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ABSTRACT. In this paper, we consider a C, type criterion for ANOVA model with a
tree ordering (TO) 0, <0;, (j=2,...,I) where 0,...,0; are population means. In
general, under ANOVA model with the TO, the usual C, criterion has a bias to a
risk function, and the bias depends on unknown parameters. In order to solve this
problem, we calculate a value of the bias, and we derive its unbiased estimator. By
using this estimator, we provide an unbiased C, type criterion for ANOVA model with
the TO, called TOC,. A penalty term of the TOC, is simply defined as a function of
an indicator function and maximum likelihood estimators. Furthermore, we show that
the TOC, is the uniformly minimum-variance unbiased estimator (UMVUE) of a risk
function.

1. Introduction

In real data analysis, ANOVA model is often used for analyzing cluster
data. Moreover, a model whose parameters y,...,x; are restricted such as
a Sinple Ordering (SO) given by g <--- <y, is also important in the field
of applied statistics (e.g., Robertson et al., [14]). In addition, Brunk [4], Lee
[11], Kelly [9] and Hwang and Peddada [7] showed that maximum likelihood
estimators (MLEs) for mean parameters of ANOVA model with the SO are
more efficient than those of ANOVA model without any restriction when the
assumption of the SO is true.

However, in general, the classical asymptotic theory does not hold for
the model with parameter restrictions. For example, Anraku [2] showed that
the ordinal Akaike information criterion (AIC, Akaike [1]) for ANOVA model
with the SO, whose penalty term is 2x the number of parameters, is not an
asymptotically unbiased estimator of a risk function. In order to solve this
problem, Inatsu [8] derived an asymptotically unbiased AIC for ANOVA
model with the SO, called AICgo. Furthermore, a penalty term of the AICgo
can be simply defined as a function of MLEs of mean parameters. On the
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other hand, Anraku and Nomakuchi [3] investigated the k-variate normal
distribution with mean 60 = (017...,9/()/ and covariance X where 6 is an
unknown parameter vector, and X is a known positive definite matrix. In
this setting, they proposed an unbiased AIC when the parameter 8 is restricted
on a closed convex polyhedral cone. Nevertheless, above previous studies only
considered the AIC under order restrictions, and they do not consider other
criteria such as C, type criteria (see, Mallows [13], Fujikoshi and Satoh [6]).
Furthermore, particularly in Inatsu [8], the considered restriction is the SO.
In practice, the tree ordering (TO) given by w; <g; (j=2,...,1), is also often
used in applied statistics (see, e.g., Hwang and Peddada [7]).

In this paper, we consider ANOVA model with the TO. For this model,
we derive an unbiased C, type criterion. The remainder of the present paper
is organized as follows: In Section 2, we define the true model and candidate
model. Moreover, we derive MLEs of parameters in the candidate model. In
Section 3, we provide the C, type criterion for ANOVA model with the TO,
called TOC,. In addition, we show that the TOC, is the uniformly minimum-
variance unbiased estimator (UMVUE). In Section 4, we show some proper-
ties of the TOC, through numerical experiments. In Section 5, we conclude
our discussion. Technical details are provided in Appendix.

2. ANOVA model with a tree order restriction

In this section, we define the true model, and candidate models with order
restrictions. The MLE for the considered candidate model is given in Sub-
section 2.3.

2.1. True and candidate models. Let Y; be an observation variable on the jth
individual in the ith cluster, where 1 <i<k*, j=1,...,N; for each i, and
k* >2. Here, we put N=N;+---+ Ny and Y; = (Yi,..., Y,-Nl)/ for each i.
Also we put Y = (Y],...,Y..) and N = (Ny,...,Ni-)".

Suppose that Yii,..., Yi«y,. are mutually independent, and Y is dis-
tributed as

Yy~ N(..02), (1)

for any i and j. Here, y;, and o2 are unknown true values satisfying K. € R
and o2 > 0, respectively. In other words, the true model is given by (1).

Next, we define a candidate model. Let Qy,...,Qr be non-empty dis-
joint sets satisfying Q1 U---U Qr = {1,2,...,k*}, where 2 < k <k*. Then, we
assume that Yip,..., Yi-n,. are mutually independent, and distributed as

Y’:/ ~ N(:uho-z)v (2)
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where g, ..., and ¢?(> 0) are unknown parameters. In addition, for the
parameters y,..., ., we assume that
vSG{l,...,k}, vulauZGst My = Hyys (3)
and
vte{za"'vk}v vvth» luq S:u\n (4)

where ¢ € Q). Then, a candidate model .# is defined as the model (2) with (3)
and (4). In particular, the order restriction (4) is called a Tree Ordering (TO).
For example, when k* =7, k=4, 01 ={1,3,7}, 0, ={2}, 03 ={4,5} and
Q4 = {6}, the unknown parameters yu,...,u; for the candidate model .# are
restricted as

My =3 = g < Uy, My = H3 = g < fy = Us, My = U3 = 7 < Ug.

2.2. Notation and lemma. In this subsection, we define several notations.
After that, we provide the related lemma. Let / be an integer with / > 2.
Then, define

Ny={xeN|x</l}={1,...,1}.

Moreover, let xp,...,x; be real numbers, and let Ny,...,N;, be positive
numbers. We put x = (x1,...,x;) and N = (Ny,...,N;)'. Furthermore, let
A ={ay,...,a;} be a non-empty subset of N;, where a; < --- < a; when i > 2.
Next, define
= —(N) ZSGA Nsx; ZSGA Ny
x4 = (Xay, -5 %a,) s X4 = X;, X, = = 2 .
: ; ZseA N\' NA

For example, when / =10 and 4 = {2,3,5,10}, x4, X4 and X;N) are given by

/ ~
x4 = (x2,X3,X5,X10) , X4 = X2 + X3+ X5 + X190,

™) _ Noxy + N3x3 + Nsxs + Nipxio
4 N>+ N3+ Ns+ Ny

In particular, when A4 has only one element «a, i.e., 4 ={a}, it holds that
X4 = (xa)/, X4 = x, and )_CEIN> = x,. On the other hand, when 4 = IN;, it holds
that x4 = x. For simplicity, we often represent X;N) as X4. In addition, let

A" be a set defined as
A = {(xl,...,x,)/ e R/ |Vj e NA\{1},x1 < x;}

:{(xl,...,xl)/eIRl|x1 <X2,...,Xx1 < X}
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Furthermore, for any integer i with 1 <i </, we consider a family of sets fi(l)
defined by

g ={J N/ |1ed #J =i},

where #J means the number of elements of the set J. For example, when
[ =3, it holds that

A=y AT =03 AT = {1231 = (N}

Here, note that fl(l) = {{1}} and jlw = {N;} for any />2. Similarly, for
any integer  with 1 < i </ and for any set J in fim, we consider the following
set AD(J):

AV ={(x1,...,x) e R Vs e J,x; = x;, "t e N\J, x1 < x;}.
Note that when J = N, it holds that N,\J = ¢J. In this case, the proposition
Yte &, x| < Xy

is always true. For example, when / = 3, it holds that

AD{1}) ={x=(x1,...,x3) e R? | x; < xp,x1 < 33},
APD{1,2}) = {x e R¥ | x1 = x2,x1 < x3},
AV({1,3}) = {x e R*|x1 = x3,:1 < x2},
AV({1,2,3}) = {x e R |x1 = x2 = x3}.

It is clear that these four sets are disjoint sets and

3
U U AV = {x e R¥|x; < x3,x1 < x3} = 4.
i=l ye ;O

Similarly, in the case of / > 2, it holds that

i
U U 4"0)={xeR|x <x,...,x <x;} =49, (5)
i=1 ¢ 40

and AD()NAD(JT*) = & when J # J*.

