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Abstract. In this paper, we consider a Cp type criterion for ANOVA model with a

tree ordering (TO) y1 a yj , ð j ¼ 2; . . . ; lÞ where y1; . . . ; yl are population means. In

general, under ANOVA model with the TO, the usual Cp criterion has a bias to a

risk function, and the bias depends on unknown parameters. In order to solve this

problem, we calculate a value of the bias, and we derive its unbiased estimator. By

using this estimator, we provide an unbiased Cp type criterion for ANOVA model with

the TO, called TOCp. A penalty term of the TOCp is simply defined as a function of

an indicator function and maximum likelihood estimators. Furthermore, we show that

the TOCp is the uniformly minimum-variance unbiased estimator (UMVUE) of a risk

function.

1. Introduction

In real data analysis, ANOVA model is often used for analyzing cluster

data. Moreover, a model whose parameters m1; . . . ; ml are restricted such as

a Sinple Ordering (SO) given by m1 a � � �a ml , is also important in the field

of applied statistics (e.g., Robertson et al., [14]). In addition, Brunk [4], Lee

[11], Kelly [9] and Hwang and Peddada [7] showed that maximum likelihood

estimators (MLEs) for mean parameters of ANOVA model with the SO are

more e‰cient than those of ANOVA model without any restriction when the

assumption of the SO is true.

However, in general, the classical asymptotic theory does not hold for

the model with parameter restrictions. For example, Anraku [2] showed that

the ordinal Akaike information criterion (AIC, Akaike [1]) for ANOVA model

with the SO, whose penalty term is 2� the number of parameters, is not an

asymptotically unbiased estimator of a risk function. In order to solve this

problem, Inatsu [8] derived an asymptotically unbiased AIC for ANOVA

model with the SO, called AICSO. Furthermore, a penalty term of the AICSO

can be simply defined as a function of MLEs of mean parameters. On the
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other hand, Anraku and Nomakuchi [3] investigated the k-variate normal

distribution with mean y ¼ ðy1; . . . ; ykÞ0 and covariance S where y is an

unknown parameter vector, and S is a known positive definite matrix. In

this setting, they proposed an unbiased AIC when the parameter y is restricted

on a closed convex polyhedral cone. Nevertheless, above previous studies only

considered the AIC under order restrictions, and they do not consider other

criteria such as Cp type criteria (see, Mallows [13], Fujikoshi and Satoh [6]).

Furthermore, particularly in Inatsu [8], the considered restriction is the SO.

In practice, the tree ordering (TO) given by m1 a mj ð j ¼ 2; . . . ; lÞ, is also often

used in applied statistics (see, e.g., Hwang and Peddada [7]).

In this paper, we consider ANOVA model with the TO. For this model,

we derive an unbiased Cp type criterion. The remainder of the present paper

is organized as follows: In Section 2, we define the true model and candidate

model. Moreover, we derive MLEs of parameters in the candidate model. In

Section 3, we provide the Cp type criterion for ANOVA model with the TO,

called TOCp. In addition, we show that the TOCp is the uniformly minimum-

variance unbiased estimator (UMVUE). In Section 4, we show some proper-

ties of the TOCp through numerical experiments. In Section 5, we conclude

our discussion. Technical details are provided in Appendix.

2. ANOVA model with a tree order restriction

In this section, we define the true model, and candidate models with order

restrictions. The MLE for the considered candidate model is given in Sub-

section 2.3.

2.1. True and candidate models. Let Yij be an observation variable on the jth

individual in the ith cluster, where 1a ia k �, j ¼ 1; . . . ;Ni for each i, and

k � b 2. Here, we put N ¼ N1 þ � � � þNk � and Y i ¼ ðYi1; . . . ;YiNi
Þ0 for each i.

Also we put Y ¼ ðY 0
1; . . . ;Y

0
k � Þ0 and N ¼ ðN1; . . . ;Nk � Þ0.

Suppose that Y11; . . . ;Yk �Nk � are mutually independent, and Yij is dis-

tributed as

Yij @Nðmi;�; s2
�Þ; ð1Þ

for any i and j. Here, mi;� and s2
� are unknown true values satisfying mi;� A R

and s2
� > 0, respectively. In other words, the true model is given by (1).

Next, we define a candidate model. Let Q1; . . . ;Qk be non-empty dis-

joint sets satisfying Q1 [ � � � [Qk ¼ f1; 2; . . . ; k �g, where 2a ka k �. Then, we

assume that Y11; . . . ;Yk �Nk � are mutually independent, and distributed as

Yij @Nðmi; s2Þ; ð2Þ
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where m1; . . . ; mk � and s2ð> 0Þ are unknown parameters. In addition, for the

parameters m1; . . . ; mk � , we assume that

Es A f1; . . . ; kg; Eu1; u2 A Qs; mu1 ¼ mu2 ; ð3Þ

and

Et A f2; . . . ; kg; En A Qt; mq a mn; ð4Þ

where q A Q1. Then, a candidate model M is defined as the model (2) with (3)

and (4). In particular, the order restriction (4) is called a Tree Ordering (TO).

For example, when k � ¼ 7, k ¼ 4, Q1 ¼ f1; 3; 7g, Q2 ¼ f2g, Q3 ¼ f4; 5g and

Q4 ¼ f6g, the unknown parameters m1; . . . ; m7 for the candidate model M are

restricted as

m1 ¼ m3 ¼ m7 a m2; m1 ¼ m3 ¼ m7 a m4 ¼ m5; m1 ¼ m3 ¼ m7 a m6:

2.2. Notation and lemma. In this subsection, we define several notations.

After that, we provide the related lemma. Let l be an integer with lb 2.

Then, define

Nl ¼ fx A N j xa lg ¼ f1; . . . ; lg:

Moreover, let x1; . . . ; xl be real numbers, and let N1; . . . ;Nl be positive

numbers. We put x ¼ ðx1; . . . ; xlÞ0 and N ¼ ðN1; . . . ;NlÞ0. Furthermore, let

A ¼ fa1; . . . ; aig be a non-empty subset of Nl , where a1 < � � � < ai when ib 2.

Next, define

xA ¼ ðxa1 ; . . . ; xaiÞ
0; ~xxA ¼

X
s AA

xs; x
ðNÞ
A ¼

P
s AA NsxsP
s AA Ns

¼
P

s AA Nsxs
~NNA

:

For example, when l ¼ 10 and A ¼ f2; 3; 5; 10g, xA, ~xxA and x
ðNÞ
A are given by

xA ¼ ðx2; x3; x5; x10Þ0; ~xxA ¼ x2 þ x3 þ x5 þ x10;

x
ðNÞ
A ¼ N2x2 þN3x3 þN5x5 þN10x10

N2 þN3 þN5 þN10
:

In particular, when A has only one element a, i.e., A ¼ fag, it holds that

xA ¼ ðxaÞ0, ~xxA ¼ xa and x
ðNÞ
A ¼ xa. On the other hand, when A ¼ Nl , it holds

that xA ¼ x. For simplicity, we often represent x
ðNÞ
A as xA. In addition, let

AðlÞ be a set defined as

AðlÞ ¼ fðx1; . . . ; xlÞ0 A Rl j Ej A Nlnf1g; x1 a xjg

¼ fðx1; . . . ; xlÞ0 A Rl j x1 a x2; . . . ; x1 a xlg:
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Furthermore, for any integer i with 1a ia l, we consider a family of sets J
ðlÞ
i

defined by

J
ðlÞ
i ¼ fJ � Nl j 1 A J;aJ ¼ ig;

where aJ means the number of elements of the set J. For example, when

l ¼ 3, it holds that

J
ð3Þ
1 ¼ ff1gg; J

ð3Þ
2 ¼ ff1; 2g; f1; 3gg; J

ð3Þ
3 ¼ ff1; 2; 3gg ¼ fN3g:

Here, note that J
ðlÞ
1 ¼ ff1gg and J

ðlÞ
l ¼ fNlg for any lb 2. Similarly, for

any integer i with 1a ia l and for any set J in J
ðlÞ
i , we consider the following

set AðlÞðJÞ:

AðlÞðJÞ ¼ fðx1; . . . ; xlÞ0 A Rl j Es A J; x1 ¼ xs;
Et A NlnJ; x1 < xtg:

Note that when J ¼ Nl , it holds that NlnJ ¼ q. In this case, the proposition

Et A q; x1 < xt

is always true. For example, when l ¼ 3, it holds that

Að3Þðf1gÞ ¼ fx ¼ ðx1; . . . ; x3Þ0 A R3 j x1 < x2; x1 < x3g;

Að3Þðf1; 2gÞ ¼ fx A R3 j x1 ¼ x2; x1 < x3g;

Að3Þðf1; 3gÞ ¼ fx A R3 j x1 ¼ x3; x1 < x2g;

Að3Þðf1; 2; 3gÞ ¼ fx A R3 j x1 ¼ x2 ¼ x3g:

It is clear that these four sets are disjoint sets and

[3
i¼1

[
J AJð3Þ

i

Að3ÞðJÞ ¼ fx A R3 j x1 a x2; x1 a x3g ¼ Að3Þ:

Similarly, in the case of lb 2, it holds that

[l
i¼1

[
J AJðlÞ

i

AðlÞðJÞ ¼ fx A Rl j x1 a x2; . . . ; x1 a xlg ¼ AðlÞ; ð5Þ

and AðlÞðJÞ \ AðlÞðJ �Þ ¼ q when J0 J �.

Next, for a vector x ¼ ðx1; . . . ; xlÞ0, an integer s with 1a sa l and a real

number a, x½s; a� stands for an l-dimensional vector whose sth element is a and

tth element ðt A NlnfsgÞ is xt. For example, if x ¼ ð1; 4; 4; 3Þ0, then x½2;�1� ¼
ð1;�1; 4; 3Þ0 and x½4; 5� ¼ ð1; 4; 4; 5Þ0. Moreover, for any integer s ðb 2Þ with

1a sa l and for any set J ¼ f j1; . . . ; jsg of JðlÞ
s , where j1 < � � � < js, we define
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a matrix D
ðNÞ
J as follows. First, in the case of s ¼ 1, the family of sets J

ðlÞ
1

has only one set J ¼ f1g, and we define D
ðNÞ
J ¼ 0. On the other hand, in

the case of sb 2, the matrix D
ðNÞ
J is the s� 1� s matrix whose ith row

ð1a ia s� 1Þ is defined as

1
~NNJnf jiþ1g

NJ ½i þ 1;� ~NNJnf jiþ1g�
0:

For example, when l ¼ 3, it holds that

D
ðNÞ
f1g ¼ 0; D

ðNÞ
f1;2g ¼ D

ðNÞ
f1;3g ¼ ð1 �1Þ;

D
ðNÞ
f1;2;3g ¼

N1

N1þN3
�1 N3

N1þN3

N1

N1þN2

N2

N1þN2
�1

0
@

1
A:

For simplicity, we often represent D
ðNÞ
J as DJ .

