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Abstract. In this work we show how to use the Karoubi’s funda-
mental theorem of Hermitian K-theory [6] to prove some results in
L-Theory using these same results in algebraic K-Theory.

1. Introduction

Let I be a ring (eventually without unit). I is excisive for the alge-
braic (resp. Hermitian) K-Theory, if for every Cartesian diagram of unitary
(resp. Hermitian) rings

A −→ A1

ϕ2

y

yϕ1

A2 −→ A′

such that I ' kerϕ1 and ϕ1 is surjective, we have

Kn (ϕ1) ' Kn (ϕ2) (resp. εLn (ϕ1) ' εLn (ϕ2)) for every n ∈ Z.

In particular, we have the following long exact sequence:

· · · −→ Kn+1 (A′) −→ Kn (A) −→ Kn (A1) ⊕ Kn (A2) −→ Kn (A′) −→
Kn−1 (A) −→ · · ·

and

· · · −→ εLn+1 (A′) −→ εLn (A) −→ εLn (A1)⊕ εLn (A2) −→ εLn (A′) −→

εLn−1 (A) −→ · · · .

As examples of excisive rings for the algebraic K-Theory, we can give C∗-
algebras and H-unital algebras [12]. In the first part of this work, we use
the Karoubi’s fundamental theorem of Hermitian K-Theory, to prove that
if a ring is excisive for the algebraic K-Theory, then it is excisive for the
Hermitian K-Theory. We also prove the same result for the K-Theory with
coefficients in Z/q.

Let A be an involutive Banach algebra. The canonical maps:

A part of this work was the subject of a note in CRAS (see [2]).
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BGL (A)
σ

−→ BGLtop (A) and BεO (A)
τ

−→ BεO
top (A)

induce the following homomorphisms

Kn (A)
σn

−→ Ktop
n (A) and εLn (A)

τn

−→ εL
top
n (A).

In the second part of this work, using the fundamental theorem of Hermitian
K-Theory, we prove that if σn is an isomorphism for all n ≥ 0, then the
same is true for τn. Since Wodzicki and Suslin have shown that for stable
C∗-algebras, the σn are isomorphisms for all n ≥ 0 [12], then for these
algebras, algebraic and Hermitian K-Theory groups coincide.

2. Review of Known Facts

2.1. Here we recall some results obtained by using the algebraic suspen-
sion SA of a ring A. (see [10], p. 327, for the definition of the algebraic
suspension).

Theorem 2.1.1. [13] Let A be a unitary ring. We have natural homotopy
equivalence

ΩBGL (SA)+ ∼ K0 (A) × BGL (A)+.

The group K0 (A) is endowed with the discrete topology. In particular, for
every n ≥ 1, we have

Kn (SA) ' Kn−1 (A).

Theorem 2.1.2. [5] Let A be a Hermitian ring. We have natural homotopy
equivalence

ΩBεO (SA)
+
∼ εL0 (A) × BεO (A)

+
.

The group εL0 (A) is endowed with the discrete topology. In particular, for
every n ≥ 1, we have

εLn (SA) ' εLn−1 (A).

These theorems are used to define groups Kn and εLn for all n < 0. For a
unitary ring (resp. Hermitian ring) A and n < 0, we set

Kn (A) = K0 (S−nA) (resp. εLn (A) = εL0 (S−nA) ).

2.2. Let A be a Hermitian ring. The hyperbolic functor [4] induces a group
homomorphism

K0 (A) −→ εL0 (A)

and the homomorphisms

GLr (A) −→ εOr,r (A)

defined by the following correspondence

M −→

(
M 0

0 tM
−1

)

induces a map
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BGL (A)+ −→ BεO (A)+.

We denote εU (A) as the homotopic fiber of the map

K0 (A) × BGL (A)
+
−→ εL0 (A) × BεO (A)

+
.

