
Hiroshima Math. J.

44 (2014), 63–74

7-colored 2-knot diagram with six colors
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Abstract. It is known that any 7-colorable knot in 3-space is presented by a diagram

assigned by four of the seven colors. In this paper, we prove the existence of a

7-colorable 2-knot in 4-space such that any non-trivial 7-coloring requires at least six of

the seven colors.

1. Introduction

Harary and Kau¤man [4] studied the number of colors on the arcs of a

p-colored knot diagram. Let g : fthe arcs of Dg ! Z=pZ be a non-trivial

p-coloring for a knot diagram D, and NðD; gÞ ¼aImðgÞ > 1 the cardinality

of the image. We denote by CpðKÞ the minimal number of NðD; gÞ for all

p-colored diagrams ðD; gÞ of a knot K in R3. The notation CpðKÞ is originally
used in [4], and also written as mincolpðKÞ in some papers (cf. [6, 7]).

This number can be extended to a p-colorable 2-knot F in R4 naturally.

It is not di‰cult to see that C3ðFÞ ¼ 3 for any 3-colorable (2-)knot F . For the

case p ¼ 5, it is proved in [13] that
� C5ðKÞ ¼ 4 for any 5-colorable knot K ,
� 4aC5ðFÞa 5 for any 5-colorable 2-knot F ,
� C5ðF Þ ¼ 4 for any 5-colorable ribbon 2-knot F , and
� there are infinitely many 5-colorable 2-knots F such that C5ðFÞ ¼ 5.

On the other hand, for the case p ¼ 7, it is proved in [10] that
� C7ðKÞ ¼ 4 for any 7-colorable knot K ,
� 4aC7ðFÞa 7 for any 7-colorable 2-knot F , and
� C7ðF Þ ¼ 4 for any 7-colorable ribbon 2-knot F .

Therefore, it is natural to ask whether there is a 7-colorable 2-knot F with

C7ðF Þ > 4. The aim of this paper is to answer this question a‰rmatively.

Theorem 1. There are infinitely many 7-colorable 2-knots F such that

C7ðF Þ ¼ 6.
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It is still an open question whether there is a 7-colorable 2-knot F with

C7ðF Þ ¼ 5 or 7. We remark that any p-colorable (2-)knot F satisfies CpðFÞ >
log2 pþ 1 (cf. [9]).

This paper is organized as follows. In Section 2, we prove C7ðFÞb 6 if F

satisfies a certain condition on the quandle cocycle invariant (Theorem 2). In

Section 3, we construct a 7-colored diagram with six colors of a 2-twist-spun

52-knot (Theorem 3) and prove Theorem 1.

2. Quandle cocycle invariants

A 2-knot is a 2-dimensional sphere embedded in R4 smoothly, and its

diagram is the image under a projection of R4 onto R3 equipped with crossing

information. Refer to [3] for more details. Throughout this section, we

assume that all the 2-knots and their diagrams are oriented.

A 2-knot diagram consists of connected compact surfaces called sheets.

Each sheet of a 2-knot diagram has an orientation arrow, say ~vv, such that the

triple ð~uu1;~uu2;~vvÞ matches the orientation of R3, where ð~vv1;~vv2Þ defines the

orientation of the surface.

Let t be a triple point of a diagram D of a 2-knot F . In a neighborhood

of t, there are eight regions of R3nD. The specified region at t is the one of

them such that the orientation arrows ~vv1, ~vv2, and ~vv3 on the top, middle, and

bottom sheets, respectively, point away from the region. The sign of a triple

point t is positive if ð~vv1;~vv2;~vv3Þ matches the orientation of R3. Otherwise, the

sign is negative. We denote it by eðtÞ.
For an odd prime p, a p-coloring for a diagram D is a map

g : fthe sheets of Dg ! Z=pZ

such that x1 þ x2 1 y ðmod pÞ holds at any double point, where x1 and x2 are

the colors assigned to the lower sheets and y the one to the upper.

Fix a p-coloring g for D. The color of t with respect to g is an ordered

triple

ðaðtÞ; bðtÞ; cðtÞÞ A ðZ=pZÞ3

such that aðtÞ, bðtÞ, and cðtÞ are the colors of the bottom, middle, and top

sheets, respectively, adjacent to the specified region at t. See the left of Figure

1. Such a triple point is also illustrated by a crossing with four regions as

in the right. We say that t is degenerate with respect to g if aðtÞ ¼ bðtÞ or

bðtÞ ¼ cðtÞ, and otherwise non-degenerate.

For n ¼ 2 or 3, let C 0
n be the free abelian group generated by the n-tuples

ða1; a2; . . . ; anÞ A ðZ=pZÞn, and C 00
n the subgroup of C 0

n generated by the ele-
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ments such that ai ¼ aiþ1 for some 1a ia n� 1. Take the quotient group

Cn ¼ C 0
n=C

00
n .

The 3-chain xðD; gÞ associated with ðD; gÞ is defined by

xðD; gÞ ¼
X
t

eðtÞðaðtÞ; bðtÞ; cðtÞÞ A C3:

By definition, any trivial p-coloring g satisfies xðD; gÞ ¼ 0.

Let q 0
3 : C

0
3 ! C 0

2 be the boundary map defined by

q 0
3ða; b; cÞ ¼ ða; cÞ � ða; bÞ � ð2b� a; cÞ þ ð2c� a; 2c� bÞ:

Since q 0
3ðC 00

3 ÞHC 00
2 , q

0
3 induces the map q3 : C3 ! C2 naturally. It is proved in

[2] that any 3-chain xðD; gÞ is a 3-cycle; that is, q3ðxðD; gÞÞ ¼ 0.