Furthermore, we define a function h
ðNÞ
l from Rl to AðlÞ. For each vector

x ¼ ðx1; . . . ; xlÞ0 A Rl , h
ðNÞ
l ðxÞ is defined as

h
ðNÞ
l ðxÞ ¼ argmin

y¼ðy1;...;ylÞ 0 AAðlÞ

Xl

i¼1

Niðxi � yiÞ2: ð6Þ

In addition, let h
ðNÞ
l ðxÞ½s� be the sth element ð1a sa lÞ of h

ðNÞ
l ðxÞ. Note that

well-definedness of h
ðNÞ
l can be derived by using the Hilbert projection theorem

(see, e.g., Rudin [15]). For simplicity, we often represent h
ðNÞ
l ðxÞ as hlðxÞ.

Finally, we provide the following lemma:

Lemma 1. The following three propositions hold:

(1) It holds that

Rl ¼
[l
i¼1

[
J AJðlÞ

i

h�1
l ðAðlÞðJÞÞ;

h�1
l ðAðlÞðJÞÞ \ h�1

l ðAðlÞðJ �ÞÞ ¼ q ðJ0 J �Þ:

(2) For any integer i with 1a ia l and for any set J in J
ðlÞ
i , it holds

that

h�1
l ðAðlÞðJÞÞ

¼ fx ¼ ðx1; . . . ; xlÞ0 A Rl jDJxJ b 0; Et A NlnJ; xJ < xtg; ð7Þ

where the inequality sb 0 means that all elements of the vector s are

non-negative.
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(3) Let i be an integer with 1a ia l, and let J be a set with J A J
ðlÞ
i .

Let x ¼ ðx1; . . . ; xlÞ0 be an element of Rl . Assume that x satisfies

x A h�1
l ðAðlÞðJÞÞ:

Then, it holds that

Es A J; hlðxÞ½s� ¼ xJ ;
Et A NlnJ; hlðxÞ½t� ¼ xt:

In particular, for the case of J ¼ Nl , if x satisfies

x A h�1
l ðAðlÞðJÞÞ ¼ fx A Rl jDJxJ b 0g;

then, the following proposition holds:

Es A J; hlðxÞ½s� ¼ xJ :

The proof of Lemma 1 is given in Appendix 1.

2.3. Maximum likelihood estimators for unknown parameters. In this sub-

section, we derive MLEs for unknown parameters in the candidate model M.

First of all, we rewrite the candidate model. For any integer s with 1a sa k

and for all elements q
ðsÞ
1 ; . . . ; q

ðsÞ
v of Qs, let Xs ¼ ðY 0

q
ðsÞ
1

; . . . ;Y 0
q
ðsÞ
v

Þ0, where v is the

number of elements in Qs, and let Xst be a tth element of X s. We put X ¼
ðX 0

1; . . . ;X
0
kÞ

0,

m
q
ðsÞ
1

¼ � � � ¼ m
q
ðsÞ
v
1 ys;

and y ¼ ðy1; . . . ; ykÞ0. In addition, define ns ¼ N
q
ðsÞ
1

þ � � � þN
q
ðsÞ
v

and n ¼
ðn1; . . . ; nkÞ0. Note that n1 þ � � � þ nk ¼ N1 þ � � � þNk � ¼ N. Then, the can-

didate model can be rewritten as

Xst @Nðys; s2Þ; t ¼ 1; . . . ; ns;

with

y1 a y2; . . . ; y1 a yk:

Here, a parameter space Y for the candidate model is defined as follows:

Y ¼ fða1; . . . ; akÞ0 A Rk j Eu A Nknf1g; a1 a aug:

Next, we consider the log-likelihood for the candidate model. Let

Xs ¼
1

ns

Xns
v¼1

Xsv; s ¼ 1; . . . ; k;

and let X ¼ ðX 1; . . . ;XkÞ0. Then, since Xst’s are independently distributed as

normal distribution, the log-likelihood function lðy; s2;XÞ is given by
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lðy; s2;XÞ ¼ �N

2
logð2ps2Þ � 1

2s2

Xk
s¼1

Xns
t¼1

ðXst � ysÞ2

¼ �N

2
logð2ps2Þ � 1

2s2

Xk
s¼1

Xns
t¼1

ðXst � XsÞ2

� 1

2s2

Xk
s¼1

nsðXs � ysÞ2:

Hence, for any s2 > 0, the maximizer of lðy; s2;XÞ on Y is equal to the

minimizer of

Hðy;XÞ ¼
Xk
s¼1

nsðXs � ysÞ2

on Y. In other words, the MLE ŷy ¼ ðŷy1; . . . ; ŷykÞ0 of y is given by

ŷy ¼ argmin
y A Y

Hðy;XÞ: ð8Þ

We would like to note that the MLE ŷy can be written by using (6) as

h
ðnÞ
k ðXÞ ¼ ŷy. Here, we substitute X for x ¼ ðx1; . . . ; xkÞ0. Then, from Lemma

1, there exists a unique integer a with 1a aa k and a unique set J with

J A JðkÞ
a such that

DJxJ b 0; Eb A NknJ; xJ < xb:

For this set J, it holds that

Ew A J; ŷyw ¼ xJ ¼
P

c A J ncxcP
c A J nc

¼
P

c A J ncXcP
c A J nc

;

Eb A NknJ; ŷyb ¼ xb ¼ X b:

ð9Þ

Therefore, the MLE m̂m ¼ ðm̂m1; . . . ; m̂mk � Þ0 of m ¼ ðm1; . . . ; mk � Þ0 can be written as

Ej A Qs; m̂mj ¼ ŷys; ðs ¼ 1; . . . ; kÞ: ð10Þ

On the other hand, the MLE ŝs2 of s2 can be written as

ŝs2 ¼ 1

N

Xk
s¼1

Xns
t¼1

ðXst � XsÞ2 þ
1

N

Xk
s¼1

nsðXs � ŷysÞ2

¼ 1

N

Xk
s¼1

Xns
t¼1

ðXst � ŷysÞ2 ¼
1

N

Xk �

i¼1

XNi

j¼1

ðYij � m̂miÞ
2; ð11Þ

because the function lðŷy; s2;XÞ is a concave function with respect to (w.r.t.) s2.
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3. Cp type criterion for the candidate model

In this section, we derive an unbiased Cp type criterion for the candidate

model M. Here, we assume the following condition:

(C1) The inequality N � k � � 2 > 0 holds.

We do not need to assume that the true model is included in the candidate

model. First, we consider the risk function based on the prediction mean

squared error (PMSE). Let Y� ¼ ðY 0
1;�; . . . ;Yk �;�Þ0 be a random vector, and

let Y� be independent and identically distributed as Y . Furthermore, for any

integer s with 1a sa k and for all elements q
ðsÞ
1 ; . . . ; q

ðsÞ
v of Qs, we define

X s;� ¼ ðY 0
q
ðsÞ
1
;�; . . . ;Y

0
q
ðsÞ
v ;�Þ

0. In addition, we put X� ¼ ðX 0
1;�; . . . ;X

0
k;�Þ

0. The

risk function R based on the PMSE is given by

R ¼ E EY�

1

s2
�

Xk �

i¼1

XNi

j¼1

ðYij;� � m̂miÞ
2

" #" #
¼ N þ E

1

s2
�

Xk �

i¼1

Niðmi;� � m̂miÞ
2

" #
: ð12Þ

Next, we define the following random variables:

Yi ¼
1

Ni

XNi

j¼1

Yij ði ¼ 1; . . . ; k �Þ; s2 ¼ 1

N

Xk �

i¼1

XNi

j¼1

ðYij � YiÞ2: ð13Þ

Note that Y 1; . . . ;Yk � and s2 are mutually independent, and Yi @
Nðmi;�; s2

�=NiÞ and Ns2=s2
� @ w2N�k � because Y11; . . . ;YkNk

are independently

distributed as normal distribution. Then, we estimate the risk function R by

using

ðN � k � � 2Þ ŝs
2

s2
: ð14Þ

Here, from (11) the MLE ŝs2 can be written as

ŝs2 ¼ 1

N

Xk �

i¼1

XNi

j¼1

ðYij � YiÞ2 þ
1

N

Xk �

i¼1

NiðYi � m̂miÞ
2

¼ s2 þ 1

N

Xk �

i¼1

NiðYi � m̂miÞ
2: ð15Þ

Therefore, (14) can be expressed as

ðN � k � � 2Þ ŝs
2

s2
¼ N � k � � 2þ N � k � � 2

Ns2=s2
�

� �
1

s2
�

Xk �

i¼1

NiðYi � m̂miÞ
2: ð16Þ
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On the other hand, from (9) and (10), it can be seen that m̂m1; . . . ; m̂mk � are func-

tions of X 1; . . . ;Xk. Moreover, for any integer s with 1a sa k, it holds that

Xs ¼
1

ns

Xns
t¼1

Xst ¼
1P

q AQs
Nq

X
q AQs

XNq

j¼1

Yqj ¼
1P

q AQs
Nq

X
q AQs

NqYq: ð17Þ

Thus, X 1; . . . ;Xk are functions of Y 1; . . . ;Yk � , and m̂m1; . . . ; m̂mk � are also func-

tions of Y 1; . . . ;Yk � . Hence, noting that Y 1; . . . ;Yk � and s2 are independent,

and Ns2=s2
� @ w2N�k � and E½ðw2N�k � Þ�1� ¼ ðN � k � � 2Þ�1, the expectation of

(16) can be written as

E ðN � k � � 2Þ ŝs
2

s2

� �

¼ N � k � � 2þ E
1

s2
�

Xk �

i¼1

NifðYi � mi;�Þ þ ðmi;� � m̂miÞg
2

" #

¼ N � 2þ 2E
1

s2
�

Xk �

i¼1

NiðYi � mi;�Þðmi;� � m̂miÞ
" #

þ E
1

s2
�

Xk �

i¼1

Niðmi;� � m̂miÞ
2

" #

¼ N � 2� 2E
1

s2
�

Xk �

i¼1

NiðYi � mi;�Þm̂mi

" #
þ E

1

s2
�

Xk �

i¼1

Niðmi;� � m̂miÞ
2

" #
: ð18Þ

Therefore, by using (12) and (18), the bias B which is the di¤erence between the

expected value of (14) and R, is given by

B ¼ E R� ðN � k � � 2Þ ŝs
2

s2

� �

¼ 2þ 2E
1

s2
�

Xk �

i¼1

NiðYi � mi;�Þm̂mi

" #

¼ 2þ 2E
1

s2
�

Xk
s¼1

X
q AQs

NqðYq � mq;�Þm̂mq

" #
: ð19Þ

Here, for any integer s with 1a sa k, we putP
q AQs

Nqmq;�P
q AQs

Nq

¼
P

q AQs
Nqmq;�

ns
1 as;�: ð20Þ

Then, combining (10), (17) and (20), (19) can be expressed as

189An unbiased Cp type criterion for ANOVA model with a tree order restriction



B ¼ 2þ 2E
1

s2
�

Xk
s¼1

nsðXs � as;�Þŷys

" #

¼ 2� 2E
1

s2
�

Xk
s¼1

nsðXs � as;�ÞðXs � ŷysÞ
" #

þ 2E
1

s2
�

Xk
s¼1

nsðXs � as;�ÞXs

" #
:

