SOME APPLICATIONS OF THE FUNDAMENTAL
THEOREM OF HERMITIAN K-THEORY

NAOUFEL BATTIKH

ABSTRACT. In this work we show how to use the Karoubi’s funda-
mental theorem of Hermitian K-theory [6] to prove some results in
L-Theory using these same results in algebraic K-Theory.

1. INTRODUCTION

Let I be a ring (eventually without unit). I is excisive for the alge-
braic (resp. Hermitian) K-Theory, if for every Cartesian diagram of unitary
(resp. Hermitian) rings

A — A1

| Jo

A2 — AI
such that I ~ ker @1 and ¢, is surjective, we have
K, (¢1) ~ K, (p2) (resp. <Ly, (v1) =~ <L, (p2)) for every n € Z.
In particular, we have the following long exact sequence:
T Apgl (A/) — K, (A) — K, (Al) ® Ky (A2) — K, (AI) -

Kp_1(A) — -
and
(— aLnJrl (AI) — L, (A) — L, (Al) ® Ly (AQ) — L, (A/) —
ELnfl(A) _— .,

As examples of excisive rings for the algebraic K-Theory, we can give C*-
algebras and H-unital algebras [12]. In the first part of this work, we use
the Karoubi’s fundamental theorem of Hermitian K-Theory, to prove that
if a ring is excisive for the algebraic K-Theory, then it is excisive for the
Hermitian K-Theory. We also prove the same result for the K-Theory with
coefficients in Z/q.

Let A be an involutive Banach algebra. The canonical maps:

A part of this work was the subject of a note in CRAS (see [2]).
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BGL (A) % BGL!"? (A) and B.O (A) —— B.O'"? (A)

induce the following homomorphisms

K, (A) 2% K'P (A) and L, (A) = _LP (A).
In the second part of this work, using the fundamental theorem of Hermitian
K-Theory, we prove that if o, is an isomorphism for all n > 0, then the
same is true for 7,,. Since Wodzicki and Suslin have shown that for stable
C*-algebras, the o, are isomorphisms for all n > 0 [12], then for these
algebras, algebraic and Hermitian K-Theory groups coincide.

2. REVIEW OF KNOWN FACTS

2.1. Here we recall some results obtained by using the algebraic suspen-
sion SA of a ring A. (see [10], p. 327, for the definition of the algebraic
suspension).

Theorem 2.1.1. [13] Let A be a unitary ring. We have natural homotopy
equivalence
QBGL (SA)" ~ Ko (A) x BGL (A)*.

The group Ko (A) is endowed with the discrete topology. In particular, for
every n > 1, we have

K, (SA)~K,_1(A).
Theorem 2.1.2. [5] Let A be a Hermitian ring. We have natural homotopy
equivalence

QB.O (SA)" ~ Ly (4) x B.O(A)" .

The group Lo (A) is endowed with the discrete topology. In particular, for
every n > 1, we have

Ln (SA) ~ .L,_1 (A).
These theorems are used to define groups K, and .L,, for all n < 0. For a
unitary ring (resp. Hermitian ring) A and n < 0, we set

K (A) = Ko (S A) (resp. L (A) = Lo (SA) ).
2.2. Let A be a Hermitian ring. The hyperbolic functor [4] induces a group
homomorphism
Koy (A) — Lo (A)

and the homomorphisms

GL, (A) — O, (A)
defined by the following correspondence

M 0
M — — 1
0 tM
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BGL (A" — B.O(A)".
We denote U (A) as the homotopic fiber of the map
Ko (A) x BGL(A)" — Lo (A) x B.O (A)".
Similarly, the forgetful functor [4] induces a group homomorphism
Lo (A) — Ky (4)
and the natural inclusions
EOT,T‘ (A) — GL2r (A)
induce a map
B.OT (A) — BGL (A)".
We denote .V (A) as the homotopic fiber of the map
-Lo(A) x B.O(A)" — Ky (A) x BGL (A)™".
Theorem 2.2.1. [6] Let A be a Hermitian ring containing in its center an
element X\, such that \+ X = 1. (This condition is satisfied if, for ezample,

2 is invertible in A). Then there exists a natural homotopy equivalence
between spaces QU (A) and _.V (A).