Next, for a vector x = (x1,...,x;)’, an integer s with 1 <5 </ and a real
number a, x[s;a] stands for an /-dimensional vector whose sth element is a and
tth element (z € N/\{s}) is x,. For example, if x = (1,4,4,3)’, then x[2; —1] =
(1,-1,4,3)" and x[4;5] = (1,4,4,5)". Moreover, for any integer s (> 2) with
1 <s </ and for any set J = {ji,..., js} of /S(l), where j; < --- < j;, we define
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a matrix Dyv) as follows. First, in the case of s =1, the family of sets fl(l)
has only one set J = {1}, and we define D}N) =0. On the other hand, in
the case of s> 2, the matrix D§N> is the s —1 x s matrix whose ith row
(1 <i<s—1) is defined as

1 -
= Nj[i—l—l;—NJ\{ jiv }]/.
Ny .

For example, when / = 3, it holds that

(N) _ N) _ pN) _
D{l} =0, D{l,z} = D{1’3} =(1 -1),
N N3
D(N) _ NlJrlN.z -1 Ni+N;
123 = |~ Ny 1

Ni+N,  Ni+N>

For simplicity, we often represent DﬁN) as Djy.

Furthermore, we define a function nl(N) from R’ to 4. For each vector
x=(x1,...,x) e R/ ql(N)(x) is defined as

q,(M(x) = argmin ZNi(x[ — y,-)z. (6)

In addition, let 771(N) (x)[s] be the sth element (1 < s </) of r]l(N)(x). Note that

well-definedness of r],(M can be derived by using the Hilbert projection theorem
(see, e.g., Rudin [15]). For simplicity, we often represent :]l(N)(x) as a;(x).
Finally, we provide the following lemma:

LemMma 1. The following three propositions hold:
(1) It holds that

n (AYD) (AT =g (T #T).

(2) For any integer i with 1 <i <1 and for any set J in /,-(I), it holds
that

' (49()))
= {x = (xla e 'axl)/ € ]R1|DJXJ = 07VZ‘EN/\JaXJ < X[}, (7)

where the inequality s > 0 means that all elements of the vector s are
non-negative.
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(3) Let i be an integer with 1 <i <, and let J be a set with J e fi(”.
Let x = (x1,...,x;)" be an element of R'. Assume that x satisfies

xen (AN)).
Then, it holds that
Yseld, 1n(x)[s] = Xy, te N)\J, n,(x)[f] = x;.
In particular, for the case of J =Ny, if x satisfies
xen ' (AD () = {xeR!|Dsx; > 0},

then, the following proposition holds:

sed, m(x)ls) =%

The proof of Lemma 1 is given in Appendix 1.

2.3. Maximum likelihood estimators for unknown parameters. In this sub-
section, we derive MLEs for unknown parameters in the candidate model .#.
First of all, we rewrite the candidate model. For any integer s with 1 <s <k
and for all elements qis), gl of Oy, let X, = (Y'y,...,Y',), where v is the
number of elements in Qy, and let X, be a tth el(é:lment of qi\’s. We put X =
(Xi7 R 7Xl/{)l7

Hoo =0 = My = 0y,
and 0= (0y,...,0;)'. In addition, define n, = qum +o+ N and n=
(ny,...,n;)'. Note that n +---+n =Ny +---+ Ny. = N. Then, the can-
didate model can be rewritten as
X, ~ N(6,,0?%), t=1,...,n,
with
0, <6,,...,0, < 6.
Here, a parameter space @ for the candidate model is defined as follows:
0= {(a,...,ar) e R*|"ue N\{1},a, < a,}.
Next, we consider the log-likelihood for the candidate model. Let

— 1 &
XS:_ XS‘U7 S:17"'7k7
nS 1

v=

and let X = (X1,...,X;)". Then, since X,’s are independently distributed as
normal distribution, the log-likelihood function /(8,0%; X) is given by
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I(H,UZ;X):——log 276?) ~ 5 ZZZ o —
N
:—510g27w 7 ZZZ o —

1 _
_ ﬁZnS(XS — 05)2.

Hence, for any o >0, the maximizer of /(0,¢6% X) on @ is equal to the
minimizer of

k j—
= Z ns(Xv

s=1
on ©. In other words, the MLE 6 = (91,...7@)/ of @ is given by

0 = argmin H(0;X). (8)
0o
We would like to note that the MLE @ can be written by using (6) as
1" (X) = 0. Here, we substitute X for x = (x;,...,x;)". Then, from Lemma
1, there exists a unique integer o with 1 <o <k and a unique set J with
Je 7 such that
Djx; >0, vﬂG]Nk\J, Xy < Xg.

For this set J, it holds that

- _ NeXe nX,
VW e J’ 0w =X = ZceJ — Zcel ¢

Yeere  Yeeshe | 9)
vﬂE]Nk\J, é/fZXﬂZA_//;.

Therefore, the MLE i = (4;,...,4) of #= (uy,...,14-)" can be written as

e, f=0, (s=1,...,k). (10)
On the other hand, the MLE 62 of 6> can be written as

1 & 1 &
R0 3 DIORE SIS St
s=1 =1 ?:l

1 k  n 1 k* NI

:NZZ(X“_ = 7 (11)

s=1 =1 z:l _/:1

because the function /(0, o%; X) is a concave function with respect to (w.r.t.) o2
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3. C, type criterion for the candidate model

In this section, we derive an unbiased C, type criterion for the candidate
model .#. Here, we assume the following condition:

(C1) The inequality N —k* —2 >0 holds.
We do not need to assume that the true model is included in the candidate
model. First, we consider the risk function based on the prediction mean
squared error (PMSE). Let Y. = (Y|,,..., Y;.)" be a random vector, and
let Y, be independent and identically distributed as Y. Furthermore, for any
integer s with 1 <s <k and for all elements q%s),...,qb of Qy, we define
X, = (Y’ O e Y{’]m )'. In addition, we put X, = (X|,,...,X;,)". The

risk functlon R based on the PMSE is given by

e [L5 S -]

i=1

1 k
;ZNz ﬂz* 1u1 ‘| (12)

Next, we define the following random variables:

N, k* N,
S PN CINRL NS SO SUES ORI

Note that Yi,...,Y;. and &> are mutually independent, and Y, ~
N(y;,,0?/N;) and NG?/o? ~ y3_,. because Yii,..., Yiy, are independently
distributed as normal distribution. Then, we estimate the risk function R by
using

(ka*fz)g. (14)

Here, from (11) the MLE 62 can be written as

1]( N;

.-
62 :NZZ(Y,;, —-Y)? +%;NI(YI — i)’

i=1 j=1
N S (L (15)
N 1:1 1 1 1 .
Therefore, (14) can be expressed as

.0 . Nk =2\ 1~ o
(N—k=2)5=N-k —2+<?*>—ZNI-(YZ-—/4)- (16)
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On the other hand, from (9) and (10), it can be seen that i, ..., [4,. are func-

tions of X1,...,Xx. Moreover, for any integer s with 1 < s < k, it holds that
n\zxv SN, 2 Z Yy = z 2 Ne¥e  (17)

s qe Qs j= q€0s "4 geQ,
Thus, X,..., X are functions of Yy,..., Y, and f,..., [, are also func-
tions of Yi,..., Y. Hence, noting that Y,,..., Y, and & are independent,

and N&2/o> ~ y% .. and E[(x}_,.) '] = (N —k* —2)"", the expectation of
(16) can be written as