Similarly, the forgetful functor [4] induces a group homomorphism

εL0 (A) −→ K0 (A)

and the natural inclusions

εOr,r (A) −→ GL2r (A)

induce a map

BεO
+ (A) −→ BGL (A)+.

We denote εV (A) as the homotopic fiber of the map

εL0 (A) × BεO (A)
+
−→ K0 (A) × BGL (A)

+
.

Theorem 2.2.1. [6] Let A be a Hermitian ring containing in its center an
element λ, such that λ +λ = 1. (This condition is satisfied if, for example,
2 is invertible in A). Then there exists a natural homotopy equivalence
between spaces ΩεU (A) and −εV (A).

We recall that the topological version of this theorem induces Bott pe-
riodicity in the real and complex cases. This interpretation of the Bott
periodicity doesn’t use Clifford algebras [4].

For n ≥ 0, we let

εUn (A) = πn (εU (A)) and εVn (A) = πn (εV (A))

and for n < 0, we let

εUn (A) = εU0 (S−nA) and εVn (A) = εV0 (S−nA).

For every n ∈ Z, we have

εUn+1 (A) ' −εVn (A).

We also have the following long exact sequences

· · · −→ Kn+1 (A) −→ εVn (A) −→ εLn (A) −→ Kn (A) −→

εVn−1 (A) −→ · · ·

and

· · · −→ εLn+1 (A) −→ εUn (A) −→ Kn (A) −→ εLn (A) −→

εUn−1 (A) −→ · · · .

2.3. Let A be a unitary (resp. Hermitian) ring. The space K0 (A) ×

BGL (A)+ (resp. εL0 (A)×BεO (A)+) will be denoted K (A) (resp. εL (A)).
Let f be a homomorphism of unitary (resp. Hermitian) rings

f : A −→ B.

We will recall a construction, due mainly to Wagoner [13], of the groups
Kn (f) (resp. εLn (f)). Let Γ (f) be the fibered product of SA and CB
over SB:
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Γ (f) −→ CBy
y

SA −→ SB

.

The space ΩK (Γ (f)) (resp. ΩεL (Γ (f))) has the same homotopy type as
the homotopic fiber K (f) (resp. εL (f)) of the map

K (A) −→ K (B) (resp. εL (A) −→ εL (B)).

For every n ≥ 0, we let

Kn (f) = πn (K (f)) (resp. εLn (f) = πn (εL (f)))

and for n < 0, we let

Kn (f) = K0 (S−nf) (resp. εLn (f) = εL0 (S−nf)).

So for all n ∈ Z, we have

Kn (Sf) ' Kn−1 (f) (resp. εLn (Sf) ' εLn−1 (f))

and

Kn (f) = Kn+1 (Γ (f)) (resp. εLn (f) ' εLn+1 (Γ (f))).

We also have the following long exact sequences

· · · −→ Kn+1 (B) −→ Kn (f) −→ Kn (A) −→ Kn (B) −→ Kn−1 (f) −→
· · ·

· · · −→ εLn+1 (B) −→ εLn (f) −→ εLn (A) −→ εLn (B) −→

εLn−1 (f) −→ · · ·

2.4. Excision in K-Theory.

Definition 2.4.1. We say that a diagram of unitary (resp. Hermitian)
rings

A −→ A1

ϕ2

y

yϕ1

A2 −→ A′

is excisive for the algebraic (resp. Hermitian) K-Theory, if for every n ∈ Z,
we have

Kn (ϕ1) ' Kn (ϕ2), resp. εLn (ϕ1) ' εLn (ϕ2).