We recall that the topological version of this theorem induces Bott pe-
riodicity in the real and complex cases. This interpretation of the Bott
periodicity doesn’t use Clifford algebras [4].

For n > 0, we let

cUn (A) =m0, (U (A)) and .V, (4) = 7, (V (4))
and for n < 0, we let
Un (A) = Up (S7"A) and V;, (A) = Vo (ST A).
For every n € Z, we have
Unt1 (A) = _.V, (A).
We also have the following long exact sequences
= K1 (A) — Vo (A) — cLn (A) — Ky (A) —
Vo1 (A) — -+
and
= cLpy1 (A) — Un (A) — Kn (A) — Ln (A) —
aUnfl (A) —

2.3. Let A be a unitary (resp. Hermitian) ring. The space K (A4) X
BGL (A)" (resp. Lo (A)xB.O (A)") will be denoted K (A) (resp. L (A)).
Let f be a homomorphism of unitary (resp. Hermitian) rings
f: A— B.
We will recall a construction, due mainly to Wagoner [13], of the groups

Ky (f) (resp. <Ly (f)). Let I'(f) be the fibered product of SA and C'B
over SB:
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r{f) — CB

I

SA — SB

The space QIC (I (f)) (resp. QL (I'(f))) has the same homotopy type as
the homotopic fiber I (f) (resp. <L (f)) of the map

K(A) — K(B) (resp. -L(A) — L (B)).
For every n > 0, we let

K (f) =mn (K(f)) (vesp. cLn (f) = mn (cL(f)))
and for n < 0, we let

Kn (f) = Ko(57"f) (vesp. eLy (f) = cLo (S7"f)).
So for all n € Z, we have

K (Sf) =~ Kn-1(f) (vesp. eLn (Sf) =~ cLn-1(f))
and

K (f) = Kny1 (L (f)) (vesp. cLn (f) = cLnt1 (L (£)))-

We also have the following long exact sequences

= Koy (B) — K (f) — Kn (A) — Ky (B) — Kna (f) —
A aLnJrl (B) — ¢Lp (f) — Ly (A) — Ly (B) -
eLln_1 (f) — ..
2.4. Excision in K-Theory.

Definition 2.4.1. We say that a diagram of unitary (resp. Hermitian)
Tings

A — Al
P2 J l@l
Ag — AI

is excisive for the algebraic (resp. Hermitian) K-Theory, if for everyn € Z,
we have

K, (1) ~ K, (p2), resp. <Ly (1) ~ L (92).

For an excisive diagram for the algebraic (resp. Hermitian) K-Theory, in
particular, we have the Mayer-Vietoris long exact sequence

s Kt (A) — Ko (A) — Ky (A1) ® K, (A2) — K, (A) —

Kn,1 (A) —_—
and
v eLpt1 (A) — Ly (A) — Ly (A1) @ cLn (A2) — Ly (A') —
Ly (A) — -
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Definition 2.4.2. Let I be a ring (eventually without unit). We say that I
is excisive for the algebraic (resp. Hermitian) K-Theory, if every Cartesian
diagram of unitary (resp. Hermitian) rings

A — Al
P2 J J%
AQ — A/

such that I ~ kerpy and 1 is surjective, is excisive for the algebraic
(resp. Hermitian) K-Theory.

Remark 2.4.3. Given a diagram of unitary (resp. Hermitian) rings

A — Al
o Jo
AQ — A/

such that @1 is surjective. Then we have

Ko (1) = Ko (¢2) [1].
Respectively,

cLo (p1) = Lo (p2) [8].

Note that using Proposition 2.5 of [6,p. 269] we show that this definition
of the relative groups Lo (1) and Lo (p2) coincide with that of [9].

2.5. Examples of Excisive Rings for the Algebraic K-Theory.

Theorem 2.5.1. [12] Every C*-algebra is excisive for the algebraic K-
Theory.

