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Abstract. Zykov proved that if G and G are complementary graphs
having chromatic numbers y and %, respectively then x - X is at least the
number of vertices of G. Nordhaus and Gaddum gave an upper bound for
x - X and gave both upper and lower bounds for the analogue x + .

In this paper we characterize those graphs for which x - ¥ and x + X
reach the bounds of Nordhaus and Gaddum.

1. Introduction. Unless stated otherwise, the terminology used here
will follow Diestel [4]. In particular, a graph G is a finite set of elements
V(G), called vertices, and a set E(G) of unordered pairs of vertices, called
edges. The number of vertices of a graph G is denoted |V(G)| and the
complete graph on n vertices, denoted K, is a graph containing the set
of all n(n — 1)/2 possible edges. Two graphs G and G having the same n
vertices are called complementary if each edge determined by the n vertices
is in either G or G but not in both. If X C V(G), the subgraph induced by
X, denoted G[X], is the subgraph H of G with V(H) = X and E(H) =
{zy € E(G)|z,y € X}. The degree of a vertex x is the number dg(x) of
edges incident with it, and we denote the maximum and minimum vertex
degrees of a graph by A and 9, respectively. If every vertex of a graph has
degree k then we say that the graph is k-regular.

A E-coloring of a graph G is a coloring of the vertices of G so that
no two adjacent vertices are colored with the same color and the total
number of colors used is at most k. The chromatic number of a graph G
is the smallest number of colors required to color the vertices of G. The
chromatic number of G is denoted x(G) or simply x while the chromatic
number of G is denoted X; that is, X = x(G). The cliqgue number of a graph
G is the largest integer w such that G contains a subgraph isomorphic to
K. The clique number of G is denoted by w or w(G), and @ = w(G). Tt
is easy to see that w(G) < x(G) for any graph G. Moreover, it is easy to
show that x(G) < A(G) + 1. The following well-known theorem of Brooks
[4] characterizes the graphs that are extremal with this property.

Theorem 1.1 (Brooks’ Theorem). If G is a graph such that G is neither
a clique nor an odd cycle, then x(G) < A(G).

A factor of a graph G is a subgraph containing all the vertices of G,
and a k-factor is a factor that is k-regular. If we require every component of
a factor to be a complete graph, then the factor is said to be complete; thus,
a complete k-factor of a graph G is a factor of G all of whose components



are isomorphic to Ky41. Note that if G has a complete k-factor, then k+ 1
is a factor of the integer |V (G)|.

In 1949, Zykov [7] showed that |V (G)| < x(G) - X(G). Nordhaus and
Gaddum [6] extended this result by proving the following theorem.

Theorem 1.2. Let G' and G be complementary graphs on n vertices
having chromatic numbers x and %, respectively. Then

2
1
2yn<x+x<n+1 and n<X'Y<(n—2|— > .

In this paper, we characterize the graphs in the extreme cases of the
inequalities in this theorem. Finck [5] offered a characterization of such
graphs from one point of view, which was applied incorrectly in [2]. We
find Finck’s characterization somewhat unintuitive; our characterization
approaches these graphs from a different perspective, which we explain in
Sections 2 and 3.

Finally, it is worth noting that it is not difficult to show that every
graph has a complete factor. To see this, consider a graph G and its com-
plement G. Let T1,T5,... , I be the color classes of a X-coloring of G.
In G, it is clear that the induced subgraph G[T;] is complete for every Tj;.
Thus, G has a complete factor, namely

GIT}].

X
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2. Graphs Satisfying the Lower Bounds. We begin with those
graphs G for which x - ¥ = |V(G)|. Clearly, any complete graph satisfies
the equation; moreover, if x(G) - X(G) = |V(G)|, then both x and X are
integer factors of |V (G)|. What is surprising is that the graphs G and G
must contain complete factors as we shall now show.