For an excisive diagram for the algebraic (resp. Hermitian) K-Theory, in
particular, we have the Mayer-Vietoris long exact sequence

· · · −→ Kn+1 (A′) −→ Kn (A) −→ Kn (A1) ⊕ Kn (A2) −→ Kn (A′) −→
Kn−1 (A) −→ · · ·

and

· · · −→ εLn+1 (A′) −→ εLn (A) −→ εLn (A1)⊕ εLn (A2) −→ εLn (A′) −→

εLn−1 (A) −→ · · · .
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Definition 2.4.2. Let I be a ring (eventually without unit). We say that I
is excisive for the algebraic (resp. Hermitian) K-Theory, if every Cartesian
diagram of unitary (resp. Hermitian) rings

A −→ A1

ϕ2

y
yϕ1

A2 −→ A′

such that I ' kerϕ1 and ϕ1 is surjective, is excisive for the algebraic
(resp. Hermitian) K-Theory.

Remark 2.4.3. Given a diagram of unitary (resp. Hermitian) rings

A −→ A1

ϕ2

y

yϕ1

A2 −→ A′

such that ϕ1 is surjective. Then we have

K0 (ϕ1) ' K0 (ϕ2) [1].

Respectively,

εL0 (ϕ1) ' εL0 (ϕ2) [8].

Note that using Proposition 2.5 of [6, p. 269] we show that this definition
of the relative groups εL0 (ϕ1) and εL0 (ϕ2) coincide with that of [9].

2.5. Examples of Excisive Rings for the Algebraic K-Theory.

Theorem 2.5.1. [12] Every C∗-algebra is excisive for the algebraic K-
Theory.

Let A be a Q-algebra. We say that A is H-unital if the complex

· · ·
b′

−→ A⊗n b′

−→ A⊗n−1 b′

−→ · · ·
b′

−→ A ⊗ A
b′

−→ A

is acyclic. For every n ≥ 2, the homomorphism b′ is defined on A⊗n by the
following formula

b′ (a1 ⊗ a2 ⊗ · · · ⊗ an) =
∑n

i=2
(−1)i a1 ⊗ a2 ⊗ ai−1ai ⊗ · · · ⊗ an.

Theorem 2.5.2. [12] Every H-unital ring is excisive for the algebraic K-
Theory.

3

In the following, we suppose that 2 is invertible in the considered rings.
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3.1.

Theorem 3.1.1. Given p ∈ Z and a Cartesian diagram of Hermitian rings

A −→ A1

ϕ2

y
yϕ1

A2 −→ A′

such that

Kn (ϕ1) ' Kn (ϕ2) for every n ≥ p, εLp (ϕ1) ' εLp (ϕ2) and

εLp+1 (ϕ1) ' εLp+1 (ϕ2).

Then

εLn (ϕ1) ' εLn (ϕ2) for all n ≥ p.

3.2. Before proving this theorem, we will define for a homomorphism of
Hermitian rings

f : A −→ B

and for every n ∈ Z, relative groups εUn (f) and εVn (f). Let f : A −→ B be
a homomorphism of Hermitian rings. We have the following commutative
diagrams

εU (f) −→ K (f) −→ εL (f)y
y

y
εU (A) −→ K (A) −→ εL (A)y

y
y

εU (B) −→ K (B) −→ εL (B) .

The fiber of the map K (f) −→ εL (f) is equal to the fiber of the map

εU (A) −→ εU (B). We denote εU (f) as this common fiber. We also have
the following commutative diagrams

εV (f) −→ εL (f) −→ K (f)y
y

y
εV (A) −→ εL (A) −→ K (A)y

y

y
εV (B) −→ εL (B) −→ K (B) .

The fiber of the map εL (f) −→ K (f) is equal to the fiber of the map

εV (A) −→ εV (B). We denote εV (f) as this common fiber. For every
n ≥ 0, we let

εUn (f) = πn (εU (f)) and εVn (f) = πn (εV (f)).

For n < 0, we let

FEBRUARY 2011 53



MISSOURI JOURNAL OF MATHEMATICAL SCIENCES

εUn (f) = εU0 (S−nf) and εVn (f) = εV0 (S−nf).