Let A be a QQ-algebra. We say that A is H-unital if the complex
LY qen Y qen-1 MV g4 Y g

is acyclic. For every n > 2, the homomorphism b’ is defined on A®™ by the
following formula

n

V(i ®a® - ®a,) =31, (—1) a1 ® a2 @ a;10; @ - @ ay.
Theorem 2.5.2. [12] Fvery H-unital ring is excisive for the algebraic K-
Theory.

3

In the following, we suppose that 2 is invertible in the considered rings.
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3.1.
Theorem 3.1.1. Given p € Z and a Cartesian diagram of Hermitian rings
A — Aq
| o
A, — A’

such that
K, (1) ~ K, (p2) for every n > p, L, (p1) ~ <Ly (p2) and
eLpt1(p1) = cLpii (p2).
Then

cLn (1) = <Ly (p2) for alln > p.

3.2. Before proving this theorem, we will define for a homomorphism of
Hermitian rings

f:A— B
and for every n € Z, relative groups U, (f) and . V,, (f). Let f : A — Bbe
a homomorphism of Hermitian rings. We have the following commutative
diagrams

f) — K — -

, ]
|

€

(4 — KM — -

€

— K]

U(B) — K(B) — L(B).
The fiber of the map K (f) — L(f) is equal to the fiber of the map
U(A) — U (B). We denote U (f) as this common fiber. We also have
the following commutative diagrams

V() — L) — k()

|

V(A — L) — K4

|

V(B) — L(B) — K(B).

The fiber of the map L (f) — K (f) is equal to the fiber of the map
V(A) — V(B). We denote .V (f) as this common fiber. For every
n >0, we let

Un (f) =m0 (U(f)) and V;, (f) = mn (V (f))-

For n < 0, we let
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Un (f) = Uo (S7"f) and Vi, (f) = Vo (S7"f).
For every n € Z, we have the following long exact sequences

v eUnga (B)—’EUTL (f)—’sUn (A)—>€U7L(B)—>
sUn—l(f)—’"'

= Va1 (B) — Vo (f) — Vi (4) — Va (B) —
Vo1 (f) —

= K1 (f) — Vo (f) — cLn (f) — Kn (f) —
s‘/n—l(f)—""

= elny1 (f) — Un (f) — Kn (f) — L (f) —
Un1 (f) — .

For the proof of Theorem 3.1.1 we will need the following lemma.

3.3.

Lemma 3.3.1. Let f : A — B be a homomorphism of Hermitian rings.
For every n € Z, we have

aUnJrl (f) = 7€V’I’L (f)
3.4.

Proof. Knowing that for any Hermitian ring D the homotopy equivalence
QU (D) ~ _.V (D)

is natural, we have the following commutative diagrams

Then for all n € Z, we have the following diagrams of long exact sequences

—eVat1 (A) — —¢Vap1 (B) e T (f) -  _Vn (A) —  _Wn (B)
l 14 14 4
EU77,+2 (A) m—rfl EUTH-Z (B) —} EU:,,,+1 (f) e 5Un+1 (A) - EU'I'L+1 (B) .

Hence, we have proved the lemma. ([
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3.5. Proof of Theorem 3.1.1. For all n € Z, the homomorphism A —
A; induces the following diagrams of long exact sequences

— L) — Un(pa) — Kn(pa) — cLnlp2) — Un1(p2) — -

4
— Lntip) — Uale) — Kalp)) — cLalpr) — Unoalp) — o
= Kn+1, (‘P2) — Vn (KPZ) — oLy (‘PZ) — K, (902) — Va1 (992) ==y

— Kpi (o) — Vale) — clu(p) — Kale)) — Vaoale) — oo
Consider the following diagram of exact sequences
aLp—H (‘pZ) = Kp-H ((/72) — 5V1-7 (LPZ) = ch (‘PZ) sy I(p (QPZ)

(S A

CLp+1(<P1) — Kp+1(<ﬂl) Sy cV;:((/)l) e st(Sol) == Kp((m)'