Theorem 2.1. Let G be a graph on n vertices. Then the following are
equivalent.
(1) x-x=n
(2) G has a complete (x — 1)-factor
(3) G has a complete (¥ — 1)-factor.

Proof. We begin by assuming (1) that x-¥ = n, and we will prove that
this implies (2) G has a complete (x — 1)-factor and (3) G has a complete
(X — 1)-factor. Let Sy, S2,...,Sy be the color classes of a x-coloring of
G. Clearly, each component of G[S;] has no edge and UX_;S; = V(G). We
require the following lemma.

Lemma 2.2. |S;| = |S;| for any ¢,5 € {1,... ,x}
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Proof. Suppose |S;| > |S;| for some ¢,j € {1,...,x}, and let S; be a
set of maximum size among all sets 51,52, ... Sy. Since G has exactly x -x
vertices, |S;| > X. However, because G must have a subgraph isomorphic
to K|g,| we obtain ¥ > |S;| > X; a contradiction.

By Lemma 2.2, each of Sy, S, ... ,5y has the same size. Moreover, as
XX = n, each S; has size Y. Thus, G has a complete (Y — 1)-factor, namely

U G[Si).

Now, if T1,T5, ... , Tk are the color classes of a X-coloring of G, then
using Lemma 2.2 with G and X instead of G and Yy, it is clear that each Tj
has size x. Therefore, G has a complete (x — 1)-factor, namely

Ul

We will now show that (2) is equivalent to (3). First, suppose that (2)
holds; that is, G has a complete (x — 1)-factor. This means that G has a
spanning subgraph H in which each component is isomorphic to K. Let k
be the number of components of H, and observe that x - k = n. Since each
component C of H is complete, every vertex of C' can be colored the same
color in G. Thus, ¥ < k.

Now, since each component of H is isomorphic to K, each of the x
colors of G is used exactly once in each component of H. Thus, the color
classes of G form y independent sets of size k each, so G has a spanning
subgraph in which each component is isomorphic to Kj; it follows that
X > k. Thus, X = k and G has a complete (Y — 1)-factor, so (2) implies
(3). The argument that (3) implies (2) is symmetric. Moreover, since
n=x-k=x-%, we have shown that (2) implies (1), and the theorem is
established.

The next theorem characterizes those graphs for which y + ¥ =
24/|V(G)|. Tts proof relies on the arithmetic-geometric mean inequality;
namely, v/x - X < % with equality holding if and only if y =.

Theorem 2.3. Let G and G be complementary graphs on n vertices.
Then x+% = 24/n if and only if x = ¥ and G has a complete (y — 1)-factor.

Proof. Suppose that x + % = 2/n.
Since 2y/n = x + X, using the arithmetic-geometric mean inequality
and Theorem 1.2 we obtain

X+X>2-VXx-X>2Vn=x+X.



This means that
X+X=2/X X =2Vn.

Now, the first equality shows that x = X by the arithmetic-geometric
mean inequality. The second equality implies that x - ¥ = n, and the
theorem follows from Theorem 2.1.

Conversely, suppose that y = ¥ and that G has a complete (x — 1)-
factor. We need only show that x + X = 2+/n. Since x =,

0=(x-%0"=x>—2x"X+X,

X 20X +X =4 XX
Now, by Theorem 2.1, x - X = n, and thus,

(X +X)?=x"+2x X +X° = 4n.
This implies that x + % = 24/n, and the theorem is established.

3. Graphs Satisfying the Upper Bounds.

Theorem 3.1. Let G and G be complementary graphs on n vertices.
Then x +X = n + 1 if and only if V(G) can be partitioned into three sets
S, T, and {z} such that G[S] is isomorphic to Ky_; and G[T] is isomorphic
to KY,]_ .

Before proving this theorem, we establish several lemmas, the first of
which is easy and is stated without proof.

Lemma 3.2. Let G be a graph on n vertices. Then G is A-regular if
and only if A+ A =n—1.