E N—k*—2(f—2
s -23

g2

=N-k*-2+E

e
éZNi{(Yi _ﬂi,*) + (ﬂi,* _ﬂi)}zl

* =1

=N-2+2E

1 & X
;ZNI :ul* ﬂl,*_#i)]

i=1

1 & o
E ;z;Ni(u,;* — ) 1
* =

1 &
_N—2—2E[—22N1(Y ;)| +E

* j=1

2ZN . m]. (18)

i=1

Therefore, by using (12) and (18), the bias B which is the difference between the
expected value of (14) and R, is given by

B:E[R—(N—k*—Z)Z:—z]

k*

12 ST mm]

=2+42E

=2+2E

Here, for any integer s with 1 <s <k, we put

qu Os N’i'u%* _ ZQGQ‘* Nq'uq’* = Ol - (20)

2 ge0. Vg 7

Then, combining (10), (17) and (20), (19) can be expressed as
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+2E

S

)~
x

=
><\
S

*

~—
Ll

—_

Hence, noting that X; ~ N(o.,02/n;), we have
(k+ [ Zns N O‘s* A_/ _és)]- (21)

Next, we calculate the expectation in (21). Here, the following theorem
holds:

TueOREM 1. Let | be an integer with | >2. Let ny,...,n; and t> be
positive numbers, and let &;,... & be real numbers. Let xy,...,x; be inde-
pendent random variables, and let x; ~ N(&,72/ny), (s=1,...,1). Put n=

(n,...,m), E=(&1,...,&) and x = (x1,...,x))". Then, it holds that

L3 o - &) — 1" ()15

Details of the proof of Theorem 1 are given in Appendix 2 and 3. Note
that Xy,..., X, are mutually independent, and X; ~ N(o,.,02/n,) for any
integer s with 1 <s<k. Also note that from (8) the MLE @ is given by
0= q,E") (X). Therefore, from Theorem 1, the expectation in (21) can be
expressed as

1< )
72 ng _OCS'* r_gs)‘|

k
E%Z X o) n£><x>u>]

zk: u—1)P (96 U A(k)(J)) =1L, (say).
u=2

Je gk
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Hence, in order to correct the bias, it is sufficient to add 2(k+ 1) —2L to
(14). However, it is easily checked that L depends on the true parameters
01,40k« and o2. For this reason, we must estimate L. Here, we define
the following random variable #u:

k
m=1 +Zl{él<éu}’ (22)
a=2

where 1;, is an indicator function. It is clear that m is a discrete random
variable and its possible values are 1 to k. Incidentally, from the definitions of
A®(J), i and @, it holds that

be |J AV em=k+l-usk—m=u-1,
Je gk

for any integer u with 1 <u <k. Therefore, the random variable k —m
satisfies

Elk —m] = f:(u —-1)P (é e | A<k>(1)> =L
u=2 Je gk
Hence, in order to correct the bias, instead of 2(k 4+ 1) — 2L, we add
2k +1) = 2(k — i) = 2(i + 1)
to (14). In other words, it holds that
B=2(k+1)—-2E[k —m| =E[2(m + 1)].

As a result, we obtain the C, type criterion for the candidate model .# with the
TO, called TOC,.

THEOREM 2. A C, type criterion for the candidate model ./ with the TO,
called TOC, is defined as
6’2
TOC, .= (N —k* — 2);—1— 2m+ 1),

where 62, > and m are given by (11), (13) and (22), respectively. ~Moreover,
for the risk function R given by (12), it holds that
E[TOC,] = R.

REMARK 1. The TOC, is the unbiased estimator of R. Furthermore,
unbiasedness of the TOC, holds even if the true model is not included in the
candidate model .
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In addition, for unbiasedness of the TOC,, the following theorem holds:

THEOREM 3. The TOC, is the uniformly minimum-variance unbiased
estimator (UMVUE) of R.

Proor. As we mentioned before, the random variable 72 is a function of

01,...,0c, and 0,,...,0, are functions of X,,...,Xs. Furthermore, X, ...,
X are functions of Yi,..., Yx.. Thus, A is a function of Yi,...,Y;.. On
the other hand, since f,...,[;. are functions of Yi,..., Y-, from (15), we
can see that both 6> and &> are functions of Y,..., Y;.. Therefore, from
the definition of the TOC,, the TOC, is a function of &> and Yi,..., Yi-.
Incidentally, noting that Yiy,..., Yi-n,, are mutually independent, and Yj; ~

N (,u[’*,af) where 1 <i<k* and 1 < j <N, the joint distribution function
f(y;m,,02) can be written as

f(yim,,o?)

1 k* ~ Ni B k*
=C exp{—wzl:<Niyi2 + z;(yy - yi)2> + 21:
* j— j= i=

where y,, C; and C, are given by

Niﬂi* _
2’ Yi— CZ}v
O-*

1 1 1 &
Vi =57 i Ci=—>57> G=55) N ~2*-
g Nzly ' (2ne2) ™ ’ 203; &

Here, define

k* N;
Toz(m%zmmz), T et
i=1

i=1 j=

Then, (Ty, T}, ..., Tx-)" is a complete sufficient statistic (see, e.g., Lehmann and
Casella [12]). Moreover, since &> can be written by using (7o, 71, ..., Tx-)' as

1 &
2 _ Z 2
[ —N<T0_i_lNzTi>a
2

&> is a function of the complete sufficient statistic (7o, Ty,..., Tk-)". Hence,
the TOC, which is a function of % and Yi,..., Y, is also a function of the
complete sufficient statistic. Therefore, since the TOC, is the unbiased esti-
mator of R, from Lehmann-Scheffé theorem (see, e.g., Knight [10]), the TOC,
is the UMVUE of R. O

REMARK 2. We would like to note that Davies et al. |5] showed the bias-
corrected C, type criterion, MC, (given by Fujikoshi and Satoh [6]) is the
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UMVUE of a risk function based on the prediction mean squared error for
normal linear regression models without any order restriction.

4. Numerical experiments

In this section, we confirm the estimation accuracy for the TOC, through
numerical experiments. In addition, we also calculate the selection probability
and the risk of the best model.

4.1. Estimation accuracy. Let Y, ~ N(0;,0%), where i=1,2,3,4 and j=
1,...,N; for each i. We set Ny = N, = N3 = N4. Furthermore, we put N =
Ny + Ny + N3 + N4.  In this setting, we consider the ANOVA model with the
following restriction:

Yie{3,4}, 0, =06, <0,
Hence, in this candidate model, the parameter space @ is given by
0 ={0=(01,0,,05,0s) eR*|"j € {3,4},0, = 0, < 0,}.

Here, for comparison, we define the following criterion:

A2
fC,,:(N—k*—2)%+2(k+l),

where k is the number of independent mean parameters in the candidate model,
and the notation “f” of fC, is an abbreviation for “formal”. Thus, the
penalty term of the fC, is 2(3 + 1) in this candidate model. Note that under
no order restrictions, the fC, is equal to the usual unbiased C, criterion.
However, since the parameters are restricted, the fC, is not necessarily
(asymptotically) unbiased estimator of the risk function in general.

Next, in this numerical experiments, we consider the following true
parameters:

Case I: 0,=1, 6,=1, 6;=15 6,=18, o*=1,
Case 2: Oy =1, 0,=1, 60;=105 04=105 o*>=1,
Case 3: O, =1, 0,=1, 0;=1, 0,=1, o&’°=1,

Case 4 0,=12, 0,=1, 6;=08, 0,=13, o>=1.