We deduce that for any e
Vo (p2) = Vi (¢1).
Then we have

Upt1 (92) = cUpta (1)
We proceed now by induction on n. Assume that

sLn (‘PQ) e Ln (‘Pl) and sUn (4102) s sUn (@1)
The diagram of exact sequences
Knt1(p2) — clnti(p2) — Un(p2) — Kn(p2)
| | | |
Kny1(p1) — clngi(p1) — Un(p1) — Ku(p1)
prove that the homomorphism
eLni1 (92) —¢ Lt (1)
is surjective. Consider the following diagram
ebnpi(p2) — Kpy1(p2) — Valpz) — cLu(pz) — Knlp2)
i 4 {
= - J/
sLn—}—l (4/71) b 4 K’n»}-l (‘pl) — CVn (Sol) —= EL'II (‘Pl) S }\n (@1) -

We deduce that for any e

Vo (902) ~ Vi (901)
Consequently, we have

eUnt1 (902) = eUnt1 (901)
Finally, consider the diagram of exact sequences
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Unt1 (902) — Kot (902) — elnpa (“P2) — Un ((P'Z) — K (992)
y y g
€ n;l (‘101) — Kn+1 ((Pl) — 5L11+1 (Wl) e eUn (Wl) — K, ((101) -

It follows that

eLni1 (902) ~  Lpi (901)
Hence, we have the following corollary.

Corollary 3.5.1. Let I be a Hermitian ring. If I is excisive for the alge-
braic K-Theory, then it is also excisive for the Hermitian K-Theory.

3.6.

Proof. Let I be an excisive ring for the algebraic K-Theory and consider
the following Cartesian diagram of Hermitian rings

A e Al

| Jo

A2 — A/

such that I ~ kerp; and ¢; is surjective. According to Remark 2.4.3 we
have

Lo (p2) = Lo (1)

The suspension of this diagram is also a Cartesian diagram and S¢; is also
surjective. Then, we have (according to the Remark 2.4.3)

eLo (Sp2) = Lo (S¢1).

So we have

L1 (p2) = cLo (Sp2) =~ Lo (Sp1) = L1 (1)

Then by Theorem 3.1.1 and for all n > —1, we have

eLn (902) ~ Ly (901)

For n < —1, we have

Ly (‘PQ) =Ly (S_H‘PQ) ~ Lo (S_n§01) = L, (4101)-

Hence, we have proved the corollary. O
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4. EXCISION IN HERMITIAN K-THEORY WITH COEFFICIENTS IN Z/q

4.1. Let X be a topological space. For any n > 2, 7,, (X;Z/q) will denote
the nth homotopy group of X with coefficient in Z/q [11].

Definition 4.1.1. Let A be a unitary (resp. Hermitian) ring. For alln > 2,
we let

Kn(A;Z/q) = mn (BGL(A)";Z/q) resp. <Ln(AZ/q) =
7 (B-O(A)S Z/q).
Forn <2, we let
Kn(A;Z/q) = K2(S* " A;Z/q), resp. cLu(A;Z/q) = L2(S* A Z/q).
Definition 4.1.2. Let f : A — B be a homomorphism of unitary (resp. Her-
mitian) rings. For alln > 2, we let

Kou(f;Z/q) = mo (K (f);Z/q), resp. cLn(f;Z2/q) = mn (L (f); 2/ ).
Forn <2, we let
Kn(f;Z/q) = Ko(S* " f;2/q), resp. -Lu(f;2/q) = La(S*~ " f; Z/q).
For all n € Z, we have the following long exact sequences
o — K1 (BsZ/q) — Kn (f3Z/q) — Kn (AZ/q) —
K, (BiZ/q) — Kn-1(fiZ/q) — -+~
= eLn1 (BsZ/q) — L (f32/q) — <L (A;Z/q) —
eLn (B7Z/Q) — cLp1 (fyZ/Q) — .
Definition 4.1.3. Let A be a Hermitian ring. For all n > 2, we let
Un(A;2/q) = 7 (U (A);Z/q), resp. Va(A;Z/q) = mn (V (A);Z/q).
Forn < 2, we let
aUn(A7Z/q) = 6U2(52_nA;Z/q)’ resp. EV’IZ(A; Z/Q) = a‘/é(SQ_nA;Z/q)'
Note that for all n € Z, we have
Un(SAZ/q) =~ Un1(A5Z2/q), Va(SAZ/q) = Va1(A;Z/q)
and

Uni1(SAZ)q) =~ V(A5 Z/q).