Lemma 3.3. If G is a A-regular graph and x +X = n + 1, then G is
isomorphic to K7 or Cs.

Proof. If G or G is neither complete nor an odd cycle, then y < A
or ¥ < A by Theorem 1.1. In either case, we have the following chain of
inequalities with the last equality being from Lemma 3.2.

n+l=x+x<A+A+1=n.

Since this is a contradiction, it is clear that both y = A4+1and ¥ = A +1.
Thus, by Theorem 1.1, G must be complete or an odd cycle, and G must be
complete or an odd cycle. Clearly either both G' and G must be complete
or both be odd cycles. If G is complete and G is complete, then G is
isomorphic to K;. If G is an odd cycle and G is an odd cycle, then it is
easy to see that G is isomorphic to Cs.

Lemma 3.4. Let G be a graph on n vertices and w = w(G) the clique
number of G. If w = x and x +X = n + 1, then V(G) can be partitioned
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into two sets S and 7' such that G[S] is isomorphic to K, and G[T] is
isomorphic to Kx_.

Proof. Let S be a subset of V(G) such that G[S] is a x-clique in G, and
let T'=V(G)—-V(S), so that |T| = n—x = x—1. Since S is independent in
G, each member of S can be colored 1 in G. Since G has chromatic number
X, the graph G[T] requires at least ¥ — 1 colors. But G[T] has exactly X
vertices, so G[T'] must be complete.

Lemma 3.5. Let G be a graph on n vertices. If w =x—1and xy+x =
n + 1, then V(G) can be partitioned into two sets S and T such that G[S]
is isomorphic to Ky_; and one of the following holds:
(1) GIT] is isomorphic to Kx, or
(2) there exists « € T such that G[T" — z| is isomorphic to Kx_;.

Proof. Let H be an w-clique in G, and let S =V (H) and T' = V(G) —
V(H). Notice that |T| = n —w =n — (x — 1) = X. Therefore, G[T] has
exactly X vertices. If G[T] is complete, then the conclusion of the lemma is
satisfied.

Thus, we assume that G[T] is not complete. Now, if G[T] could be
colored with fewer than ¥ — 1 colors, then, since V' (H) is independent in G,
the entire graph G could be colored with fewer than X colors. Therefore,
\(@IT) =X~ 1.

Since G[T] is a graph on X vertices with chromatic number Y — 1, we
can show that G[T] must contain a subgraph isomorphic to Kz_1. To see
this, color G[T] with ¥ — 1 colors and observe that there are exactly two
vertices, say « and y, colored the same. Since the chromatic number of
G[T] is ¥ — 1, it is clear that the vertices of G[T] — {x,y} form a complete
graph. (Otherwise, a color could be duplicated on those vertices, reducing
the chromatic number of G[T] to at most ¥ — 2.) Now, if z is not adjacent
to some vertex z of G[T] — {z,y}, then z can be re-colored with the color
used on z. But this would require that y be re-colored with the original
color on z, for otherwise we can color @[T} with fewer colors; thus, y is
adjacent to z.

We now have a X — 1 coloring of G[T] where = and z are colored the
same. As before (when x and y were colored the same), G[T'] — {z, z} forms
a complete graph. In particular, y is adjacent to every vertex in T — {z, z}.
But y is also adjacent to z, as we have seen, and z is adjacent to all vertices
of G[T]—{x,y}. This implies that G[T] — {x} is complete, so G[T] contains
a copy of Kx_;.

Corollary 3.6. Let G be a graph on n vertices. If w = x — 1 and

X +X =n+1, then V(G) can be partitioned into three sets S, T', and {z},
such that G[S] is isomorphic to K, _; and G[T] is isomorphic to Kx_1.

Lemma 3.7. Let G be a graph on n vertices. If x +X = n + 1, then
w>x—landw>Yx—1.