We would like to note that the vector of true parameters 6 = (01,...,0,)" is an
interior point of @ in Case 1. Similarly, in Case 2,  is an interior point of O,
but 0 is very close to the boundary. On the other hand, € is a boundary point
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Table 4.1. Risk of the candidate model, and estimation accuracies of each criterion
in Case 1-2
Case 1 Case 2
Risk TOC, fC, Risk TOC, fC,

N R—N Bias MSE Bias MSE R—N Bias MSE Bias MSE
12 2.49 0.00 4.71 —0.69 4.66 2.11 0.00 7.72 —1.69 10.46
36 2.79 0.00 2.61 -0.26 238 2.12 0.00 4.45 -1.62  6.89

100 2.96 0.00 2.14 —-0.04 2.08 2.14 0.00 3.95 —-1.50 595

200 3.00 0.00 2.04 0.00 2.03 2.16 0.00 3.72 —-1.40 532

1000 3.00 0.00 2.02 0.00 2.02 2.34 0.00 3.17 -0.95 3.51
2000 3.00 0.00 2.00 0.00 2.00 2.50 0.00 2.87 -0.67 2.76
Table 4.2. Risk of the candidate model, and estimation accuracies of each criterion
in Case 3-4

Case 3 Case 4
Risk TOC, fC, Risk TOC, fC,

N R—-N Bias MSE Bias MSE R—-N Bias MSE Bias MSE
12 2.10 0.00 8.14 -1.79 11.35 2.32 0.00 10.25 —-1.87 13.94
36 2.11 0.00 4.83 —-1.78  8.00 2.78 0.00 7.84 -1.92 1191
100 2.11 0.00 4.45 —-1.78  7.63 4.03 0.00 12.31 —-1.96 16.67

200 2.11 0.00 4.36 -1.79  7.56 6.01 —-0.01 20.27 —-1.99 24.65

1000 2.11 0.00 4.30 —-1.78  7.49 22.00 0.00 84.89 —2.00 88.88
2000 2.11 0.00 4.27 —-1.78  7.46 42.00 0.00 165.94 —2.00 169.94

of @ in Case 3. Moreover, in Case 4, 6 is not included in . Therefore,
the true model is included in the candidate model when Case 1-3. However,
in Case 4, it is not included. From 1,000,000 Monte Carlo simulation runs,
we confirm estimation accuracies (bias and MSE) of the TOC, and the fC,.
Obtained results are given in Table 4.1 and 4.2.

From Table 4.1, we can see that the TOC, and the fC, are unbiased and
asymptotically unbiased estimators of R, respectively. Similarly, we can see
that the biases of the TOC, of Case 2 are similar to those of Case 1. On the
other hand, the bias of the fC, in Case 2 is still not small when the sample
size N is 2000. Moreover, in Case 3, from Table 4.2 we can see that the
TOC, is the unbiased estimator of R and the fC, has the asymptotic bias.
In addition, from Table 4.2 we can see that the fC, has asymptotic bias in
Case 4. However, the TOC, is the unbiased estimator of R. Furthermore,
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for the MSEs, from Table 4.1 we can see that the MSEs of the fC, are smaller
than those of the TOC, in Case 1 or Case 2 and large N. On the other hand,
from Table 4.2 we can see that the MSEs of the TOC, are smaller than those
of the fC, in both Case 3 and 4.

4.2. Selection probability and the risk of the best model. In this subsection,
we calculate selection probabilities in cases of using the TOC, and the fC,,
respectively. In addition, we also calculate the risk of the best model selected
by minimizing each criterion. Let Y; ~ N(0;,02), where i = 1,2,3,4 and j =
1,...,N; for each i. We set Ny = N, = N3 = N4. Moreover, we put N =
Ny + N>+ N3 + N4 In this setting, we consider the following five candidate
models:

M1: ANOVA model with 0; = 0, = 05 = by,

M2: ANOVA model with 0, = 0, = 05 < b4,

M3: ANOVA model with 6, =0, <0;,, (j=3,4),
M4: ANOVA model with 6, <0;, (j=2,3,4),
A5: ANOVA model without any restriction.

Note that these five candidate models are nested. Furthermore, in this simu-
lation we consider the following true models:

Case 1: 0129221, 9329421.5, 0‘221,
Case 2: O,=0,=1, 0:=24, 0,=17, o*=1.

From 10,000 Monte Carlo simulation runs, we calculate the selection prob-
ability and the risk of the best model for each criterion in both cases.
Obtained results are given in Table 4.3-4.6.

Table 4.3. Selection probability (%) for the case of using each criterion in Case 1

TOC, fC,
N M M2 M3 AMA S M1 M2 M3 M4 M5
40 46.70 1474  28.88 498 470 48.13 1482 2737 471 497
80 2498  14.67 4836 6.1  5.88 25.63  14.68 4760 6.11 598
120 13.69 1099  62.06 6.57 6.69 14.02 1099 61.64 6.62 6.73
160 6.99 7.69 70.11  7.70  7.51 7.13 7.69 6995 772 751
200 3.27 470 7712 7.60 731 3.31 470 77.06 7.61 732
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Table 4.4. Selection probability (%) for the case of using each criterion in Case 2

TOC, fc,
N A2 M S M2 a3 M M5
40 324 022 8098 776  7.80 350 022 8039 791 798
80 0.04 000 8472 774 750 0.04 000 8464 778 754
120 0.00 000 8429 730 8.4l 0.00 000 8427 732 841
160 0.00 000 8432 798 7.70 000 000 8432 798 770
200 0.00 000 8450 749 801 0.00 000 8450 749 801

Table 4.5. Risk for each candidate model, and the values of risks of best models
(R[TOG,), RIfC,]) selected by minimizing the TOC, and the fC, in Case 1

N M1 M2 M3 M4 M5 R[TOC,]  R[fC,]
40 43.50 43.40 4271 4332 44.03 43.98 43.98
80 86.02 85.20 82.90 83.46 84.01 84.52 84.54
120 12851 12692 12296 12346  123.99 124.47 124.48
160 171.00  168.61 16299 16351  164.02 164.29 164.29
200 21351 21030 20297 20349  203.98 204.01 204.01

Table 4.6. Risk for each candidate model, and the values of risks of best models
(R[TOGC,), RIfC,]) selected by minimizing the TOC, and the fC, in Case 2

N A M2 M3 Wz M5 R[TOC,]  R[fC)
40 54.46 54.71 42.94 43.48 44.01 43.82 4385
80 107.94  107.86 82.99 83.50 83.99 83.55 83.55
120 16144 16102 12302 12351  124.02 123.59 123.59
160 21490 21410 16301  163.53  164.02 163.59 163.59
200 26839  267.22  203.01 20350  204.01 203.57 203.57

From Table 4.3-4.6, we can see that the obtained results of using the
TOC, are very similar to those of using fC, in both cases. This implies that
using the criterion which has unbiasedness does not dramatically influence the
performance of criteria such as the selection probability and the risk of the best
model.

5. Conclusion

Under ANOVA model with the tree ordering, we derived the unbiased C,
type criterion, called TOC,. In addition, the TOC, is the unbiased estimator
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even if the true model is not included in the candidate model. Moreover, we
show that the TOC, is the UMVUE. We confirmed the estimation accuracy
and we also calculated the selection probability and the risk of the best model
through numerical experiments.

We recall that the TOC, is derived under the tree ordering which is the
important restriction in applied statistics. Nevertheless, there are other impor-
tant restrictions such as simple ordering and umbrella ordering. Hence, we
should derive the unbiased C, type criterion under above restrictions. More-
over, we should consider generalization of restrictions such as the restriction on
a closed convex polyhedral cone and the restriction on closed convex set with
a smooth boundary. Furthermore, we should investigate theoretical property
of criteria derived under order restrictions. These are left for the future work.

Appendix 1: Proof of Lemma 1

In this section, we prove Lemma 1. First, we provide the following
lemma.

LemMa A. The following three propositions hold:
(1) Let A and B be non-empty subsets of N, and let ANB= . Then,
it holds that

Xq4 < Xp=> X4 < Xgqup < Xp.