Hence, noting that Xs @Nðas;�; s2
�=nsÞ, we have

B ¼ 2ðk þ 1Þ � 2E
1

s2
�

Xk
s¼1

nsðXs � as;�ÞðXs � ŷysÞ
" #

: ð21Þ

Next, we calculate the expectation in (21). Here, the following theorem

holds:

Theorem 1. Let l be an integer with lb 2. Let n1; . . . ; nl and t2 be

positive numbers, and let x1; . . . ; xl be real numbers. Let x1; . . . ; xl be inde-

pendent random variables, and let xs @Nðxs; t2=nsÞ, ðs ¼ 1; . . . ; lÞ. Put n ¼
ðn1; . . . ; nlÞ0, x ¼ ðx1; . . . ; xlÞ0 and x ¼ ðx1; . . . ; xlÞ0. Then, it holds that

E
1

t2

Xl

s¼1

nsðxs � xsÞðxs � h
ðnÞ
l ðxÞ½s�Þ

" #

¼
Xl

i¼2

ði � 1ÞP hlðxÞ A
[

J AJ l
i

AðlÞðJÞ

0
@

1
A:

Details of the proof of Theorem 1 are given in Appendix 2 and 3. Note

that X 1; . . . ;Xk are mutually independent, and Xs @Nðas;�; s2
�=nsÞ for any

integer s with 1a sa k. Also note that from (8) the MLE ŷy is given by

ŷy ¼ h
ðnÞ
k ðXÞ. Therefore, from Theorem 1, the expectation in (21) can be

expressed as

E
1

s2
�

Xk
s¼1

nsðXs � as;�ÞðXs � ŷysÞ
" #

¼ E
1

s2
�

Xk
s¼1

nsðXs � as;�ÞðXs � h
ðnÞ
k ðXÞ½s�Þ

" #

¼
Xk
u¼2

ðu� 1ÞP ŷy A
[

J AJk
u

AðkÞðJÞ

0
@

1
A¼ L; ðsayÞ:
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Hence, in order to correct the bias, it is su‰cient to add 2ðk þ 1Þ � 2L to

(14). However, it is easily checked that L depends on the true parameters

y1;�; . . . ; yk;� and s2
� . For this reason, we must estimate L. Here, we define

the following random variable m̂m:

m̂m ¼ 1þ
Xk
a¼2

1fŷy1<ŷyag; ð22Þ

where 1f�g is an indicator function. It is clear that m̂m is a discrete random

variable and its possible values are 1 to k. Incidentally, from the definitions of

AðkÞðJÞ, m̂m and ŷy, it holds that

ŷy A
[

J AJk
u

AðkÞðJÞ , m̂m ¼ k þ 1� u , k � m̂m ¼ u� 1;

for any integer u with 1a ua k. Therefore, the random variable k � m̂m

satisfies

E½k � m̂m� ¼
Xk
u¼2

ðu� 1ÞP ŷy A
[

J AJk
u

AðkÞðJÞ

0
@

1
A¼ L:

Hence, in order to correct the bias, instead of 2ðk þ 1Þ � 2L, we add

2ðk þ 1Þ � 2ðk � m̂mÞ ¼ 2ðm̂mþ 1Þ

to (14). In other words, it holds that

B ¼ 2ðk þ 1Þ � 2E½k � m̂m� ¼ E½2ðm̂mþ 1Þ�:

As a result, we obtain the Cp type criterion for the candidate model M with the

TO, called TOCp.

Theorem 2. A Cp type criterion for the candidate model M with the TO,

called TOCp is defined as

TOCp :¼ ðN � k � � 2Þ ŝs
2

s2
þ 2ðm̂mþ 1Þ;

where ŝs2, s2 and m̂m are given by (11), (13) and (22), respectively. Moreover,

for the risk function R given by (12), it holds that

E½TOCp� ¼ R:

Remark 1. The TOCp is the unbiased estimator of R. Furthermore,

unbiasedness of the TOCp holds even if the true model is not included in the

candidate model M.
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In addition, for unbiasedness of the TOCp, the following theorem holds:

Theorem 3. The TOCp is the uniformly minimum-variance unbiased

estimator (UMVUE) of R.

Proof. As we mentioned before, the random variable m̂m is a function of

ŷy1; . . . ; ŷyk, and ŷy1; . . . ; ŷyk are functions of X 1; . . . ;Xk. Furthermore, X 1; . . . ;

Xk are functions of Y 1; . . . ;Yk � . Thus, m̂m is a function of Y 1; . . . ;Yk � . On

the other hand, since m̂m1; . . . ; m̂mk � are functions of Y 1; . . . ;Yk � , from (15), we

can see that both ŝs2 and s2 are functions of Y 1; . . . ;Yk � . Therefore, from

the definition of the TOCp, the TOCp is a function of s2 and Y 1; . . . ;Yk � .

Incidentally, noting that Y11; . . . ;Yk �Nk � are mutually independent, and Yij @
Nðmi;�; s2

�Þ where 1a ia k � and 1a jaNi, the joint distribution function

f ðy; m�; s2
�Þ can be written as

f ðy; m�; s2
�Þ

¼ C1 exp � 1

2s2
�

Xk �

i¼1

Ni y
2
i þ

XNi

j¼1

ðyij � yiÞ
2

 !
þ
Xk �

i¼1

Nimi;�
s2
�

yi � C2

( )
;

where yi, C1 and C2 are given by

yi ¼
1

Ni

XNi

j¼1

yij ; C1 ¼
1

ð2ps2
�Þ

N=2
; C2 ¼

1

2s2
�

Xk �

i¼1

Nim
2
i;�:

Here, define

T0 ¼
Xk �

i¼1

NiY
2
i þ

XNi

j¼1

ðYij � YiÞ2
 !

; Ti ¼ Yi; ði ¼ 1; . . . ; k �Þ:

Then, ðT0;T1; . . . ;Tk � Þ0 is a complete su‰cient statistic (see, e.g., Lehmann and

Casella [12]). Moreover, since s2 can be written by using ðT0;T1; . . . ;Tk � Þ0 as

s2 ¼ 1

N
T0 �

Xk �

i¼1

NiT
2
i

 !
;

s2 is a function of the complete su‰cient statistic ðT0;T1; . . . ;Tk � Þ0. Hence,

the TOCp which is a function of s2 and Y 1; . . . ;Yk � , is also a function of the

complete su‰cient statistic. Therefore, since the TOCp is the unbiased esti-

mator of R, from Lehmann-Sche¤é theorem (see, e.g., Knight [10]), the TOCp

is the UMVUE of R. r

Remark 2. We would like to note that Davies et al. [5] showed the bias-

corrected Cp type criterion, MCp (given by Fujikoshi and Satoh [6]) is the
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UMVUE of a risk function based on the prediction mean squared error for

normal linear regression models without any order restriction.

4. Numerical experiments

In this section, we confirm the estimation accuracy for the TOCp through

numerical experiments. In addition, we also calculate the selection probability

and the risk of the best model.

4.1. Estimation accuracy. Let Yij @Nðyi; s2Þ, where i ¼ 1; 2; 3; 4 and j ¼
1; . . . ;Ni for each i. We set N1 ¼ N2 ¼ N3 ¼ N4. Furthermore, we put N ¼
N1 þN2 þN3 þN4. In this setting, we consider the ANOVA model with the

following restriction:

Ej A f3; 4g; y1 ¼ y2 a yj :

Hence, in this candidate model, the parameter space Y is given by

Y1 fy ¼ ðy1; y2; y3; y4Þ0 A R4 j Ej A f3; 4g; y1 ¼ y2 a yjg:

Here, for comparison, we define the following criterion:

fCp ¼ ðN � k � � 2Þ ŝs
2

s2
þ 2ðk þ 1Þ;

where k is the number of independent mean parameters in the candidate model,

and the notation ‘‘f ’’ of fCp is an abbreviation for ‘‘formal’’. Thus, the

penalty term of the fCp is 2ð3þ 1Þ in this candidate model. Note that under

no order restrictions, the fCp is equal to the usual unbiased Cp criterion.

However, since the parameters are restricted, the fCp is not necessarily

(asymptotically) unbiased estimator of the risk function in general.

Next, in this numerical experiments, we consider the following true

parameters:

Case 1: y1 ¼ 1; y2 ¼ 1; y3 ¼ 1:5; y4 ¼ 1:8; s2 ¼ 1;

Case 2: y1 ¼ 1; y2 ¼ 1; y3 ¼ 1:05; y4 ¼ 1:05; s2 ¼ 1;

Case 3: y1 ¼ 1; y2 ¼ 1; y3 ¼ 1; y4 ¼ 1; s2 ¼ 1;

Case 4: y1 ¼ 1:2; y2 ¼ 1; y3 ¼ 0:8; y4 ¼ 1:3; s2 ¼ 1:

We would like to note that the vector of true parameters y ¼ ðy1; . . . ; y4Þ0 is an
interior point of Y in Case 1. Similarly, in Case 2, y is an interior point of Y,

but y is very close to the boundary. On the other hand, y is a boundary point
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of Y in Case 3. Moreover, in Case 4, y is not included in Y. Therefore,

the true model is included in the candidate model when Case 1–3. However,

in Case 4, it is not included. From 1,000,000 Monte Carlo simulation runs,

we confirm estimation accuracies (bias and MSE) of the TOCp and the fCp.