Definition 4.1.4. Let f : A — B be a homomorphism of Hermitian
rings. For all n > 2, we let

Un(f3Z/q) = mn (U (f) i Z/q), resp. Va(fiZ/q) = mn (V (f):Z/q)-
Forn < 2, we let

Un(f32/q) = U2(S* " f32/q), resp. Vou(f;2/q) = Va(S* " f32/q).
To simplify the writing, groups K,(.;Z/q), eLn(;2Z/q), Un(;;Z/q) and

Vi (:3Z/q) will be respectively denoted K, (.), cLn(.), cUn(.) and .V, (.).
Note that for all n € Z, we have
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F’I’L (Sf) =~ anl (f) ) Efrisf) = EZnLI (f) ) EUn(Sf) e Unfl(f) and
svn(Sf) = svn—l(f)'

We also have the following long exact sequences

—>Fn+1(f)—’svn(f)—>szn(f)—>Fn(f)—>
Eth(f)_>

sUn—l(f)—>"'-

Proposition 4.1.5. Let f : A — B be a homomorphism of Hermitian
rings. For all n € Z, we have

aUnJrl (f) =~ 75Vn (f)
4.2.

Proof. The following diagram of fibrations

shows that .U, (f) ~ _.V, (f) for any n > 2. For n < 2 we have

—Van (f) = fEVQ (S2inf) =~ EUB (Sginf) = EU’I’L+1 (f)
Hence, we have proved the proposition. ([

Remark 4.2.1. We define excision in K-Theory with coefficients in Z/q,
i a similar way as for the usual K-Theory. As examples of excisive rings
for the K-Theory with coefficients in Z/q, we have the following theorem.

Theorem 4.2.2. [3] or [8] Let I be a ring such that H. (I;Z/q) = 0 (I
is considered as an abelian group). Then the ring I is excisive for the
K-Theory with coefficients in Z/q.

Remark 4.2.3. In a similar way, we prove the equivalent of Theorem 3.1.1
for the K-Theory with coefficients in Z/q.

Corollary 4.2.4. Let I be a Hermitian ring. If I is excisive for the al-
gebraic K-Theory with coefficients in Z/q, then it is also excisive for the
Hermitian K-Theory with coefficients in Z/q.
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4.3.

Proof. Let I be an excisive Hermitian ring for the algebraic K-Theory with
coefficients in Z/q and let the following be a Cartesian diagram of Hermitian
rings

A — A1

| Jo

A2 — AI

such that I ~ kerp; and ¢, is surjective. Consider the diagram of exact
sequences

Lo (S%02) =% Lo (S%02) — La(S%02) — oL (S%02) B L1 (S%2)
-L2 (S%¢1) L Lo (SPp1) — L2 (S%01) — L1 (S%01) <L Ly (S%01) -

We have

We also have
<Ly (S%p2) ~ Lo (Sp2) ~ Lo (Sp1) ~ L1 (S%p1).
So the diagram shows that
eLo (p2) = <L2 (S%p2) =~ Ly (S%¢1) = Lo (1).
We also prove that

<L 1 (p2) ~ L1 (1)

So according to Remark 4.10 and for all n > —1, we have

<L, (p2) =~ L, (¢1)-

For n < —1, we have
sfn (‘PQ) = EZO (S_H‘PQ) = EZO (S_n§01) = sfn (4101)-

Hence, we have proved the corollary. (Il

5. HERMITIAN K-THEORY OF STABLE C*-ALGEBRAS

5.1. Topological K-Theory.
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5.2. Let A be a Banach algebra. The topological K-Theory of A is defined
by:

Ktop(A) o Tn (BGLtOp(A)) for n > O7
! B Ko(4) for n = 0.