(2) Let A and By,...,B; be non-empty subsets of WN,;, and let A and
By, ..., B; be disjoint. Then, it holds that

ef{l,...,i},  X4<ZXp = X4 <Xp, (A.1)
where B is given by
i

B:UB,.

j=1
Similarly, it also holds that
Yie{l,...,i}, Xp, < X4 = Xp < X4 (A.2)

(3) Let A, B and C be non-empty subsets of N;, and let A, B and C be
disjoint.  Then, it holds that

X4 < Xc, Xp < Xc = Xqup < XC. (A3)

The proof of Lemma A is omitted because it is easily obtained. Next,
we prove Lemma 1.
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ProOF. When / = 2, the statements of Lemma 1 are equivalent to Lemma
C given by Inatsu [8], and it is already proved. Therefore, we prove the case
of [ >3.

First, we prove (1) of Lemma 1. From (5) it holds that

I
U U AU) —{xe]R|x1<x2,...,x1§x1}:AU>,
i=1 ¢ 40

and AD(J) # AV (J*) where J #J*. Therefore, from the definition of the
inverse image, it is clear that (1) holds because #, is the function from R’
to AN,

Next, using mathematical induction we prove (2) and (3) of Lemma 1.
Thus, assume that Lemma 1 is true when / =2,... ¢ — 1. In this assumption,
we prove that Lemma 1 is also true when / =¢. Here, in the case of i=1,
flm has only one set J ={1}. First, for this set J, we show the inclusion
relation D of (7). Let x = (xi,...,x,)" be an element of IRY satisfying

D;x; >0, VZGNq\J, Xy < X;.

Here, note that X; = x;. Hence, for any integer ¢ with 2 <t <gq, the
inequality x; < x, holds. This implies that xe A (J) c 4. Meanwhile,
let

4(0; %) :Zq:Nu

u=1
Then, noting that x € 49, we get

0< 521/11% H,(0;x) < Hy(x;x) = 0.

Therefore, it holds that

min H,(d;x) = Hy(x;x) = 0.

6eAl)
This equality means that #,(x) = x € AY(J). Thus, we obtain n,(x) e AW ().
Therefore, xenq‘l(A(q)(J)) holds. Hence, the inclusion relation D of (7) in
the case of J = {1} is proved. Next, we show C of (7). Let y = (y1,...,¥,)
be an element of IRY satisfying y e nq‘l(A @(J)). In other words, we assume
that

;]q(y) = argmin H,(d;y) = a = (a,.. .,ocq)/ € A<">(J).
oA
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Here, noting that 4(9)(J) is an open set, there exists an e-neighborhood U(a; )
of @ such that U(a;e) C A )(J). Thus, for any element y = (yy, ..., yq)/ of RY
satisfying y € U(a;¢) C A9, it holds that

Hy(a;y) < Hy(y; y).

This implies that a is a local minimizer of H,(d; y). In addition, since H,(J; y)
is a strictly convex function on RY w.r.t. 4, the local minimizer @ is the unique
global minimizer. Moreover, it is clear that the global minimizer is y because
H,(d;y) is non-negative and H,(y;y) =0. Therefore, we get ¢ =y and it
holds that

n,(y)=a=yeA9).

Hence, for any s with s € N,\J, the inequality y; < y; holds. Consequently,
the inclusion relation C of (7) in the case of J = {1} is proved.

Next, for any i with 2 <i < ¢ — 1, we prove the inclusion relation D of
(7). Let i be an integer with 2 <i < g —1, and let J be a set with J e fi(q).
Assume that x = (x1,...,x,)" is an element of RY satisfying D;x; >0 and
X; < x; for any te N,\J. Here, the function H,(a;x) can be expressed as

q
Hq(“%"):ZN xd—(xd ZN Z Nt(xt—flz)z
d=1 seJ teIN,\J
= Hyj(as;x5) + Hyn,\u(0x,\ 75 ¥N,\7)-
Therefore, it is easily checked that

min H, (a x) > min H#]((lj,xj) +H#Nq\](qu\],qu\J) (A4)
acA ayeA#)

In addition, we put x; = (y1,....»2) =y, ay=(Bi,....Bu) =B, N;=

(ny,...,ny;) =n and J* = N,;. By using these notations, we obtain
H#J aJny ZN _055 Znu Yu H#J(ﬂ, )7
seJ
and

min H#J(“J,xj)— min  Hy;(f; y).

aye AW BeA#)
Recall that Lemma 1 is true when /=2,...,¢—1 from the assumption
of mathematical induction. Moreover, it also holds that D}N)xj > 0. This
inequality is equal to Dﬁ")ij > 0. Furthermore, noting that J* = N,; and
2<#J<qg-1, from (3) of Lemma 1 we get
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min  Hyj(ay;x;) = min  Hy;(B;y)

ay e A#) Bed)
#J
:Znu(yu ZN Xy — x7)°. (A.S)
u=1 seJ
Hence, from (A.4) and (A.5), it holds that
min Hy(a;x) > > Ny(x, — %)+ Y Ni(x—x,)°, (A.6)
aeAl) seJ teIN,\J
Here, let y = (y,,.. .,yq)/ be a g-dimensional vector whose sth element (s € J)

is X; and rth element (1€ N,\J) is x;. Then, from the assumption, for any
teN,\J it holds that X; <x,. Thus, from the definition of p, we obtain
ye A9, Hence, the following inequality holds:

min H,(a;x) < Hy(y;x) = ZNS(xs—xJ Z Ni(x — xy) 2. (A.7)

aeAW sed teN,\J
Therefore, from (A.6) and (A.7) we get

min H,(a;x) = Hy(y; x).

acA@)
This implies that

n,(x) = argmin H,(a;x) = y.
ac A

Noting that from the definition of y, we get y € A (J), i.e., x € nq‘l(AW ().
Consequently, for any i with 2 <i < g — 1, the inclusion relation D of (7) is
proved.

Next, we prove the inclusion relation C of (7). Let i be an integer with
2<i<q-—1,andletJ be a set with J € fi@. Also let x = (x,...,x,)" be an
element of RY satisfying x e q;l(A(q> (J)). In other words, we assume that

n,(x) = (a1,...,0)) =aeAD(J).

Here, from the definition of 4@ (J), for any seJ and for any te N\J,
it holds that o) = o; and o) < o, Incidentally, from the definition of #,, we
get

q

i Ny(x N, (x, — o)
min YN0 =Y b5 Nl

seJ teN,\J

—ZN —oq Z N,(x,—oc,)z.

seJ teN,\J
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In addition, for the subvector p* = (yl,y]’Nq\J)/, we consider the following
function:

ZN Xo—7)? A+ Z Ni(x—7,)*.

seJ teN,\J
Noting that a* = (ocl,aﬁ%v)/eA(q‘#J“)({l}) and A#*D({1}) is an open
set, there exists an e-neighborhood U(a*;e) of a* such that U(a*;e) C
AN (1)), Let ¢ = (Cl,.. L), and let = (GLLy,,) € Ulatse).
Moreover, let &= (&,...,¢ ) be a g-dimensional vector whose sth element
(seJ) is & ={(;, and tth element (reN,\J) is & ={,. Then, noting that
Ee A we obtain

=Y N =)+ Y Nilxi—

seJ teN,\J
:ZNY(XS_éY)Z—i_ Z Nl(xt_
seJ teN,\J

Y

q

min N;(x

5€A(‘/); (

—ZN s —ap)? Z Ny(x; — o) = H(a"; x).

seJ teIN,\J

Thus, ¢* is a local minimizer of H(y*;x). In addition, since H(y*;x) is a
strictly convex function on RY#/*! wrt. p* the local minimizer a* is the
unique global minimizer of H(y*;x). Moreover, the global minimizer can be
obtained by differentiating H(y*;x) w.r.t. y* as

o = Xy, o = X; (te NN\J).