Obtained results are given in Table 4.1 and 4.2.

From Table 4.1, we can see that the TOCp and the fCp are unbiased and

asymptotically unbiased estimators of R, respectively. Similarly, we can see

that the biases of the TOCp of Case 2 are similar to those of Case 1. On the

other hand, the bias of the fCp in Case 2 is still not small when the sample

size N is 2000. Moreover, in Case 3, from Table 4.2 we can see that the

TOCp is the unbiased estimator of R and the fCp has the asymptotic bias.

In addition, from Table 4.2 we can see that the fCp has asymptotic bias in

Case 4. However, the TOCp is the unbiased estimator of R. Furthermore,

Table 4.1. Risk of the candidate model, and estimation accuracies of each criterion

in Case 1–2

Case 1 Case 2

Risk TOCp fCp Risk TOCp fCp

N R�N Bias MSE Bias MSE R�N Bias MSE Bias MSE

12 2.49 0.00 4.71 �0.69 4.66 2.11 0.00 7.72 �1.69 10.46

36 2.79 0.00 2.61 �0.26 2.38 2.12 0.00 4.45 �1.62 6.89

100 2.96 0.00 2.14 �0.04 2.08 2.14 0.00 3.95 �1.50 5.95

200 3.00 0.00 2.04 0.00 2.03 2.16 0.00 3.72 �1.40 5.32

1000 3.00 0.00 2.02 0.00 2.02 2.34 0.00 3.17 �0.95 3.51

2000 3.00 0.00 2.00 0.00 2.00 2.50 0.00 2.87 �0.67 2.76

Table 4.2. Risk of the candidate model, and estimation accuracies of each criterion

in Case 3–4

Case 3 Case 4

Risk TOCp fCp Risk TOCp fCp

N R�N Bias MSE Bias MSE R�N Bias MSE Bias MSE

12 2.10 0.00 8.14 �1.79 11.35 2.32 0.00 10.25 �1.87 13.94

36 2.11 0.00 4.83 �1.78 8.00 2.78 0.00 7.84 �1.92 11.91

100 2.11 0.00 4.45 �1.78 7.63 4.03 0.00 12.31 �1.96 16.67

200 2.11 0.00 4.36 �1.79 7.56 6.01 �0.01 20.27 �1.99 24.65

1000 2.11 0.00 4.30 �1.78 7.49 22.00 0.00 84.89 �2.00 88.88

2000 2.11 0.00 4.27 �1.78 7.46 42.00 0.00 165.94 �2.00 169.94
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for the MSEs, from Table 4.1 we can see that the MSEs of the fCp are smaller

than those of the TOCp in Case 1 or Case 2 and large N. On the other hand,

from Table 4.2 we can see that the MSEs of the TOCp are smaller than those

of the fCp in both Case 3 and 4.

4.2. Selection probability and the risk of the best model. In this subsection,

we calculate selection probabilities in cases of using the TOCp and the fCp,

respectively. In addition, we also calculate the risk of the best model selected

by minimizing each criterion. Let Yij @Nðyi; s2Þ, where i ¼ 1; 2; 3; 4 and j ¼
1; . . . ;Ni for each i. We set N1 ¼ N2 ¼ N3 ¼ N4. Moreover, we put N ¼
N1 þN2 þN3 þN4. In this setting, we consider the following five candidate

models:

M1: ANOVA model with y1 ¼ y2 ¼ y3 ¼ y4;

M2: ANOVA model with y1 ¼ y2 ¼ y3 a y4;

M3: ANOVA model with y1 ¼ y2 a yj; ð j ¼ 3; 4Þ;

M4: ANOVA model with y1 a yj; ð j ¼ 2; 3; 4Þ;

M5: ANOVA model without any restriction:

Note that these five candidate models are nested. Furthermore, in this simu-

lation we consider the following true models:

Case 1: y1 ¼ y2 ¼ 1; y3 ¼ y4 ¼ 1:5; s2 ¼ 1;

Case 2: y1 ¼ y2 ¼ 1; y3 ¼ 2:4; y4 ¼ 1:7; s2 ¼ 1:

From 10,000 Monte Carlo simulation runs, we calculate the selection prob-

ability and the risk of the best model for each criterion in both cases.

Obtained results are given in Table 4.3–4.6.

Table 4.3. Selection probability (%) for the case of using each criterion in Case 1

TOCp fCp

N M1 M2 M3 M4 M5 M1 M2 M3 M4 M5

40 46.70 14.74 28.88 4.98 4.70 48.13 14.82 27.37 4.71 4.97

80 24.98 14.67 48.36 6.11 5.88 25.63 14.68 47.60 6.11 5.98

120 13.69 10.99 62.06 6.57 6.69 14.02 10.99 61.64 6.62 6.73

160 6.99 7.69 70.11 7.70 7.51 7.13 7.69 69.95 7.72 7.51

200 3.27 4.70 77.12 7.60 7.31 3.31 4.70 77.06 7.61 7.32
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From Table 4.3–4.6, we can see that the obtained results of using the

TOCp are very similar to those of using fCp in both cases. This implies that

using the criterion which has unbiasedness does not dramatically influence the

performance of criteria such as the selection probability and the risk of the best

model.

5. Conclusion

Under ANOVA model with the tree ordering, we derived the unbiased Cp

type criterion, called TOCp. In addition, the TOCp is the unbiased estimator

Table 4.4. Selection probability (%) for the case of using each criterion in Case 2

TOCp fCp

N M1 M2 M3 M4 M5 M1 M2 M3 M4 M5

40 3.24 0.22 80.98 7.76 7.80 3.50 0.22 80.39 7.91 7.98

80 0.04 0.00 84.72 7.74 7.50 0.04 0.00 84.64 7.78 7.54

120 0.00 0.00 84.29 7.30 8.41 0.00 0.00 84.27 7.32 8.41

160 0.00 0.00 84.32 7.98 7.70 0.00 0.00 84.32 7.98 7.70

200 0.00 0.00 84.50 7.49 8.01 0.00 0.00 84.50 7.49 8.01

Table 4.5. Risk for each candidate model, and the values of risks of best models

ðR½TOCp�;R½fCp�Þ selected by minimizing the TOCp and the fCp in Case 1

N M1 M2 M3 M4 M5 R½TOCp� R½fCp�

40 43.50 43.40 42.71 43.32 44.03 43.98 43.98

80 86.02 85.20 82.90 83.46 84.01 84.52 84.54

120 128.51 126.92 122.96 123.46 123.99 124.47 124.48

160 171.00 168.61 162.99 163.51 164.02 164.29 164.29

200 213.51 210.30 202.97 203.49 203.98 204.01 204.01

Table 4.6. Risk for each candidate model, and the values of risks of best models

ðR½TOCp�;R½fCp�Þ selected by minimizing the TOCp and the fCp in Case 2

N M1 M2 M3 M4 M5 R½TOCp� R½fCp�

40 54.46 54.71 42.94 43.48 44.01 43.82 43.85

80 107.94 107.86 82.99 83.50 83.99 83.55 83.55

120 161.44 161.02 123.02 123.51 124.02 123.59 123.59

160 214.90 214.10 163.01 163.53 164.02 163.59 163.59

200 268.39 267.22 203.01 203.50 204.01 203.57 203.57
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even if the true model is not included in the candidate model. Moreover, we

show that the TOCp is the UMVUE. We confirmed the estimation accuracy

and we also calculated the selection probability and the risk of the best model

through numerical experiments.

We recall that the TOCp is derived under the tree ordering which is the

important restriction in applied statistics. Nevertheless, there are other impor-

tant restrictions such as simple ordering and umbrella ordering. Hence, we

should derive the unbiased Cp type criterion under above restrictions. More-

over, we should consider generalization of restrictions such as the restriction on

a closed convex polyhedral cone and the restriction on closed convex set with

a smooth boundary. Furthermore, we should investigate theoretical property

of criteria derived under order restrictions. These are left for the future work.

Appendix 1: Proof of Lemma 1

In this section, we prove Lemma 1. First, we provide the following

lemma.

Lemma A. The following three propositions hold:

(1) Let A and B be non-empty subsets of Nl , and let A \ B ¼ q. Then,

it holds that

xA < xB ) xA < xA[B < xB:

(2) Let A and B1; . . . ;Bi be non-empty subsets of Nl , and let A and

B1; . . . ;Bi be disjoint. Then, it holds that

Ej A f1; . . . ; ig; xA < xBj
) xA < xB; ðA:1Þ

where B is given by

B ¼
[i
j¼1

Bj :

Similarly, it also holds that

Ej A f1; . . . ; ig; xBj
a xA ) xB a xA: ðA:2Þ

(3) Let A, B and C be non-empty subsets of Nl , and let A, B and C be

disjoint. Then, it holds that

xA < xC ; xB a xC ) xA[B < xC : ðA:3Þ

The proof of Lemma A is omitted because it is easily obtained. Next,

we prove Lemma 1.
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Proof. When l ¼ 2, the statements of Lemma 1 are equivalent to Lemma

C given by Inatsu [8], and it is already proved. Therefore, we prove the case

of lb 3.

First, we prove ð1Þ of Lemma 1. From (5) it holds that

[l
i¼1

[
J AJðlÞ

i

AðlÞðJÞ ¼ fx A Rl j x1 a x2; . . . ; x1 a xlg ¼ AðlÞ;

and AðlÞðJÞ0AðlÞðJ �Þ where J0 J �. Therefore, from the definition of the

inverse image, it is clear that ð1Þ holds because hl is the function from Rl

to AðlÞ.

Next, using mathematical induction we prove ð2Þ and ð3Þ of Lemma 1.