For every n ∈ Z, we have the following long exact sequences

· · · −→ εUn+1 (B) −→ εUn (f) −→ εUn (A) −→ εUn (B) −→

εUn−1 (f) −→ · · ·

· · · −→ εVn+1 (B) −→ εVn (f) −→ εVn (A) −→ εVn (B) −→

εVn−1 (f) −→ · · ·

· · · −→ Kn+1 (f) −→ εVn (f) −→ εLn (f) −→ Kn (f) −→

εVn−1 (f) −→ · · ·

· · · −→ εLn+1 (f) −→ εUn (f) −→ Kn (f) −→ εLn (f) −→

εUn−1 (f) −→ · · · .

For the proof of Theorem 3.1.1 we will need the following lemma.

3.3.

Lemma 3.3.1. Let f : A −→ B be a homomorphism of Hermitian rings.
For every n ∈ Z, we have

εUn+1 (f) ' −εVn (f).

3.4.

Proof. Knowing that for any Hermitian ring D the homotopy equivalence

ΩεU (D) ∼ −εV (D)

is natural, we have the following commutative diagrams

−εV (f) −→ −εV (A) −→ −εV (B)y

y

y
ΩεU (f) −→ ΩεU (A) −→ ΩεU (B) .

Then for all n ∈ Z, we have the following diagrams of long exact sequences

Hence, we have proved the lemma. �
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3.5. Proof of Theorem 3.1.1. For all n ∈ Z, the homomorphism A −→

A1 induces the following diagrams of long exact sequences

Consider the following diagram of exact sequences

We deduce that for any ε

εVp (ϕ2) ' εVp (ϕ1).

Then we have

εUp+1 (ϕ2) ' εUp+1 (ϕ1).

We proceed now by induction on n. Assume that

εLn (ϕ2) 'ε Ln (ϕ1) and εUn (ϕ2) ' εUn (ϕ1).

The diagram of exact sequences

Kn+1 (ϕ2) −→ εLn+1 (ϕ2) −→ εUn (ϕ2) −→ Kn (ϕ2)

o

y

y o

y o

y
Kn+1 (ϕ1) −→ εLn+1 (ϕ1) −→ εUn (ϕ1) −→ Kn (ϕ1)

prove that the homomorphism

εLn+1 (ϕ2) −→ε Ln+1 (ϕ1)

is surjective. Consider the following diagram

We deduce that for any ε

εVn (ϕ2) ' εVn (ϕ1).

Consequently, we have

εUn+1 (ϕ2) ' εUn+1 (ϕ1).

Finally, consider the diagram of exact sequences
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It follows that

εLn+1 (ϕ2) ' εLn+1 (ϕ1).

Hence, we have the following corollary.

Corollary 3.5.1. Let I be a Hermitian ring. If I is excisive for the alge-
braic K-Theory, then it is also excisive for the Hermitian K-Theory.

3.6.

Proof. Let I be an excisive ring for the algebraic K-Theory and consider
the following Cartesian diagram of Hermitian rings

A −→ A1

ϕ2

y
yϕ1

A2 −→ A′

such that I ' kerϕ1 and ϕ1 is surjective. According to Remark 2.4.3 we
have

εL0 (ϕ2) ' εL0 (ϕ1).

The suspension of this diagram is also a Cartesian diagram and Sϕ1 is also
surjective. Then, we have (according to the Remark 2.4.3)

εL0 (Sϕ2) ' εL0 (Sϕ1).

So we have

εL−1 (ϕ2) = εL0 (Sϕ2) ' εL0 (Sϕ1) = εL−1 (ϕ1).

Then by Theorem 3.1.1 and for all n ≥ −1, we have

εLn (ϕ2) ' εLn (ϕ1).

For n < −1, we have

εLn (ϕ2) = εL0 (S−nϕ2) ' εL0 (S−nϕ1) = εLn (ϕ1).

Hence, we have proved the corollary. �
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4. Excision in Hermitian K-Theory with Coefficients in Z/q

4.1. Let X be a topological space. For any n ≥ 2, πn (X ; Z/q) will denote
the nth homotopy group of X with coefficient in Z/q [11].