Therefore, noting that o; < «;, we have X; < x,.

Next, we prove D§N>xj >0. We replace x; and N; with y = (y1,..., )’
and n= (ny,...,n;), respectively. In addition, we put J* =N;. Note that
x; =y =y,;.. Also note that y is an i-dimensional vector and 2 <i <g¢q— 1.
Recall that from (1) of Lemma 1, it holds that

i
=U U »
s=1 JG};(i)
i (A N N (AVT) =g (T,
In order to prove DVx; >0, we show yey'(49(N;)) using proof by
contradiction. Thus, we assume that there exists an integer s with 1 <s <
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i—1 and a set J* of £ such that yeq; ' (47 (J*)). Recall that from the
assumption of mathematical induction, Lemma 1 is true when / =2,...,¢— 1.
Furthermore, since i < ¢ —1, from (2) of Lemma 1, yen '(4D(J™)) is
equivalent to

D"y, >0, Fro <y (te NN\J™).
Here, by using (2) of Lemma A, we get y,.. < yy, ~. Moreover, using (1) of
Lemma A we have y,.. < j, = X;. Therefore, combining X; < x; (1€ N,\J),
we get
Py < Xy (re NAJ). (A.8)
Note that there exists a set J** with J** & J satisfies y;.. = Xy~ and
D"y, =DM x>0, x<x, (e \J). (A.9)
Hence, for the set J***, from (A.8) and (A.9) it holds that
Dﬁ’XixJ*** >0, Xye < Xy (e NNT™).

As we proved before, this implies that xeq;l(A(’f)(J***)). However, this
result is a contradiction because J # J**, x ey ' (49 (J)) and 5, (49 (J)) N
;' (AW(J*)) = &. Therefore, we obtain yen; ' (47 (N;)). From (2) of
Lemma 1, this result is equivalent to Dﬁf,'l) y = 0. This inequality can be written
by using N, J and x; as DﬁN)xJ > 0. Thus, for any i with 2 <i < g —1, the
inclusion relation C of (7) is proved.

Finally, in the case of i=g¢, ie, J=N,e fq(q), we prove (7). First,
we prove the inclusion relation D of (7). Let x = (xi,...,x,) € R% and let
D;x; > 0. Recall that the following relation holds:

R =J U ' (490,

Szljejy(‘“
0, (AP N (AT =5 (£ T).

Again, we consider proof by contradiction. Hence, we assume that there
exists an integer s with 1 <s<¢g—1 and a set J* of ff‘” satisfying x e
q;l(A(‘” (J*)). Thus, as we mentioned before, it holds that

Dy-x;- >0, Ypo<xe o (1eN)\JT).

We would like to recall that 1 €J* and the number of elements in J* is s.
Here, if s=¢—1, then N,2\J* has only one element a satisfying a > 1.
Therefore, it holds that

YN\ay < Xa:
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However, this inequality is a contradiction because D;x; > 0. Hence, s
satisfies 1 < s < ¢ — 2. Incidentally, there exists an element * of IN,\J* which
satisfies

e N\(JFU{r"}),  xi<xp
Therefore, form (2) of Lemma A we get

N\ U)) S Xer
In addition, since X; < x;+, from (3) of Lemma A we obtain
XN} < Xpe
However, this inequality is also contradiction because D;x; > 0. Thus, we get
s=g. This implies that J* =N, e jq(q) and xe q;l(A@(]Nq)). Therefore,

the inclusion relation D of (7) in the case of i = ¢ is proved. Next, we prove
C. Assume that xen;l(A@ (Ng)). In other words, it holds that

qq(x) =aecAY (Ng).

From the definition of 4 (N,), we get @ = 1,0, where 1, is a g-dimensional
vector and every element of 1, is equal to one. Here, again we consider proof
by contradiction. Therefore, we assume that there exists an integer s with
2 < s < g which satisfies

)_C]Nq\{s} < X. (AlO)
Meanwhile, for the function H,(d;x) given by

q

Hy(8;x) =Y " Na(xa — )7,

a=1
it is easily checked that
q
min H,(d;x) = Hy(a;x) = ZNa(xa — )% (A.11)

0eA)
a=1

because x € qq’l(A @(N,)) is true. Here, it is clear that the following inequal-
ity holds:

q q q
2 . 2 - 2
E Ny(xs—a)” > }}21]{{1 E Ny(x,—p) = E Na(xa = N\ s)) - (A12)

a=1 a=l,a#s a=l,a+#s
Hence, combining (A.11) and (A.12) we get
q

,srélj% H,(0;x) > Z Ny(xq — X]Nq\{s})z. (A.13)
a=1,a#s
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Let p be a g-dimensional vector whose sth and rth (1 € N,\{s}) elements are x;
and Xn,\(s}, respectively. Then, the inequality (A.13) can be written by using
p as

in H,(d;x) > H,(p; x).
min H,(d;x) > Hy(f; x)

On the other hand, from the assumption (A.10), we obtain

) ) < .
6?}1%) H,(6;x) < Hy(B;x),

because fe A4, Thus, we have

in H,(:x) = H,(B:
min 4(0:x) (B x),

and this means that 5,(x) = f. However, this result is a contradiction because
n,(x) =a and a # . Hence, for any integer s with 2 <5 < g, it holds that
XN,£\{s} = Xs. This inequality is equivalent to Dy xn, >0. Therefore, the
inclusion relation C of (7) in the case of i=g¢ is proved. Consequently,
(2) of Lemma 1 is proved.

Finally, we prove (3) of Lemma 1. When J # N,, we have already
proved in the proof of (2) of Lemma 1. Thus, we prove the case of J = N,.
Let x ey, ' (A“(N,)). Then, it holds that n,(x) =aec 4“(N,) and a can be
written as @ = ol,. Here, for the function H,(d;x) defined by

Hy(6:x) = Nulxa —2)%,

q
a=1

we obtain

= Hq()_cmqlq;x), (A.14)
because x €5, '(49(IN,)) holds. On the other hand, since ¥n,1,€ 4, we
get

1 . < Y . .
min H,(0;x) < Hy(3¥N,14;x)
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By combining this inequality and (A.14), we have

H 1,;x).
521/11%/) ¢(0;x) = Hy(Xn,14; X)

This implies n,(x) = @ = ¥n,1,. Therefore, (3) of Lemma 1 is proved. [J

Appendix 2: Technical lemma

In this section, we provide two technical lemmas. Using Lemma 1 and
provided two lemmas, we prove Theorem 1 in Appendix 3.

LemMmA B. Let vy,...,v; be independent random variables, and let vy ~
N(&,t2/Ny) where 1 <s <1, t>>0,¢,...,5 eR and Ny,...,N; e Rsg.  Let
N=(Ni,....,N), v=(v1,...,00) and &= (&\,...,&). In addition, for any
integer i with 1 <i <1 and for any set J with J € /,-(l), define

J) = Z Ng(”s - ‘fx)(vs‘ - I_JJ)'

seJ

Then, the following two propositions hold:
(1) If J # Ny, then vn, g, (Dyvs)',S(J))" and oy are mutually independent.
(2) If J=N,, then ((Dyv;)',S(J))" and ©; are mutually independent.

Proor. First, we prove (1). From the assumption, v is distributed as the
multivariate normal distribution with a diagonal covariance matrix. There-
fore, noting that the two sets J and IN,\J are disjoint sets, it can be shown that
the two subvectors v; and vy, ; are also distributed as (multivariate) normal
distributions and these are mutually independent.