Thus, assume that Lemma 1 is true when l ¼ 2; . . . ; q� 1. In this assumption,

we prove that Lemma 1 is also true when l ¼ q. Here, in the case of i ¼ 1,

J
ðqÞ
1 has only one set J ¼ f1g. First, for this set J, we show the inclusion

relation � of (7). Let x ¼ ðx1; . . . ; xqÞ0 be an element of Rq satisfying

DJxJ b 0; Et A NqnJ; xJ < xt:

Here, note that xJ ¼ x1. Hence, for any integer t with 2a ta q, the

inequality x1 < xt holds. This implies that x A AðqÞðJÞ � AðqÞ. Meanwhile,

let

Hqðd; xÞ ¼
Xq
u¼1

Nuðxu � duÞ2:

Then, noting that x A AðqÞ, we get

0a min
d AAðqÞ

Hqðd; xÞaHqðx; xÞ ¼ 0:

Therefore, it holds that

min
d AAðqÞ

Hqðd; xÞ ¼ Hqðx; xÞ ¼ 0:

This equality means that hqðxÞ ¼ x A AðqÞðJÞ. Thus, we obtain hqðxÞ A AðqÞðJÞ.
Therefore, x A h�1

q ðAðqÞðJÞÞ holds. Hence, the inclusion relation � of (7) in

the case of J ¼ f1g is proved. Next, we show � of (7). Let y ¼ ðy1; . . . ; yqÞ0
be an element of Rq satisfying y A h�1

q ðAðqÞðJÞÞ. In other words, we assume

that

hqðyÞ ¼ argmin
d AAðqÞ

Hqðd; yÞ1 a ¼ ða1; . . . ; aqÞ0 A AðqÞðJÞ:
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Here, noting that AðqÞðJÞ is an open set, there exists an e-neighborhood Uða; eÞ
of a such that Uða; eÞ � AðqÞðJÞ. Thus, for any element g ¼ ðg1; . . . ; gqÞ

0 of Rq

satisfying g A Uða; eÞ � AðqÞ, it holds that

Hqða; yÞaHqðg; yÞ:

This implies that a is a local minimizer of Hqðd; yÞ. In addition, since Hqðd; yÞ
is a strictly convex function on Rq w.r.t. d, the local minimizer a is the unique

global minimizer. Moreover, it is clear that the global minimizer is y because

Hqðd; yÞ is non-negative and Hqðy; yÞ ¼ 0. Therefore, we get a ¼ y and it

holds that

hqðyÞ ¼ a ¼ y A AðqÞðJÞ:

Hence, for any s with s A NqnJ, the inequality y1 < ys holds. Consequently,

the inclusion relation � of (7) in the case of J ¼ f1g is proved.

Next, for any i with 2a ia q� 1, we prove the inclusion relation � of

(7). Let i be an integer with 2a ia q� 1, and let J be a set with J A J
ðqÞ
i .

Assume that x ¼ ðx1; . . . ; xqÞ0 is an element of Rq satisfying DJxJ b 0 and

xJ < xt for any t A NqnJ. Here, the function Hqða; xÞ can be expressed as

Hqða; xÞ ¼
Xq
d¼1

Ndðxd � adÞ2 ¼
X
s A J

Nsðxs � asÞ2 þ
X

t ANqnJ
Ntðxt � atÞ2

¼ HaJðaJ ; xJÞ þHaNqnJðaNqnJ ; xNqnJÞ:

Therefore, it is easily checked that

min
a AAðqÞ

Hqða; xÞb min
aJ AAðaJÞ

HaJðaJ ; xJÞ þHaNqnJðxNqnJ ; xNqnJÞ: ðA:4Þ

In addition, we put xJ ¼ ðy1; . . . ; yaJÞ0 ¼ y, aJ ¼ ðb1; . . . ; baJÞ
0 ¼ b, NJ ¼

ðn1; . . . ; naJÞ0 ¼ n and J � ¼ NaJ . By using these notations, we obtain

HaJðaJ ; xJÞ ¼
X
s A J

Nsðxs � asÞ2 ¼
XaJ

u¼1

nuðyu � buÞ
2 ¼ HaJðb; yÞ;

and

min
aJ AAðaJÞ

HaJðaJ ; xJÞ ¼ min
b AAðaJÞ

HaJðb; yÞ:

Recall that Lemma 1 is true when l ¼ 2; . . . ; q� 1 from the assumption

of mathematical induction. Moreover, it also holds that D
ðNÞ
J xJ b 0. This

inequality is equal to D
ðnÞ
J � yJ � b 0. Furthermore, noting that J � ¼ NaJ and

2aaJa q� 1, from ð3Þ of Lemma 1 we get
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min
aJ AAðaJÞ

HaJðaJ ; xJÞ ¼ min
b AAðaJÞ

HaJðb; yÞ

¼
XaJ

u¼1

nuðyu � yJ � Þ2 ¼
X
s A J

Nsðxs � xJÞ2: ðA:5Þ

Hence, from (A.4) and (A.5), it holds that

min
a AAðqÞ

Hqða; xÞb
X
s A J

Nsðxs � xJÞ2 þ
X

t ANqnJ
Ntðxt � xtÞ2: ðA:6Þ

Here, let g ¼ ðg1; . . . ; gqÞ
0 be a q-dimensional vector whose sth element ðs A JÞ

is xJ and tth element ðt A NqnJÞ is xt. Then, from the assumption, for any

t A NqnJ it holds that xJ < xt. Thus, from the definition of g, we obtain

g A AðqÞ. Hence, the following inequality holds:

min
a AAðqÞ

Hqða; xÞaHqðg; xÞ ¼
X
s A J

Nsðxs � xJÞ2 þ
X

t ANqnJ
Ntðxt � xtÞ2: ðA:7Þ

Therefore, from (A.6) and (A.7) we get

min
a AAðqÞ

Hqða; xÞ ¼ Hqðg; xÞ:

This implies that

hqðxÞ ¼ argmin
a AAðqÞ

Hqða; xÞ ¼ g:

Noting that from the definition of g, we get g A AðqÞðJÞ, i.e., x A h�1
q ðAðqÞðJÞÞ.

Consequently, for any i with 2a ia q� 1, the inclusion relation � of (7) is

proved.

Next, we prove the inclusion relation � of (7). Let i be an integer with

2a ia q� 1, and let J be a set with J A J
ðqÞ
i . Also let x ¼ ðx1; . . . ; xqÞ0 be an

element of Rq satisfying x A h�1
q ðAðqÞðJÞÞ. In other words, we assume that

hqðxÞ ¼ ða1; . . . ; aqÞ0 ¼ a A AðqÞðJÞ:

Here, from the definition of AðqÞðJÞ, for any s A J and for any t A NqnJ,
it holds that a1 ¼ as and a1 < at. Incidentally, from the definition of hq, we

get

min
d AAðqÞ

Xq
i¼1

Niðxi � diÞ2 ¼
X
s A J

Nsðxs � asÞ2 þ
X

t ANqnJ
Ntðxt � atÞ2

¼
X
s A J

Nsðxs � a1Þ2 þ
X

t ANqnJ
Ntðxt � atÞ2:
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In addition, for the subvector g� ¼ ðg1; g 0NqnJÞ
0, we consider the following

function:

Hðg�; xÞ ¼
X
s A J

Nsðxs � g1Þ
2 þ

X
t ANqnJ

Ntðxt � gtÞ
2:

Noting that a� ¼ ða1; a 0
NqnJÞ

0 A Aðq�aJþ1Þðf1gÞ and Aðq�aJþ1Þðf1gÞ is an open

set, there exists an e-neighborhood Uða�; eÞ of a� such that Uða�; eÞ �
Aðq�aJþ1Þðf1gÞ. Let z ¼ ðz1; . . . ; zqÞ0, and let z� ¼ ðz1; z 0NqnJÞ

0 A Uða�; eÞ.
Moreover, let x ¼ ðx1; . . . ; xqÞ0 be a q-dimensional vector whose sth element

ðs A JÞ is xs ¼ z1, and tth element ðt A NqnJÞ is xt ¼ zt. Then, noting that

x A AðqÞ we obtain

Hðz�; xÞ ¼
X
s A J

Nsðxs � z1Þ2 þ
X

t ANqnJ
Ntðxt � ztÞ2

¼
X
s A J

Nsðxs � xsÞ2 þ
X

t ANqnJ
Ntðxt � xtÞ2

b min
d AAðqÞ

Xq
i¼1

Niðxi � diÞ2

¼
X
s A J

Nsðxs � a1Þ2 þ
X

t ANqnJ
Ntðxt � atÞ2 ¼ Hða�; xÞ:

Thus, a� is a local minimizer of Hðg�; xÞ. In addition, since Hðg�; xÞ is a

strictly convex function on Rq�aJþ1 w.r.t. g�, the local minimizer a� is the

unique global minimizer of Hðg�; xÞ. Moreover, the global minimizer can be

obtained by di¤erentiating Hðg�; xÞ w.r.t. g� as

a1 ¼ xJ ; at ¼ xt ðt A NqnJÞ:

Therefore, noting that a1 < at, we have xJ < xt.

Next, we prove D
ðNÞ
J xJ b 0. We replace xJ and NJ with y ¼ ðy1; . . . ; yiÞ0

and n ¼ ðn1; . . . ; niÞ0, respectively. In addition, we put J � ¼ Ni. Note that

xJ ¼ y ¼ yJ � . Also note that y is an i-dimensional vector and 2a ia q� 1.

Recall that from ð1Þ of Lemma 1, it holds that

R i ¼
[i
s¼1

[
J AJðiÞ

s

h�1
i ðAðiÞðJÞÞ;

h�1
i ðAðiÞðJÞÞ \ h�1

i ðAðiÞðJ �ÞÞ ¼ q ðJ0 J �Þ:

In order to prove D
ðNÞ
J xJ b 0, we show y A h�1

i ðAðiÞðNiÞÞ using proof by

contradiction. Thus, we assume that there exists an integer s with 1a sa
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i � 1 and a set J �� of JðiÞ
s such that y A h�1

i ðAðiÞðJ ��ÞÞ: Recall that from the

assumption of mathematical induction, Lemma 1 is true when l ¼ 2; . . . ; q� 1.

Furthermore, since ia q� 1, from ð2Þ of Lemma 1, y A h�1
i ðAðiÞðJ ��ÞÞ is

equivalent to

D
ðnÞ
J �� yJ �� b 0; yJ �� < yt ðt A NinJ ��Þ:

Here, by using ð2Þ of Lemma A, we get yJ �� < yNinJ �� . Moreover, using ð1Þ of
Lemma A we have yJ �� < yNi

¼ xJ . Therefore, combining xJ < xt ðt A NqnJÞ,
we get

yJ �� < xr ðr A NqnJÞ: ðA:8Þ

Note that there exists a set J ��� with J ��� � J satisfies yJ �� ¼ xJ ��� and

D
ðnÞ
J �� yJ �� ¼ D

ðNÞ
J ���xJ ��� b 0; xJ ��� < xv ðv A JnJ ���Þ: ðA:9Þ

Hence, for the set J ���, from (A.8) and (A.9) it holds that

D
ðNÞ
J ���xJ��� b 0; xJ ��� < xu ðu A NqnJ ���Þ:

As we proved before, this implies that x A h�1
q ðAðqÞðJ ���ÞÞ. However, this

result is a contradiction because J0 J ���, x A h�1
q ðAðqÞðJÞÞ and h�1

q ðAðqÞðJÞÞ \
h�1
q ðAðqÞðJ ���ÞÞ ¼ q: Therefore, we obtain y A h�1

i ðAðiÞðNiÞÞ. From ð2Þ of

Lemma 1, this result is equivalent to D
ðnÞ
Ni
yb 0. This inequality can be written

by using N , J and xJ as D
ðNÞ
J xJ b 0. Thus, for any i with 2a ia q� 1, the

inclusion relation � of (7) is proved.