Definition 4.1.1. Let A be a unitary (resp. Hermitian) ring. For all n ≥ 2,
we let

Kn(A; Z/q) = πn (BGL(A)+; Z/q) resp. εLn(A; Z/q) =
πn (BεO(A)+; Z/q).

For n < 2, we let

Kn(A; Z/q) = K2(S
2−nA; Z/q), resp. εLn(A; Z/q) = εL2(S

2−nA; Z/q).

Definition 4.1.2. Let f : A −→ B be a homomorphism of unitary (resp. Her-
mitian) rings. For all n ≥ 2, we let

Kn(f ; Z/q) = πn (K (f) ; Z/q) , resp. εLn(f ; Z/q) = πn (εL (f) ; Z/q).

For n < 2, we let

Kn(f ; Z/q) = K2(S
2−nf ; Z/q), resp. εLn(f ; Z/q) = εL2(S

2−nf ; Z/q).

For all n ∈ Z, we have the following long exact sequences

· · · −→ Kn+1 (B; Z/q) −→ Kn (f ; Z/q) −→ Kn (A; Z/q) −→
Kn (B; Z/q) −→ Kn−1 (f ; Z/q) −→ · · ·

· · · −→ εLn+1 (B; Z/q) −→ εLn (f ; Z/q) −→ εLn (A; Z/q) −→

εLn (B; Z/q) −→ εLn−1 (f ; Z/q) −→ · · · .

Definition 4.1.3. Let A be a Hermitian ring. For all n ≥ 2, we let

εUn(A; Z/q) = πn (εU (A) ; Z/q), resp. εVn(A; Z/q) = πn (εV (A) ; Z/q).

For n < 2, we let

εUn(A; Z/q) = εU2(S
2−nA; Z/q), resp. εVn(A; Z/q) = εV2(S

2−nA; Z/q).

Note that for all n ∈ Z, we have

εUn(SA; Z/q) ' εUn−1(A; Z/q), εVn(SA; Z/q) ' εVn−1(A; Z/q)

and

εUn+1(SA; Z/q) ' −εVn(A; Z/q).

Definition 4.1.4. Let f : A −→ B be a homomorphism of Hermitian
rings. For all n ≥ 2, we let

εUn(f ; Z/q) = πn (εU (f) ; Z/q), resp. εVn(f ; Z/q) = πn (εV (f) ; Z/q).

For n < 2, we let

εUn(f ; Z/q) = εU2(S
2−nf ; Z/q), resp. εVn(f ; Z/q) = εV2(S

2−nf ; Z/q).

To simplify the writing, groups Kn(.; Z/q), εLn(.; Z/q), εUn(.; Z/q) and

εVn(.; Z/q) will be respectively denoted Kn (.) , εLn(.), εUn(.) and εV n(.).
Note that for all n ∈ Z, we have
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Kn (Sf) ' Kn−1 (f) , εLn(Sf) ' εLn−1 (f) , εUn(Sf) 'ε Un−1(f) and

εV n(Sf) ' εV n−1(f).

We also have the following long exact sequences

· · · −→ Kn+1 (f) −→ εV n (f) −→ εLn (f) −→ Kn (f) −→

εV n−1 (f) −→ · · ·

· · · −→ εLn+1 (f) −→ εUn (f) −→ Kn (f) −→ εLn (f) −→

εUn−1 (f) −→ · · · .

Proposition 4.1.5. Let f : A −→ B be a homomorphism of Hermitian
rings. For all n ∈ Z, we have

εUn+1 (f) ' −εV n (f).

4.2.

Proof. The following diagram of fibrations

−εV (f) −→ −εV (A) −→ −εV (B)y
y

y
ΩεU (f) −→ ΩεU (A) −→ ΩεU (B)

shows that εUn+1 (f) ' −εV n (f) for any n ≥ 2. For n < 2 we have

−εV n (f) = −εV 2

(
S2−nf

)
' εU3

(
S2−nf

)
= εUn+1 (f).