Next, we prove that ((Dyv;)’,S(J))" and ©; are functions of v;, and
these are mutually independent. Here, the case of J = {1} is clear because
((Dyv;)',S(J)) = (0,0)’. Thus, we consider the case of J # {1}. Since

ZNU} _U] 07

seJ

it holds that
J) = ZNs(Us - és)(vs - EJ) = ZNY(US — vy — és)(vs - EJ)

seJ seJ
=2 Mo =80)" = > N&y(vs — ).
seJ seJ
Here, let
. 1
A = ing(V) {10y SN . (B.1)
J
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where diag(/NV;) means the diagonal matrix whose (a,a) element is the ath
element of the vector N,. Then, S(J) can be expressed as

S(J) = (Avy)'(Avy) — (&)(diag(N,)) ") dv;.

Hence, ((Dyv;)',S(J))" is the function of ((Dsvs)’,(Av;)")". Therefore, it is
sufficient to prove that ((Dyv;)’,(Av;)")" and ©, are independent. Note that
the vector ((Dyv;)’,(Av;)',5;)" can be written as

Djv,; D;
AUJ = A vy,
7y N’ /N;

and v; are distributed as multivariate normal distribution. Thus, it holds that
((Dyv;)’, (Avs)")" and o, are distributed as (multivariate) normal distributions.
Hence, in order to prove its independence, it is sufficient to prove that the
covariance of ((Dyv;)’, (Avy)")" and #, is the zero vector. Here, the covariance
of Dyv; and ©; can be expressed as

COV[D]UJ7 5]] =Dy Var[vJ]NJ/NJ. (B2)
Furthermore, noting that Var[v;] = t2(diag(N,))~", (B.2) can be written as
COV[D]U], 17]} = (Tz/N])D](diag(N]))ile = (Tz/N])Djl#].

In addition, from the definition of the matrix Dy, it holds that D;1.; = 0.
Therefore, we get Cov[D;v;, ;] =0. Similarly, the covariance of Av; and o,
is given by
COV[AU],E]} = (12/N])A1#J,

and it holds that Al,;, =0 from (B.1). Thus, we have Cov[dv,,v;] =0.
Therefore, ((Djv;)',(Av;)")’ and ©; are independent. This implies that
((Dyv;)',S(J))" and @, are independent. Hence, (1) is proved. On the other
hand, by using the same argument, we can also prove (2). O

Lemma C. Let vy,...,v; be independent random variables defined as in
Lemma B, and let

D) ={(x1,. ., x) e RN x1 < x2,...,x1 < X7}
Then, it holds that

Ell{veq AD{1})} 2ZNUS Us — s ]
= Ell{vew {1} zZN”s vs = & ]
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= B[l an(qipyl = Bl peyranguyy]
=IP(ve g (AD({1}))). (C.1)

Proor. From the definition of the indicator function, it is clear that the
fourth equality holds. On the other hand, for the first and third equalities, we
must prove

ven '(4"({1}) & ve 4V({1}).
However, we have already proved this relation in (7). Therefore, we prove the
second equality. For any integer s with 1 <s </, we define

V=), GV

= Zs, s =
T T

Note that zj,...,z are independent and identically distributed as N(O,1).
Furthermore, it holds that

1%‘2_11: Nyvg(vs — ZI: z(zs + by) (C2)
In addition, for any integer ¢ with 2 <t </, putting
VN _ .
VN
the following relation holds:
ve Al ({1})<:>2<t<l n<y&eS2<t<Ll, a(zy + by) — b, < z,.

Here, define
El = {(Cl,-..,C[) EH{]|2 <1< l,a[(Cl +b1) _bt < CY}'

Then, for the vector z = (zy,...,z)’, it holds that ve AV ({1}) < z € E,.
Using this result and (C.2), we obtain

[l{veA(l ({11} ZZNUS Us és‘|
1
=E [l{zem X Y zy(zo+ by)
s=1
!
_ JJ {Zzs(zﬁb }H¢ V=1 ey, (C.3)
E

s=1
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where ¢(x) is the probability density function of standard normal distribution.
Here, when /=2, Inatsu [8] proved that (C.3) is equal to /E[lgc 0(y)yl-
Hence, we prove the case of /> 3.

First, for any integer s with 2 <s </ we define

In addition, let

GI:J Zl+b (HF Z]) Z] le,

and let
G, :J (J z4(zs + bs)d(zg dzs> ( H F,(zl)> #(z1)dz;, (C.4)
—o0 \ Jas(z1+b1)—by 2<t<lt#s
where s=2,...,/. Then, (C.3) can be written as

1 I
JJ {ZZS(ZS+b }H¢ dzy .. .dzp = ZG“" (C.5)
E s=1 s=1
Next, we calculate G; and G,. Using the integration by parts, G; can be
expressed as
/ 0 /
_¢(21)(21 —l—b])(HFS(Z])) +J ¢(Z])<HFS(21)>(121
—® s=2
+J ¢(z1)(z1 + by) — (HF 1) >d21 (C.6)

s=2
Here, noting that

o0

G =

— 0

d%m@) — —aplas(z1 + b)) — by)

and the first term of the right hand side of (C.6) is zero, (C.6) can be written as

G1 :J Zl (HF 21 >d21
- s=2

0 !
+J #(21)(z1 +bl){2{—as¢(0s(21 +b1) = by}

—®© §=2

< 1T F,(21)>}dzl. (C.7)

2<t<l t#s
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Next, we calculate G,. Here, note that

J‘ | z4(z5 + bs)(z5)dzs
as(z1+b1)—bs
= G B g | dla
as(z1+by)—by
= ay(z1 + b1)p{as(z1 + b1) — by} + Fy(z1). (C.8)

Hence, substituting (C.8) into (C.4) yields

°e) i
G, = j ¢<zl)< Fs<zl>>dzl
—®© s=2

+ JOO ¢(Zl)(zl +bl){as¢(ax(21 +b1) - bv)}(

— 00

Ft(21)> le. (C9)

2<t<l t#s

Therefore, using (C.7) and (C.9) we get
00 ! !
ch:zj ¢(zl)<HFS(zl)>dzl :zJ...J [14Gdz .. dz
s=1 -0 s=2 Ep =1

= E[lizepy] = [E[leqnyyl- (C.10)

Thus, by substituting (C.10) into (C.5), we obtain (C.1). O

Appendix 3: Proof of Theorem 1

In this section, we prove Theorem 1. First, we provide the following
lemma.

Lemma D.  Let ny, ny and t* be positive numbers, and let &, and &, be real
numbers. Put n= (nhnz)'. Let x| and x, be independent random variables
distributed as x; ~ N(&;,t%/ny), (s=1,2), and let x = (x1,x2)". Then, the
following two propositions hold:

(P1) For any integer i with 1 <i <2, and for any set J with J € ji(z), it

holds that

! —(n
E I{Dyoszg} ;an(xx — &) (x — x§ ))
seJ

= (i— )P(DW"x, > 0). (D.1)
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(P2) The following equality holds:

2
%Z =P ()] | = P (x) € AO(Ny)).  (D2)

Proor. First, we prove (D.l1). When i=1, ie., J= {1}, noting that

X; = x1, the equality (D.1) is clear. On the other hand, when i=2, ie.,
J = Ny, the equality (D.1) is equivalent to (P1) of Lemma F given by Inatsu
[8], and it is already proved. Similarly, the proof of (D.2) is equivalent to the
proof of (P2) of Lemma F given by Inatsu [8]. Therefore, lemma D is proved.
O

Next, we consider the following lemma:

LemMAa E. Let | be an integer with | > 2. Assume that the following

proposition (P) is true:

(P) Let Ni,...,N; and ¢* be positive numbers, and let {,...,(; be real
numbers. Let yi,...,y; be independent random variables, and let
ys ~ N(l,¢*/Ny) where s=1,...,. Put N=(Ny,...,N))', {=
(Ci,....8) and y=(y1,...,y1). Then, for any integer i with
1 <i</ and for any set J with J € /i(l), it holds that

=(V)
E {D Yy =0} ¢ 2ZN - )
seJ
= (i—-1)P(DMy, >0). (E.1)
Under the assumption (P), the following proposition (P*) holds:
(P*) Let ny,...,ny1 and t*> be positive numbers, and let &,... ¢
be real numbers. Let xi,...,x;y1 be independent random variables,

and let x; ~ N(&, 12 /ng) where s=1,....14+1. Put n= (ny,...,
1), E=(&, ..., &40) and x=(xi,...,x141). Then, for any

integer i with 1 <i<Il+1 and for any set J with Jej (),
holds that
<(n)
E {D"x,>0} 22;” —Xx;)
Se
= (i— )P(DW"x, > 0). (E.2)

Moreover, the following equality holds:
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1+1 ()

Z”A Xs - ’71+1(x)[s])
I+1
Z(l = DP{ g (x U A | (E3)
i=2 Jej’”

Note that Lemma D and Lemma E yield Theorem 1. Hence, we prove
Lemma E.

Proor. First, we prove (E.2). Suppose that i is an integer satisfying
1 <i <[ and suppose also that J is a set satisfying J € j D In this case,
we replace ny, x; and & with N=(Ny,...,N)', y=(y1,..., )" and ¢ =
(¢1,...,¢)', respectively.  We put J* = N;.  Then, from the assumption (E.1),
the left hand side of (E.2) can be expressed as

1 ()
1{Dﬁ")x1 20} 12 ; ny(xs — &) (xy — Xy )]

E

Lp®y,. 20y 7 2ZNI =) (o (N))]

teJ*
= (i— DP(Dy,. = 0) = (i— DP(D}"x; = 0). (E4)

Hence, we get (E.2). Therefore, it is sufficient to prove the case of i=
I+1,1e,J =Ny € jiuﬂ). Here, the left hand side of (E.2) can be rewritten
as

Lo =07 22”5 — &) (% _x5”>)] =X-7, (E.5)

seJ

where X and Y are given by

/41
X D<")x1>0} 2 E nS s és xS )

=E

I+1
{D<">x >0} 7 22” :

First, we calculate Y. Noting that

I+1

ﬁ] —(n z(n)\ =(n
Tzznv =& = 5 (w7 - G

2
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and x\" ~ N(EW 12/f,), from (2) of Lemma B we obtain

141
{D x>0} 7 22”5 X5 = &)

ny,_ Z()s —
~ Ell o B 7~ &) 5’”}

= E[l pn, o)) X 1 = P(D\"x; > 0). (E.6)

Next, we calculate X. From (1) of Lemma 1, it is easily checked that the
following equality holds:

Lpogzo = 1= Z l{xen,ﬂl(A““)(J*))}' (E7)

Therefore, X can be expressed by using (E.7) as

ST ]

-2 ) E

/+1
l{xE}l AW (J*))} ZZnS Xg s Xy

u=1 J*EJMHI
=(I+1)
! 141
—Z Z E l{xE” AED (T} 22” fa x& s (E8)
u=1 j< ¢ gt

where the first term of the last equality in (E.8) is derived by x; ~ N (&, 72/ny).
Next, for any integer u with 1 <u </ and for any set J* with J* € fu”l, we
calculate

E

I+1
Lrenarmion) zZ”S %= &) ] (E9)

Here, recall that from (2) of Lemma 1, the following relation holds:
xen (AU & Dyxy =0, e Ny \JT, % < x. (E.10)

Thus, noting that
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1+1

722"
1
2 Z T_Z Z n(x; — &)X

seJ* teN \J*

_ _ 1
22”3 Xs s xJ*+xJ*)+_2 Z nz(xz_ft)xt

seJ* T te N \J*

_ ny- ,_ o\
zzns Xs .s x_xl*)+‘[_2(x1*_éj*)xj

seJ*

1
+3 Z ny(x, — &),

t teN1\J*
the expectation (E.9) can be rewritten as

[+1

E l{xet] AED(T)} 22”3 Xs és X | =G+ H, (Ell)

where G and H are given by

G=E l{xer] (A ()} Zzns Xg fs)(xs_xJ*)‘|’

seJ*

H=E | Haeq ) (avn)

nye N 1
TJZ (XJ* *f]*)xJ* +§ z nt(xt*ét)xt

teNp\J*

By using (E.10), Lemma B and (E.4), G can be expressed as

G= E[I{VIGNI+1\J*73_‘J*<XI}]

I{DJ X7+ 20} o 2 Z _)_CJ*)

seJ*
= E[l{Vte]I\l,H\J*,}j*<x,}] X (H - I)E[I{Dj*xj* 20}]
= (u - 1) X E[l{D‘[*x./* 207VYE]N1+1\J*,)E/*<X,}}

= (u - 1) X E[l{xer] (A(Hl)(-’ ))}]
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On the other hand, using (E.10), Lemma B and Lemma C, H can be written
as

H=E[lp,.«,. >0

x E |:1{vl€]N“ |\J*,,i/*<xl}

(’Z(m—&)@%é > ”z(Xr—ft)xt)}

teN\J*
= E[l{DJ*xJ*ZO}] X (1—1— 1 —u+ 1)E[l{vteN,Al\J‘,ch*<x,}]
= (l + 1 —u-+ 1) X E[l{xen[’_ll(A(””(J*))}]'

Hence, substituting G and H into (E.11) yields

I+1
Ell{xe” LA (T*)} Zzns Xs és ‘|

= (l —+ 1) X E[l{xet][ill(AU“)(J*))}]’ (EIZ)

Furthermore, combining (E.12) and (E.8) we get

)
=(+1) =Y > (+1) xElljeey o]

u=l jreg ght!
!
=(+DE[T=3" > ey urnw)
u—1 J*ej‘u’“

= (/+ 1E[l {xeny (AN () =+ DE[l(p,y,>0]
— (I + DP(Dyx; = 0). (E.13)

Thus, substituting (E.6) and (E.13) into (E.5) yields
1 —(n
E ll{u;wwo} 720l = &)~ Xy U] = [P(Dyx; 2 0).

Hence, the expectation (E.2) for the case of i=/+1 (ie., J=Ny), is
proved.

Finally, we prove (E.3). By using (1) and (3) of Lemma 1, the left hand
side of (E.3) can be expressed as
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141
LzZn s =i (x)ls)
/41
=E|> >
i=1 Jefﬁ(m)

141
(1{):61] AED()} zzns Xs s ’71(1)1(«‘7)[3]))

+1
=5 ¥ E[(l{xeﬂ e, }22;1, ) —x,))]. (E.14)

i=2 j¢ g+ reJ

Here, using (E.2), Lemma B and (2) of Lemma 1, we obtain

[(”xw‘(ﬁim) }Zzn’ X = &) (% _XJ)>‘|

reJ

= E[l{VMGN/+1\J‘Xj<XU ] ll{DJxl>0} 2 an Ar — ‘ - XJ)]

reJ
= E[l{vueN/H\J,.i‘/<xu}] x (i - 1)E[1{D1x120}]

= (i = DP(y.1(x) € ATD()). (E.15)

Thus, substituting (E.15) into (E.14) yields

I+1
‘52 Zn - ’71(4’1—)1 (x)[s})]

I+1

=> (=1 Y Py, (x)ea"™()

Je} (1+1)

I+1
= (- DP[mxe |J 4"
=2 Jejl“

because 4D (J)NAUD(J*) = & when J # J*. Therefore, (E.3) is proved.
]
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