Finally, in the case of i ¼ q, i.e., J ¼ Nq A JðqÞ
q , we prove (7). First,

we prove the inclusion relation � of (7). Let x ¼ ðx1; . . . ; xqÞ0 A Rq, and let

DJxJ b 0. Recall that the following relation holds:

Rq ¼
[q
s¼1

[
J AJðqÞ

s

h�1
q ðAðqÞðJÞÞ;

h�1
q ðAðqÞðJÞÞ \ h�1

q ðAðqÞðJ �ÞÞ ¼ q ðJ0 J �Þ:

Again, we consider proof by contradiction. Hence, we assume that there

exists an integer s with 1a sa q� 1 and a set J � of JðqÞ
s satisfying x A

h�1
q ðAðqÞðJ �ÞÞ. Thus, as we mentioned before, it holds that

DJ �xJ � b 0; xJ � < xt ðt A NqnJ �Þ:

We would like to recall that 1 A J � and the number of elements in J � is s.

Here, if s ¼ q� 1, then NqnJ � has only one element a satisfying a > 1.

Therefore, it holds that

xNqnfag < xa:
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However, this inequality is a contradiction because DJxJ b 0. Hence, s

satisfies 1a sa q� 2. Incidentally, there exists an element t� of NqnJ � which

satisfies
Et A NqnðJ � [ ft�gÞ; xt a xt �

Therefore, form ð2Þ of Lemma A we get

xNqnðJ �[ft �gÞ a xt �

In addition, since xJ < xt � , from ð3Þ of Lemma A we obtain

xNqnft �g < xt �

However, this inequality is also contradiction because DJxJ b 0. Thus, we get

s ¼ q. This implies that J � ¼ Nq A JðqÞ
q and x A h�1

q ðAðqÞðNqÞÞ. Therefore,

the inclusion relation � of (7) in the case of i ¼ q is proved. Next, we prove

�. Assume that x A h�1
q ðAðqÞðNqÞÞ. In other words, it holds that

hqðxÞ1 a A AðqÞðNqÞ:

From the definition of AðqÞðNqÞ, we get a ¼ 1qa, where 1q is a q-dimensional

vector and every element of 1q is equal to one. Here, again we consider proof

by contradiction. Therefore, we assume that there exists an integer s with

2a sa q which satisfies

xNqnfsg < xs: ðA:10Þ

Meanwhile, for the function Hqðd; xÞ given by

Hqðd; xÞ ¼
Xq
a¼1

Naðxa � daÞ2;

it is easily checked that

min
d AAðqÞ

Hqðd; xÞ ¼ Hqða; xÞ ¼
Xq
a¼1

Naðxa � aÞ2; ðA:11Þ

because x A h�1
q ðAðqÞðNqÞÞ is true. Here, it is clear that the following inequal-

ity holds:

Xq
a¼1

Naðxa � aÞ2 b min
b AR

Xq
a¼1;a0s

Naðxa � bÞ2 ¼
Xq

a¼1;a0s

Naðxa � xNqnfsgÞ
2: ðA:12Þ

Hence, combining (A.11) and (A.12) we get

min
d AAðqÞ

Hqðd; xÞb
Xq

a¼1;a0s

Naðxa � xNqnfsgÞ
2: ðA:13Þ
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Let b be a q-dimensional vector whose sth and tth ðt A NqnfsgÞ elements are xs
and xNqnfsg, respectively. Then, the inequality (A.13) can be written by using

b as

min
d AAðqÞ

Hqðd; xÞbHqðb; xÞ:

On the other hand, from the assumption (A.10), we obtain

min
d AAðqÞ

Hqðd; xÞaHqðb; xÞ;

because b A AðqÞ. Thus, we have

min
d AAðqÞ

Hqðd; xÞ ¼ Hqðb; xÞ;

and this means that hqðxÞ ¼ b. However, this result is a contradiction because

hqðxÞ ¼ a and a0 b. Hence, for any integer s with 2a sa q, it holds that

xNqnfsg b xs. This inequality is equivalent to DNq
xNq

b 0. Therefore, the

inclusion relation � of (7) in the case of i ¼ q is proved. Consequently,

ð2Þ of Lemma 1 is proved.

Finally, we prove ð3Þ of Lemma 1. When J0Nq, we have already

proved in the proof of ð2Þ of Lemma 1. Thus, we prove the case of J ¼ Nq.

Let x A h�1
q ðAðqÞðNqÞÞ. Then, it holds that hqðxÞ1 a A AðqÞðNqÞ and a can be

written as a ¼ a1q. Here, for the function Hqðd; xÞ defined by

Hqðd; xÞ ¼
Xq
a¼1

Naðxa � daÞ2;

we obtain

min
d AAðqÞ

Hqðd; xÞ ¼ Hqða; xÞ ¼
Xq
a¼1

Naðxa � aÞ2

b min
b AR

Xq
a¼1

Naðxa � bÞ2 ¼
Xq
a¼1

Naðxa � xNq
Þ2

¼ HqðxNq
1q; xÞ; ðA:14Þ

because x A h�1
q ðAðqÞðNqÞÞ holds. On the other hand, since xNq

1q A AðqÞ, we

get

min
d AAðqÞ

Hqðd; xÞaHqðxNq
1q; xÞ:
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By combining this inequality and (A.14), we have

min
d AAðqÞ

Hqðd; xÞ ¼ HqðxNq
1q; xÞ:

This implies hqðxÞ ¼ a ¼ xNq
1q. Therefore, ð3Þ of Lemma 1 is proved. r

Appendix 2: Technical lemma

In this section, we provide two technical lemmas. Using Lemma 1 and

provided two lemmas, we prove Theorem 1 in Appendix 3.

Lemma B. Let v1; . . . ; vl be independent random variables, and let vs @
Nðxs; t2=NsÞ where 1a sa l, t2 > 0, x1; . . . ; xl A R and N1; . . . ;Nl A R>0. Let

N ¼ ðN1; . . . ;NlÞ0, v ¼ ðv1; . . . ; vlÞ0 and x ¼ ðx1; . . . ; xlÞ0. In addition, for any

integer i with 1a ia l and for any set J with J A J
ðlÞ
i , define

SðJÞ ¼
X
s A J

Nsðvs � xsÞðvs � vJÞ:

Then, the following two propositions hold:

(1) If J0Nl , then vNlnJ , ððDJvJÞ0;SðJÞÞ0 and vJ are mutually independent.

(2) If J ¼ Nl , then ððDJvJÞ0;SðJÞÞ0 and vJ are mutually independent.

Proof. First, we prove ð1Þ. From the assumption, v is distributed as the

multivariate normal distribution with a diagonal covariance matrix. There-

fore, noting that the two sets J and NlnJ are disjoint sets, it can be shown that

the two subvectors vJ and vNlnJ are also distributed as (multivariate) normal

distributions and these are mutually independent.

Next, we prove that ððDJvJÞ0;SðJÞÞ0 and vJ are functions of vJ , and

these are mutually independent. Here, the case of J ¼ f1g is clear because

ððDJvJÞ0;SðJÞÞ0 ¼ ð0; 0Þ0. Thus, we consider the case of J0 f1g. Since

X
s A J

NsvJðvs � vJÞ ¼ 0;

it holds that

SðJÞ ¼
X
s A J

Nsðvs � xsÞðvs � vJÞ ¼
X
s A J

Nsðvs � vJ � xsÞðvs � vJÞ

¼
X
s A J

Nsðvs � vJÞ2 �
X
s A J

Nsxsðvs � vJÞ:

Here, let

A ¼ ðdiagðNJÞÞ1=2 IaJ �
1aJ

~NNJ

N 0
J

� �
; ðB:1Þ
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where diagðNJÞ means the diagonal matrix whose ða; aÞ element is the ath

element of the vector NJ . Then, SðJÞ can be expressed as

SðJÞ ¼ ðAvJÞ0ðAvJÞ � ðx 0
JðdiagðNJÞÞ1=2ÞAvJ :

Hence, ððDJvJÞ0;SðJÞÞ0 is the function of ððDJvJÞ0; ðAvJÞ0Þ0. Therefore, it is

su‰cient to prove that ððDJvJÞ0; ðAvJÞ0Þ0 and vJ are independent. Note that

the vector ððDJvJÞ0; ðAvJÞ0; vJÞ0 can be written as

DJvJ

AvJ

vJ

0
B@

1
CA¼

DJ

A

N 0
J=

~NNJ

0
B@

1
CAvJ ;

and vJ are distributed as multivariate normal distribution. Thus, it holds that

ððDJvJÞ0; ðAvJÞ0Þ0 and vJ are distributed as (multivariate) normal distributions.

Hence, in order to prove its independence, it is su‰cient to prove that the

covariance of ððDJvJÞ0; ðAvJÞ0Þ0 and vJ is the zero vector. Here, the covariance

of DJvJ and vJ can be expressed as

Cov½DJvJ ; vJ � ¼ DJ Var½vJ �NJ= ~NNJ : ðB:2Þ

Furthermore, noting that Var½vJ � ¼ t2ðdiagðNJÞÞ�1, (B.2) can be written as

Cov½DJvJ ; vJ � ¼ ðt2= ~NNJÞDJðdiagðNJÞÞ�1NJ ¼ ðt2= ~NNJÞDJ1aJ :

In addition, from the definition of the matrix DJ , it holds that DJ1aJ ¼ 0.

Therefore, we get Cov½DJvJ ; vJ � ¼ 0. Similarly, the covariance of AvJ and vJ
is given by

Cov½AvJ ; vJ � ¼ ðt2= ~NNJÞA1aJ ;

and it holds that A1aJ ¼ 0 from (B.1). Thus, we have Cov½AvJ ; vJ � ¼ 0.