Hence, we have proved the proposition. �

Remark 4.2.1. We define excision in K-Theory with coefficients in Z/q,
in a similar way as for the usual K-Theory. As examples of excisive rings
for the K-Theory with coefficients in Z/q, we have the following theorem.

Theorem 4.2.2. [3] or [8] Let I be a ring such that H̃∗ (I ; Z/q) = 0 (I
is considered as an abelian group). Then the ring I is excisive for the
K-Theory with coefficients in Z/q.

Remark 4.2.3. In a similar way, we prove the equivalent of Theorem 3.1.1
for the K-Theory with coefficients in Z/q.

Corollary 4.2.4. Let I be a Hermitian ring. If I is excisive for the al-
gebraic K-Theory with coefficients in Z/q, then it is also excisive for the
Hermitian K-Theory with coefficients in Z/q.
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4.3.

Proof. Let I be an excisive Hermitian ring for the algebraic K-Theory with
coefficients in Z/q and let the following be a Cartesian diagram of Hermitian
rings

A −→ A1

ϕ2

y

yϕ1

A2 −→ A′

such that I ' kerϕ1 and ϕ1 is surjective. Consider the diagram of exact
sequences

We have

εL2

(
S2ϕ2

)
' εL0 (ϕ2) ' εL0 (ϕ1) ' εL2

(
S2ϕ1

)
.

We also have

εL1

(
S2ϕ2

)
' εL0 (Sϕ2) ' εL0 (Sϕ1) ' εL1

(
S2ϕ1

)
.

So the diagram shows that

εL0 (ϕ2) = εL2

(
S2ϕ2

)
' εL2

(
S2ϕ1

)
= εL0 (ϕ1).

We also prove that

εL−1 (ϕ2) 'ε L−1 (ϕ1).

So according to Remark 4.10 and for all n ≥ −1, we have

εLn (ϕ2) 'ε Ln (ϕ1).

For n < −1, we have

εLn (ϕ2) = εL0 (S−nϕ2) ' εL0 (S−nϕ1) = εLn (ϕ1).

Hence, we have proved the corollary. �

5. Hermitian K-Theory of Stable C∗-algebras

5.1. Topological K-Theory.
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5.2. Let A be a Banach algebra. The topological K-Theory of A is defined
by:

Ktop
n (A) =

{
πn (BGLtop(A)) for n > 0,

K0(A) for n = 0.

The topology of the space GLtop (A) which is the direct limit of GLtop
n (A),

is induced by the topology of the Banach space Mn (A). For an involutive
Banach algebra A, the topological Hermitian K-Theory of A is defined by

εL
top
n (A) =

{
πn (BεO

top(A)) for n > 0,

εL0(A) for n = 0.

The canonical map

BGL (A)
σ

−→ BGLtop (A)

induces the map

BGL (A)+
σ+

−→ BGLtop (A) .

The following diagram is homotopy commutative

BGL (A) −→ BGLtop (A)y ↗

BGL (A)
+

.

For all n > 0, by passing to homotopy groups, the map σ+ induces the
following homomorphisms

Kn (A)
σn

−→ Ktop
n (A).

For n = 0, we let σ0 = Id. Similarly, for an involutive Banach algebra A,
the canonical map

BεO (A)
τ

−→ BεO
top (A)

induces for all n > 0, the following homomorphisms

εLn (A)
τn

−→ εL
top
n (A).

For n = 0, we let τ0 = Id. Let A be an involutive Banach algebra. We will
denote Ktop (A) the space K0 (A) × BGLtop (A) and εL

top (A) the space

εL0 (A) × BεO
top (A). Let εU

top (A) be the homotopic fiber of the map

Ktop (A) −→ εL
top (A)

and let εV
top (A) be the homotopic fiber of the map

εL
top (A) −→ Ktop (A).

Then we have the following theorem.