Proof. Let G be a minimal counterexample to the lemma with respect
to |[V(G)|, and let H = G—z, where x € V(G). Note that x(H) < x(G) and
X(H) < X(G). By the theorem of Nordhaus and Gaddum, x(H) + Yx(H) <
n, so in fact at least one of the inequalities x(H) < x(G) and X(H) < X(G)
must be strict. Thus, there are two cases.

Case 1. If only one of x(H) < x(G) and X(H) < X(G) is true, then
without loss of generality, suppose that x(H) = x(G) and X(H) = X(G)—1.
(Note that deleting a vertex will decrease the chromatic number by at most
one.) Therefore, x(H) +X(H) =n=|V(H)|+ 1 and sow(H) > x(H) —1
by the minimality of G. Thus, since x(H) = x(G), it is clear that w(G) >
w(H) > x(H) — 1 = x(G) — 1. By Lemmas 3.4 and 3.5, G must contain a
clique of size at least ¥ — 1, a contradiction to the choice of G.

Case 2. Assume that (G —z) = x—1 and X(G —z) = x¥ — 1 for every
vertex x of G. This implies that dg(x) > x—1 and dg(x) > X—1; otherwise,
x could be restored to G — = and colored the same as some nonadjacent
vertex, giving G a chromatic number less than y, a contradiction.

Therefore, for each vertex z of G, n—1 = dg(z) +dg(z) > X +X -2 =
n—1. In order to achieve this, we must have dg(z) = x—1 and dg(x) = X—1
for every vertex x of (, which means that both G and G are regular. By
Lemma 3.3, G must be isomorphic to K7 or Cs, a contradiction as these

both satisfy the statement of the lemma.

We now prove Theorem 3.1, the characterization of the case x + X =
|[V(G)| 4+ 1, which we restate here for convenience.

Theorem 3.8. Let G and G be complementary graphs on n vertices.
Then x +X = n+1 if and only if V/(G) can be partitioned into three sets S,
T, and {z} such that G[S] is isomorphic to K,_; and G[T] is isomorphic
to KY,]_.

Proof. First assume that V(G) can be partitioned into three sets S,
T, and {x} such that G[S] is isomorphic to K,_; and G[T] is isomorphic
to Kx_1. We merely need to count vertices: |[V(G)| = [SUT U {z}| =
x-1D+Xx—-1)+1=x+x—-1 Thus, x +x=n+1.

Now assume that x +X = n + 1. By Lemma 3.7, we have w(G) >
x — 1 and @(G) > ¥ — 1. First, if w(G) = x — 1, then the theorem holds
by Corollary 3.6. Second, if w(G) = ¥, then by Lemma 3.4, G can be
partitioned into a y-clique S’ and an independent set T of size ¥ — 1. Let
z € V(5'), and put S = V(S') — {z}. Then G[S] is isomorphic to K,_
and G[T is isomorphic to Kx_1.

Capobianco [2] incorrectly states, “The only graphs that attain the
upper bound [x + X = n+ 1] are K,,, K,,, and C,,.” Theorem 3.1 gives the
means to construct counterexamples; one simple counterexample is G =
K, Ks.




The following theorem completes the characterizations of the graphs
in the extreme cases of Theorem 1.2.

Theorem 3.9. Let G be a graph on n vertices. Then y - ¥ = (”T“)2 if
and only if x +x¥ =n+1 and x =X.

Proof. Since 4x-X = (n+1)? > (x +X)?, we must have (y —X)? <0.
Therefore, x = X, and the inequality is actually an equality. Thus, x +X =
n+ 1.

4. Conclusion. A natural extension of Theorem 2.1 would be to
characterize those graphs H where x(H) and x(H) are factors of |V (H),
but x(H) - x(7) > [V(H)|

Alavi and Behzad [1] proved bounds for edge chromatic numbers and
Cook [3] proved bounds for total chromatic numbers similar to the bounds
of Nordhaus and Gaddum. It is hoped that the approach presented here

will shed light on a characterization of the graphs that attain those bounds.
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