Therefore, ððDJvJÞ0; ðAvJÞ0Þ0 and vJ are independent. This implies that

ððDJvJÞ0;SðJÞÞ0 and vJ are independent. Hence, ð1Þ is proved. On the other

hand, by using the same argument, we can also prove ð2Þ. r

Lemma C. Let v1; . . . ; vl be independent random variables defined as in

Lemma B, and let

AðlÞðf1gÞ ¼ fðx1; . . . ; xlÞ0 A Rl j x1 < x2; . . . ; x1 < xlg:

Then, it holds that

E 1fv A h�1
l

ðAðlÞðf1gÞÞg �
1

t2

Xl

s¼1

Nsvsðvs � xsÞ
" #

¼ E 1fv AAðlÞðf1gÞg �
1

t2

Xl

s¼1

Nsvsðvs � xsÞ
" #
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¼ lE½1fv AAðlÞðf1gÞg� ¼ lE½1fv A h�1
l

ðAðlÞðf1gÞÞg�

¼ lPðv A h�1
l ðAðlÞðf1gÞÞÞ: ðC:1Þ

Proof. From the definition of the indicator function, it is clear that the

fourth equality holds. On the other hand, for the first and third equalities, we

must prove

v A h�1
l ðAðlÞðf1gÞÞ , v A AðlÞðf1gÞ:

However, we have already proved this relation in (7). Therefore, we prove the

second equality. For any integer s with 1a sa l, we defineffiffiffiffiffiffi
Ns

p
ðvs � xsÞ
t

¼ zs; bs ¼
xs

ffiffiffiffiffiffi
Ns

p

t
:

Note that z1; . . . ; zl are independent and identically distributed as Nð0; 1Þ.
Furthermore, it holds that

1

t2

Xl

s¼1

Nsvsðvs � xsÞ ¼
Xl

s¼1

zsðzs þ bsÞ: ðC:2Þ

In addition, for any integer t with 2a ta l, puttingffiffiffiffiffiffi
Nt

pffiffiffiffiffiffi
N1

p ¼ at;

the following relation holds:

v A AðlÞðf1gÞ , 2a ta l; v1 < vt , 2a ta l; atðz1 þ b1Þ � bt < zt:

Here, define

El ¼ fðc1; . . . ; clÞ A Rl j 2a ta l; atðc1 þ b1Þ � bt < ctg:

Then, for the vector z ¼ ðz1; . . . ; zlÞ0, it holds that v A AðlÞðf1gÞ , z A El .

Using this result and (C.2), we obtain

E 1fv AAðlÞðf1gÞg �
1

t2

Xl

s¼1

Nsvsðvs � xsÞ
" #

¼ E 1fz AElg �
Xl

s¼1

zsðzs þ bsÞ
" #

¼
ð
. . .

ð
El

Xl

s¼1

zsðzs þ bsÞ
( )Yl

s¼1

fðzsÞdz1 . . . dzl ; ðC:3Þ
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where fðxÞ is the probability density function of standard normal distribution.

Here, when l ¼ 2, Inatsu [8] proved that (C.3) is equal to lE½1fv AAðlÞðf1gÞg�.
Hence, we prove the case of lb 3.

First, for any integer s with 2a sa l we define

FsðxÞ ¼
ðy
asðxþb1Þ�bs

fðyÞdy:

In addition, let

G1 ¼
ðy
�y

z1ðz1 þ b1Þ
Yl
s¼2

Fsðz1Þ
 !

fðz1Þdz1;

and let

Gs ¼
ðy
�y

ðy
asðz1þb1Þ�bs

zsðzs þ bsÞfðzsÞdzs

 ! Y
2atal; t0s

Ftðz1Þ
 !

fðz1Þdz1; ðC:4Þ

where s ¼ 2; . . . ; l. Then, (C.3) can be written as

ð
. . .

ð
El

Xl

s¼1

zsðzs þ bsÞ
( )Yl

s¼1

fðzsÞdz1 . . . dzl ¼
Xl

s¼1

Gs: ðC:5Þ

Next, we calculate G1 and Gs. Using the integration by parts, G1 can be

expressed as

G1 ¼ �fðz1Þðz1 þ b1Þ
Yl
s¼2

Fsðz1Þ
 !" #y

�y

þ
ðy
�y

fðz1Þ
Yl
s¼2

Fsðz1Þ
 !

dz1

þ
ðy
�y

fðz1Þðz1 þ b1Þ
d

dz1

Yl
s¼2

Fsðz1Þ
 !

dz1: ðC:6Þ

Here, noting that

d

dz1
Fsðz1Þ ¼ �asfðasðz1 þ b1Þ � bsÞ

and the first term of the right hand side of (C.6) is zero, (C.6) can be written as

G1 ¼
ðy
�y

fðz1Þ
Yl
s¼2

Fsðz1Þ
 !

dz1

þ
ðy
�y

fðz1Þðz1 þ b1Þ
(Xl

s¼2

f�asfðasðz1 þ b1Þ � bsÞg

Y
2atal; t0s

Ftðz1Þ
 !)

dz1: ðC:7Þ
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Next, we calculate Gs. Here, note that

ðy
asðz1þb1Þ�bs

zsðzs þ bsÞfðzsÞdzs

¼ ½�fðzsÞðzs þ bsÞ�yasðz1þb1Þ�bs
þ
ðy
asðz1þb1Þ�bs

fðzsÞdzs

¼ asðz1 þ b1Þffasðz1 þ b1Þ � bsg þ Fsðz1Þ: ðC:8Þ

Hence, substituting (C.8) into (C.4) yields

Gs ¼
ðy
�y

fðz1Þ
Yl
s¼2

Fsðz1Þ
 !

dz1

þ
ðy
�y

fðz1Þðz1 þ b1Þfasfðasðz1 þ b1Þ � bsÞg
Y

2atal; t0s

Ftðz1Þ
 !

dz1: ðC:9Þ

Therefore, using (C.7) and (C.9) we get

Xl

s¼1

Gs ¼ l

ðy
�y

fðz1Þ
Yl
s¼2

Fsðz1Þ
 !

dz1 ¼ l

ð
. . .

ð
El

Yl
s¼1

fðzsÞdz1 . . . dzl

¼ lE½1fz AElg� ¼ lE½1fv AAðlÞðf1gÞg�: ðC:10Þ

Thus, by substituting (C.10) into (C.5), we obtain (C.1). r

Appendix 3: Proof of Theorem 1

In this section, we prove Theorem 1. First, we provide the following

lemma.

Lemma D. Let n1, n2 and t2 be positive numbers, and let x1, and x2 be real

numbers. Put n ¼ ðn1; n2Þ0. Let x1 and x2 be independent random variables

distributed as xs @Nðxs; t2=nsÞ, ðs ¼ 1; 2Þ, and let x ¼ ðx1; x2Þ0. Then, the

following two propositions hold:

(P1) For any integer i with 1a ia 2, and for any set J with J A J
ð2Þ
i , it

holds that

E 1fDðnÞ
J

xJb0g
1

t2

X
s A J

nsðxs � xsÞðxs � x
ðnÞ
J Þ

" #

¼ ði � 1ÞPðDðnÞ
J xJ b 0Þ: ðD:1Þ
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(P2) The following equality holds:

E
1

t2

X2
s¼1

nsðxs � xsÞðxs � h
ðnÞ
2 ðxÞ½s�Þ

" #
¼ PðhðnÞ2 ðxÞ A Að2ÞðN2ÞÞ: ðD:2Þ

Proof. First, we prove (D.1). When i ¼ 1, i.e., J ¼ f1g, noting that

xJ ¼ x1, the equality (D.1) is clear. On the other hand, when i ¼ 2, i.e.,

J ¼ N2, the equality (D.1) is equivalent to ðP1Þ of Lemma F given by Inatsu

[8], and it is already proved. Similarly, the proof of (D.2) is equivalent to the

proof of ðP2Þ of Lemma F given by Inatsu [8]. Therefore, lemma D is proved.

r

Next, we consider the following lemma:

Lemma E. Let l be an integer with lb 2. Assume that the following

proposition ðPÞ is true:

(P) Let N1; . . . ;Nl and v2 be positive numbers, and let z1; . . . ; zl be real

numbers. Let y1; . . . ; yl be independent random variables, and let

ys @Nðzs; v2=NsÞ where s ¼ 1; . . . ; l. Put N ¼ ðN1; . . . ;NlÞ0, z ¼
ðz1; . . . ; zlÞ0 and y ¼ ðy1; . . . ; ylÞ0. Then, for any integer i with

1a ia l and for any set J with J A J
ðlÞ
i , it holds that

E 1fDðNÞ
J

yJb0g
1

v2

X
s A J

Nsðys � zsÞðys � y
ðNÞ
J Þ

" #

¼ ði � 1ÞPðDðNÞ
J yJ b 0Þ: ðE:1Þ

Under the assumption ðPÞ, the following proposition ðP�Þ holds:

(P�) Let n1; . . . ; nlþ1 and t2 be positive numbers, and let x1; . . . ; xlþ1

be real numbers. Let x1; . . . ; xlþ1 be independent random variables,

and let xs @Nðxs; t2=nsÞ where s ¼ 1; . . . ; l þ 1. Put n ¼ ðn1; . . . ;
nlþ1Þ0, x ¼ ðx1; . . . ; xlþ1Þ0 and x ¼ ðx1; . . . ; xlþ1Þ0. Then, for any

integer i with 1a ia l þ 1 and for any set J with J A J
ðlþ1Þ
i , it

holds that

E 1fDðnÞ
J

xJb0g
1

t2

X
s A J

nsðxs � xsÞðxs � x
ðnÞ
J Þ

" #

¼ ði � 1ÞPðDðnÞ
J xJ b 0Þ: ðE:2Þ

Moreover, the following equality holds:
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E
1

t2

Xlþ1

s¼1

nsðxs � xsÞðxs � h
ðnÞ
lþ1ðxÞ½s�Þ

" #

¼
Xlþ1

i¼2

ði � 1ÞP hlþ1ðxÞ A
[

J AJ lþ1
i

Aðlþ1ÞðJÞ

0
@

1
A: ðE:3Þ

Note that Lemma D and Lemma E yield Theorem 1. Hence, we prove

Lemma E.

