S,
T , and {x} such that G[S] is isomorphic to Kχ−1 and G[T ] is isomorphic
to Kχ−1. We merely need to count vertices: |V (G)| = |S ∪ T ∪ {x}| =
(χ − 1) + (χ − 1) + 1 = χ + χ − 1. Thus, χ + χ = n + 1.

Now assume that χ + χ = n + 1. By Lemma 3.7, we have ω(G) ≥
χ − 1 and ω(G) ≥ χ − 1. First, if ω(G) = χ − 1, then the theorem holds
by Corollary 3.6. Second, if ω(G) = χ, then by Lemma 3.4, G can be
partitioned into a χ-clique S ′ and an independent set T of size χ − 1. Let
x ∈ V (S′), and put S = V (S′) − {x}. Then G[S] is isomorphic to Kχ−1

and G[T ] is isomorphic to Kχ−1.

Capobianco [2] incorrectly states, “The only graphs that attain the
upper bound [χ + χ = n + 1] are Kn, Kn, and Cn.” Theorem 3.1 gives the
means to construct counterexamples; one simple counterexample is G =
K4

⋃

K3.
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The following theorem completes the characterizations of the graphs
in the extreme cases of Theorem 1.2.

Theorem 3.9. Let G be a graph on n vertices. Then χ · χ =
(

n+1

2

)2
if

and only if χ + χ = n + 1 and χ = χ.

Proof. Since 4χ · χ = (n + 1)2 ≥ (χ + χ)2, we must have (χ− χ)2 ≤ 0.
Therefore, χ = χ, and the inequality is actually an equality. Thus, χ+χ =
n + 1.

4. Conclusion. A natural extension of Theorem 2.1 would be to
characterize those graphs H where χ(H) and χ(H) are factors of |V (H)|,
but χ(H) · χ(H) > |V (H)|.

Alavi and Behzad [1] proved bounds for edge chromatic numbers and
Cook [3] proved bounds for total chromatic numbers similar to the bounds
of Nordhaus and Gaddum. It is hoped that the approach presented here
will shed light on a characterization of the graphs that attain those bounds.
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