Theorem 5.2.1. [4] Let A be an involutive Banach algebra. Then it exists
a homotopy equivalence between spaces ΩεU

top (A) and −εV
top (A).

For all n ≥ 0, we let
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εU
top
n (A) = πn (εU

top (A)) et εV
top
n (A) = πn (εV

top (A)).

For all n ≥ 1, we let

εU
top
n (A) ' −εV

top
n−1 (A).

We also have the diagrams of long exact sequences

Definition 5.2.2. Let A be an involutive Banach algebra. For all n ≥ 0,
we define

εW
top
n (A) = coker (Ktop

n (A) −→ε Ltop
n (A))

and

εWn (A) = coker (Kn (A) −→ε Ln (A)).

Proposition 5.2.3. [7] Let A be an involutive Banach algebra. Then we
have

εW1 (A) ' εW
top
1

(A).

Theorem 5.2.4. Let A be an involutive Banach algebra such that for all
n ≥ 0,

Kn (A) ' Ktop
n (A).

Then for all n ≥ 0 we have

εLn (A) ' εL
top
n (A).

5.3.

Proof. Let A be an involutive Banach algebra A such that Kn (A) ' Ktop
n (A)

for all n ≥ 0. Consider the following diagram

K1 (A) −→ εL1 (A) −→ εW1 (A) −→ 0

o

y
y o

y
Ktop

1 (A) −→ εL
top
1 (A) −→ εW

top
1 (A) −→ 0.

This diagram proves that

ker
(
εL1 (A) −→ε Ltop

1 (A)
)
⊂ Im (K1 (A) −→ε L1 (A))

and that the homomorphism εL1 (A) −→ε Ltop
1 (A) is surjective. The fol-

lowing diagram
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shows that

εU0 (A) ' εU
top
0 (A).

Consider the following diagram

We deduce that for any ε

εV0 (A) ' εV
top
0 (A).

Hence for any ε we have

εU1 (A) ' εU
top
1 (A).

The following diagram of exact sequences

proves that

εL1 (A) ' εL
top
1 (A).

Then we prove the result, proceeding as in Section 3.5. �

Definition 5.3.1. Let K be the C∗-algebra of the compact operators on the
standard separable Hilbert space. We say that a C∗-algebra A is stable if
and only if it is isomorphic to K⊗A.

Theorem 5.3.2. [12] Let A be a stable C∗-algebra. The homomorphism

Kn (A)
σn

−→ Ktop
n (A)

is an isomorphism for all n ≥ 0.

The following theorem is a direct consequence of the two preceding theo-
rems.
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Theorem 5.3.3. Let A be an involutive stable C∗-algebra. For all n ≥ 0,
we have

εLn (A) ' εL
top
n (A).

Example 5.3.4. Let K be the C∗-algebra of the compact operators on the
standard separable Hilbert space H. Let A = C (X ;K) be the C∗-algebra
of the continuous functions from a compact space X to K. This algebra is
stable. The density theorem [5] proves that

1L
top
n (A) ' 1L

top
n (C (X ; C)).

Definition 5.3.5. Let Λ be an involutive Banach algebra. We say that Λ
is a C-algebra if, for every x ∈ Mn (Λ), 1 + xx ∈ GLn (Λ).

In [5, p. 234], Karoubi proves that for a C -algebra B, there is a natural
isomorphism

1L
top
n (B) ' Ktop

n (B) ⊕ Ktop
n (B).

Proposition 5.3.6. Since C (X ; C) is a C-algebra, for all n ≥ 0, we have
the following isomorphism

1Ln (A) ' Kn (X) ⊕ Kn (X).

Example 5.3.7. If X is the complex projective space CP r, we obtain

1Ln (A) =

{
Z2r if n is even,
0 if n is odd.
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[5] M. Karoubi, Théorie de Quillen et homologie du groupe orthogonal, Annals of Math-

ematics, 112 (1980), 207–257.
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