Proof. First, we prove (E.2). Suppose that i is an integer satisfying

1a ia l and suppose also that J is a set satisfying J A J
ðlþ1Þ
i . In this case,

we replace nJ , xJ and xJ with N ¼ ðN1; . . . ;NiÞ0, y ¼ ðy1; . . . ; yiÞ0 and z ¼
ðz1; . . . ; ziÞ0, respectively. We put J � ¼ Ni. Then, from the assumption (E.1),

the left hand side of (E.2) can be expressed as

E 1fDðnÞ
J

xJb0g
1

t2

X
s A J

nsðxs � xsÞðxs � x
ðnÞ
J Þ

" #

¼ E 1fDðNÞ
J � yJ �b0g

1

t2

X
t A J �

Ntðyt � ztÞðyt � y
ðNÞ
J � Þ

" #

¼ ði � 1ÞPðDðNÞ
J � yJ � b 0Þ ¼ ði � 1ÞPðDðnÞ

J xJ b 0Þ: ðE:4Þ

Hence, we get (E.2). Therefore, it is su‰cient to prove the case of i ¼
l þ 1, i.e., J ¼ Nlþ1 A J

ðlþ1Þ
i . Here, the left hand side of (E.2) can be rewritten

as

E 1fDðnÞ
J

xJb0g
1

t2

X
s A J

nsðxs � xsÞðxs � x
ðnÞ
J Þ

" #
¼ X � Y ; ðE:5Þ

where X and Y are given by

X ¼ E 1fDðnÞ
J

xJb0g
1

t2

Xlþ1

s¼1

nsðxs � xsÞxs

" #
;

Y ¼ E 1fDðnÞ
J

xJb0g
1

t2

Xlþ1

s¼1

nsðxs � xsÞxðnÞ
J

" #
:

First, we calculate Y . Noting that

1

t2

Xlþ1

s¼1

nsðxs � xsÞxðnÞ
J ¼ ~nnJ

t2
ðxðnÞ

J � x
ðnÞ
J ÞxðnÞ

J
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and x
ðnÞ
J @NðxðnÞJ ; t2=~nnJÞ, from ð2Þ of Lemma B we obtain

Y ¼ E 1fDðnÞ
J

xJb0g
1

t2

Xlþ1

s¼1

nsðxs � xsÞxðnÞ
J

" #

¼ E½1fDðnÞ
J

xJb0g�E
~nnJ
t2

ðxðnÞ
J � x

ðnÞ
J ÞxðnÞ

J

� �

¼ E½1fDðnÞ
J

xJb0g� � 1 ¼ PðDðnÞ
J xJ b 0Þ: ðE:6Þ

Next, we calculate X . From ð1Þ of Lemma 1, it is easily checked that the

following equality holds:

1fDðnÞ
J

xJb0g ¼ 1�
Xl

u¼1

X
J � AJðlþ1Þ

u

1fx A h�1
lþ1

ðAðlþ1ÞðJ �ÞÞg: ðE:7Þ

Therefore, X can be expressed by using (E.7) as

X ¼ E
1

t2

Xlþ1

s¼1

nsðxs � xsÞxs

" #

�
Xl

u¼1

X
J � AJ lþ1

u

E 1fx A h�1
lþ1

ðAðlþ1ÞðJ �ÞÞg
1

t2

Xlþ1

s¼1

nsðxs � xsÞxs

" #

¼ ðl þ 1Þ

�
Xl

u¼1

X
J � AJ lþ1

u

E 1fx A h�1
lþ1

ðAðlþ1ÞðJ �ÞÞg
1

t2

Xlþ1

s¼1

nsðxs � xsÞxs

" #
; ðE:8Þ

where the first term of the last equality in (E.8) is derived by xs @Nðxs; t2=nsÞ.
Next, for any integer u with 1a ua l and for any set J � with J � A J lþ1

u , we

calculate

E 1fx A h�1
lþ1

ðAðlþ1ÞðJ �ÞÞg
1

t2

Xlþ1

s¼1

nsðxs � xsÞxs

" #
: ðE:9Þ

Here, recall that from ð2Þ of Lemma 1, the following relation holds:

x A h�1
lþ1ðAðlþ1ÞðJ �ÞÞ , DJ �xJ � b 0; Et A Nlþ1nJ �; xJ � < xt: ðE:10Þ

Thus, noting that
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1

t2

Xlþ1

s¼1

nsðxs � xsÞxs

¼ 1

t2

X
s A J �

nsðxs � xsÞxs þ
1

t2

X
t ANlþ1nJ �

ntðxt � xtÞxt

¼ 1

t2

X
s A J �

nsðxs � xsÞðxs � xJ � þ xJ � Þ þ 1

t2

X
t ANlþ1nJ �

ntðxt � xtÞxt

¼ 1

t2

X
s A J �

nsðxs � xsÞðxs � xJ � Þ þ ~nnJ �

t2
ðxJ � � xJ � ÞxJ �

þ 1

t2

X
t ANlþ1nJ �

ntðxt � xtÞxt;

the expectation (E.9) can be rewritten as

E 1fx A h�1
lþ1

ðAðlþ1ÞðJ �ÞÞg
1

t2

Xlþ1

s¼1

nsðxs � xsÞxs

" #
¼ G þH; ðE:11Þ

where G and H are given by

G ¼ E 1fx A h�1
lþ1

ðAðlþ1ÞðJ �ÞÞg
1

t2

X
s A J �

nsðxs � xsÞðxs � xJ � Þ
" #

;

H ¼ E

2
41fx A h�1

lþ1
ðAðlþ1ÞðJ �ÞÞg

~nnJ �

t2
ðxJ � � xJ � ÞxJ � þ 1

t2

X
t ANlþ1nJ �

ntðxt � xtÞxt

0
@

1
A
3
5:

By using (E.10), Lemma B and (E.4), G can be expressed as

G ¼ E½1fEt ANlþ1nJ �;xJ �<xtg�

� E 1fDJ �xJ �b0g
1

t2

X
s A J �

nsðxs � xsÞðxs � xJ � Þ
" #

¼ E½1fEt ANlþ1nJ �;xJ �<xtg� � ðu� 1ÞE½1fDJ �xJ �b0g�

¼ ðu� 1Þ � E½1fDJ �xJ �b0; Et ANlþ1nJ �;xJ �<xtg�

¼ ðu� 1Þ � E½1fx A h�1
lþ1

ðAðlþ1ÞðJ �ÞÞg�:
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On the other hand, using (E.10), Lemma B and Lemma C, H can be written

as

H ¼ E½1fDJ �xJ �b0g�

� E

2
41fEt ANlþ1nJ �;xJ �<xtg

~nnJ �

t2
ðxJ � � xJ � ÞxJ � þ 1

t2

X
t ANlþ1nJ �

ntðxt � xtÞxt

0
@

1
A
3
5

¼ E½1fDJ �xJ �b0g� � ðl þ 1� uþ 1ÞE½1fEt ANlþ1nJ �;xJ �<xtg�

¼ ðl þ 1� uþ 1Þ � E½1fx A h�1
lþ1

ðAðlþ1ÞðJ �ÞÞg�:

Hence, substituting G and H into (E.11) yields

E 1fx A h�1
lþ1

ðAðlþ1ÞðJ �ÞÞg
1

t2

Xlþ1

s¼1

nsðxs � xsÞxs

" #

¼ ðl þ 1Þ � E½1fx A h�1
lþ1

ðAðlþ1ÞðJ �ÞÞg�: ðE:12Þ

Furthermore, combining (E.12) and (E.8) we get

X ¼ ðl þ 1Þ �
Xl

u¼1

X
J � AJ lþ1

u

ðl þ 1Þ � E½1fx A h�1
lþ1

ðAðlþ1ÞðJ �ÞÞg�

¼ ðl þ 1ÞE 1�
Xl

u¼1

X
J � AJ lþ1

u

1fx A h�1
lþ1

ðAðlþ1ÞðJ �ÞÞg

2
4

3
5

¼ ðl þ 1ÞE½1fx A h�1
lþ1

ðAðlþ1ÞðJÞÞg� ¼ ðl þ 1ÞE½1fDJxJb0g�

¼ ðl þ 1ÞPðDJxJ b 0Þ: ðE:13Þ

Thus, substituting (E.6) and (E.13) into (E.5) yields

E 1fDðnÞ
J

xJb0g
1

t2

X
s A J

nsðxs � xsÞðxs � x
ðnÞ
J Þ

" #
¼ lPðDJxJ b 0Þ:

Hence, the expectation (E.2) for the case of i ¼ l þ 1 (i.e., J ¼ Nlþ1), is

proved.

Finally, we prove (E.3). By using ð1Þ and ð3Þ of Lemma 1, the left hand

side of (E.3) can be expressed as
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E
1

t2

Xlþ1

s¼1

nsðxs � xsÞðxs � h
ðnÞ
lþ1ðxÞ½s�Þ

" #

¼ E

2
64Xlþ1

i¼1

X
J AJðlþ1Þ

i

1fx A h�1
lþ1

ðAðlþ1ÞðJÞÞg
1

t2

Xlþ1

s¼1

nsðxs � xsÞðxs � h
ðnÞ
lþ1ðxÞ½s�Þ

 !375

¼
Xlþ1

i¼2

X
J AJðlþ1Þ

i

E 1fx A h�1
lþ1

ðAðlþ1ÞðJÞÞg
1

t2

X
r A J

nrðxr � xrÞðxr � xJÞ
 !" #

: ðE:14Þ

Here, using (E.2), Lemma B and ð2Þ of Lemma 1, we obtain

E 1fx A h�1
lþ1

ðAðlþ1ÞðJÞÞg
1

t2

X
r A J

nrðxr � xrÞðxr � xJÞ
 !" #

¼ E½1fEu ANlþ1nJ;xJ<xug� � E 1fDJxJb0g
1

t2

X
r A J

nrðxr � xrÞðxr � xJÞ
" #

¼ E½1fEu ANlþ1nJ;xJ<xug� � ði � 1ÞE½1fDJxJb0g�

¼ ði � 1ÞPðhlþ1ðxÞ A Aðlþ1ÞðJÞÞ: ðE:15Þ

Thus, substituting (E.15) into (E.14) yields

E
1

t2

Xlþ1

s¼1

nsðxs � xsÞðxs � h
ðnÞ
lþ1ðxÞ½s�Þ

" #

¼
Xlþ1

i¼2

ði � 1Þ
X

J AJðlþ1Þ
i

Pðhlþ1ðxÞ A Aðlþ1ÞðJÞÞ

¼
Xlþ1

i¼2

ði � 1ÞP hlþ1ðxÞ A
[

J AJ lþ1
i

Aðlþ1ÞðJÞ

0
@

1
A;

because Aðlþ1ÞðJÞ \ Aðlþ1ÞðJ �Þ ¼ q when J0 J �. Therefore, (E.3) is proved.

r
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