The topology of the space GL™P (A) which is the direct limit of GLIP (A),
is induced by the topology of the Banach space M,, (A). For an involutive
Banach algebra A, the topological Hermitian K-Theory of A is defined by

_LioP(A) = {Wn (B.O"P(4)) forn >0,
Lo(A) for n = 0.
The canonical map
BGL (A) - BGL'"? (A)
induces the map
BGL (A" 25 BGLr (A).
The following diagram is homotopy commutative
BGL(A) — BGL™P(A)
! /
BGL (A)*.
For all n > 0, by passing to homotopy groups, the map o™ induces the
following homomorphisms
K, (A) 2% Ktor (A).
For n = 0, we let g = Id. Similarly, for an involutive Banach algebra A,
the canonical map
B.O (A) - B.O™P (A)
induces for all n > 0, the following homomorphisms
cLn (A) =5 (LIPP (A).
For n =0, we let 79 = Id. Let A be an involutive Banach algebra. We will
denote KP (A) the space Kg(A) x BGL!*P (A) and .L°P (A) the space
<Lo (A) x B.O™P (A). Let -U*P (A) be the homotopic fiber of the map
Ktor (A) — L1 (A)
and let V%P (A) be the homotopic fiber of the map
LP (A) — KPP (A).
Then we have the following theorem.

Theorem 5.2.1. [4] Let A be an involutive Banach algebra. Then it exists
a homotopy equivalence between spaces QU©P (A) and _ VPP (A).

For all n > 0, we let
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ULP (A) = (UP (A)) et V3P (A) = m, (VI (A)).
For all n > 1, we let
EU’ItLop (A) ~ 76V7fofpl (A).

We also have the diagrams of long exact sequences

— Lpp1(4) — U, (4) — K,(4) — L,(A) — Upi(4) — -
1

— LR (A) — URP(A) — KIP(A) — LPP(A) — USR (A — -
— Ko (4) — V(4 — L, (4) — K,(4d) — V.4 —

— KSR — VA — L) — KA s KR o

Definition 5.2.2. Let A be an involutive Banach algebra. For all n > 0,
we define

WP (A) = coker (K7 (A) — LiP (A))
and
Wi (A) = coker (K, (A) —¢ L, (A)).

Proposition 5.2.3. [7] Let A be an involutive Banach algebra. Then we
have

W1 (A) = EWfop (A)

Theorem 5.2.4. Let A be an involutive Banach algebra such that for all
n >0,
K, (A) ~ Ktr (A).
Then for all n > 0 we have
eLn (A) = L7 (A).
5.3.

Proof. Let A be an involutive Banach algebra A such that K, (A) ~ K!P (A)
for all n > 0. Consider the following diagram

Ki(A) — Li(4) — WA — 0

| | J

K (A) — LP(A) — W74 — o
This diagram proves that

ker (-L1 (A) —. LiP (A)) C Im (K1 (A) —. L1 (A))

and that the homomorphism .L; (4) —. L' (A) is surjective. The fol-
lowing diagram
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Ky (/1) — aLl (A) — sl/r() (A) R Ky (A) — Ly (A)

z i | I
KiP(4) — LP(A) — U4 — KF(A) — LY (4)

shows that
Uo (A) = Uy (A).
Consider the following diagram
L) — K (4 — — Lp(4A) —  Ko(A4)

2 I
L4 — KP4 — VP JLEP(A) — KP(A).

ﬂ+__°

We deduce that for any e

Vo (A) = V™ (A).
Hence for any € we have

Ui (4) = fop (A).

The following diagram of exact sequences

aUl (A) — K] (A) il CLI (A) — (-,U() (A) iy K() (A)

zj 2 2 I
A

J’ Y
LR (4) — KPP — JLEPP(A) — U (A) — KT (A)

proves that
L1 (A) = sLﬁop (A)
Then we prove the result, proceeding as in Section 3.5. O

Definition 5.3.1. Let K be the C*-algebra of the compact operators on the

standard separable Hilbert space. We say that a C*-algebra A is stable if

and only if it is isomorphic to KRQA.

Theorem 5.3.2. [12] Let A be o stable C*-algebra. The homomorphism
Ko (A) 75 Klov (4)

is an isomorphism for all n > 0.

The following theorem is a direct consequence of the two preceding theo-
rems.
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Theorem 5.3.3. Let A be an involutive stable C*-algebra. For allm > 0,
we have

Ly (A) ~ _LtoP (A).

Example 5.3.4. Let K be the C*-algebra of the compact operators on the
standard separable Hilbert space H. Let A = C (X;K) be the C*-algebra
of the continuous functions from a compact space X to K. This algebra is
stable. The density theorem [5] proves that

1 L3P (A) = 1 LP (C'(X;C)).

Definition 5.3.5. Let A be an involutive Banach algebra. We say that A
is a C-algebra if, for every x € M,, (A), 1 +aT € GL,, (A).

In [5,p. 234], Karoubi proves that for a C' -algebra B, there is a natural
isomorphism

1L7P (B) ~ K7 (B) @ K7 (B).

Proposition 5.3.6. Since C (X;C) is a C-algebra, for all n > 0, we have
the following isomorphism

1L, (A) ~ K, (X)® K, (X).

Example 5.3.7. If X is the complex projective space CP", we obtain

Z?"  if n is even,

1Ln (4) = { 0 ifn is odd.

REFERENCES

(1] H. Bass, Algebraic K-Theory, Benjamin, New York, 1964.

[2] N. Battikh, Ezcision en K-Théorie Hermitienne, Note aux CRAS, 235.2 (1997),
131-134.

[3] R. Charney, A Note on Excision in K-Theory, Springer Lecture Notes 1046, Alge-
braic K-Theory, Number Theory, Geometry and Analysis, 47-54.

[4] M. Karoubi, Périodicité de la K-théorie Hermitienne, Springer Lecture Notes, 343
(1973), 301-411.

[5] M. Karoubi, Théorie de Quillen et homologie du groupe orthogonal, Annals of Math-
ematics, 112 (1980), 207-257.

[6] M. Karoubi, Le théoréme fondamental de la K-théorie Hermitienne, Annals of
Mathematics, 112 (1980), 259-282.

[7] M. Karoubi, Relation between algebraic K-Theory and Hermitian K-Theory, Jour-
nal of Pure and Applied Algebra, 34 (1984), 259-263.

[8] M. Karoubi, Homologie des groupes discrets associés a des algébres d’opérateurs,
Journal of Operator Theory, 15 (1986), 109-161.

[9] M. Karoubi and O. Villamayor, K-théorie algébrique et K-théorie topologique II,
Math. Scand., 32 (1973), 57-86.

[10] J. L. Loday, K-théorie algébrique et représentation de groupes, Ann. Sci. Ecole
Normale Sup, 4 (1976), 309-377.
[11] J. Neisendorfer, Primary Homotopy Theory, Mem. Amer. Math. Soc., 232 (1980).

FEBRUARY 2011 63



MISSOURI JOURNAL OF MATHEMATICAL SCIENCES

[12] A. Suslin and M. Wodzicki, Fzcision in algebraic K-theory, Annals of Mathematics,
136 (1992), 51-122.

[13] J. B. Wagoner, Delooping classifying spaces in algebraic K-theory, Topology, 11
(1972), 349-370.

MSC2010: 19D25, 19199

DEPARTMENT OF MATHEMATICS, IPEIN, CARTHAGE-7 NOVEMBER UNIVERSITY, CAM-
PUS UNIVERSITAIRE MERAZKA, 800, NABEUL, TUNISIA
E-mail address: naoufelbattikh@yahoo.com

64 VOLUME 23, NUMBER 1