Let y : C3 ! Z=pZ be the homomorphism defined by

yða; b; cÞ ¼ ða� bÞ b
p þ ð2c� bÞp � 2cp

p
A Z=pZ

for each generator ða; b; cÞ of C3 (cf. [1, 8]). The quandle cocycle invariant

FpðFÞ [2] is the multi-set defined by

FpðFÞ ¼ fyðxðD; gÞÞ A Z=pZ j g : a p-coloring for Dg:

For a p-coloring g for D and elements k; l A Z=pZ, we define the

p-coloring kgþ l to be the composition of g and the a‰ne map

f : Z=pZ ! Z=pZ with f ðxÞ ¼ kxþ l.

Lemma 1 ([12]). yðxðD; kgþ lÞÞ ¼ k2yðxðD; gÞÞ.

Let jpðFÞ denote the number of 0’s in the multi-set FpðFÞ. A p-coloring

g is trivial if it is a constant map. Since there are p trivial p-colorings for D

and each trivial p-coloring contributes 0 A FpðFÞ, we have jpðF Þb p.

Lemma 2 ([13]). Let F be a p-colorable 2-knot. If jpðFÞ ¼ p, then any

non-trivially p-colored diagram ðD; gÞ of F has a non-degenerate triple point.

Fig. 1
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Assume that pb 7. Let t be a non-degenerate triple point of ðD; gÞ. We

say that t is of type A or type B with respect to g, respectively, according

to whether the coloring g around t is as in left or right of Figure 2, where

a; k A Z=pZ with k0 0. Otherwise, t is of type C.

Lemma 3. Let g be a non-trivial p-coloring for D with pb 7, and t a non-

degenerate triple point of ðD; gÞ.
( i ) If t is of type A or B, then five colors in Z=pZ appear on the sheets

around t. If t is of type C, then the seven colors appear around t.

(ii) NðD; gÞb 5.

Proof. (i) Let ðaþ ik; aþ k; aÞ be the color of t for some a; i; k A Z=pZ.

Since t is non-degenerate, we have i0 1 and k0 0. Then the colors of the

sheets are

a ðtopÞ; aG k ðmiddleÞ; and aG ik; aG ð2� iÞk ðbottomÞ:

By definition, t is of type A if i ¼ 0; 2 and of type B if i ¼ �1; 3. In both

cases, the number of the distinct colors are five. Otherwise, the above seven

colors are mutually distinct, and we have the conclusion.

(ii) This follows from (i) immediately.

Lemma 4. Let S and S 0 be subsets of Z=pZ.

( i ) If aS ¼aS 0 ¼ 2, then there is an a‰ne map f : Z=pZ ! Z=pZ such

that f ðSÞ ¼ S 0.

(ii) If aS ¼aS 0 ¼ n� 2, then there is an a‰ne map f : Z=pZ ! Z=pZ

such that f ðSÞ ¼ S 0.

Proof. (i) For S ¼ fa; bg and S 0 ¼ fc; dg, the a‰ne map

f ðxÞ ¼ ðc� dÞxþ ðad � bcÞ
ða� bÞ

satisfies f ðaÞ ¼ c and f ðbÞ ¼ d.

(ii) It is su‰cient to apply (i) to the sets ðZ=pZÞnS and ðZ=pZÞnS 0.

Fig. 2
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Now we consider the case p ¼ 7.

Lemma 5. Let ðD; gÞ be a 7-colored diagram with ImðgÞ ¼ f0; 1; 2; 5; 6g.
Then the color of a non-degenerate triple point with respect to g is equal to one of

the following triples;

ð0; 1; 0Þ; ð2; 1; 0Þ; ð0; 6; 0Þ; ð5; 6; 0Þ;

ð5; 2; 0Þ; ð6; 2; 0Þ; ð2; 5; 0Þ; ð1; 5; 0Þ:

Proof. By Lemma 3(i), t is of type A or B. If t is of type A, we

have

fa; aG k; aG 2kg ¼ f0; 1; 2; 5; 6g:

This implies that a ¼ 0 and k ¼ 1; 6; in fact, by taking the sum of the elements

in each set, we have 5a ¼ 0 and fGk; G 2kg ¼ fG1; G 2g. Similarly, if t is of

type B, we have

fa; aG k; aG 3kg ¼ f0; 1; 2; 5; 6g:

This implies that a ¼ 0 and k ¼ 2; 5. Therefore, the sheets around t are

colored as shown in Figure 3. In each type, we have four kinds of colors of t

according to the orientations of the top and middle sheets.

Proposition 1. Let ðD; gÞ be a 7-colored diagram. If NðD; gÞ ¼ 5, then

we have yðxðD; gÞÞ ¼ 0.

Proof. By Lemmas 1, 4(ii), and 5, we may assume that ImðgÞ ¼ f0; 1;
2; 5; 6g and

xðD; gÞ ¼ a1ð0; 1; 0Þ þ a2ð2; 1; 0Þ þ a3ð0; 6; 0Þ þ a4ð5; 6; 0Þ

þ b1ð5; 2; 0Þ þ b2ð6; 2; 0Þ þ b3ð2; 5; 0Þ þ b4ð1; 5; 0Þ

for some integers ai and bi (i ¼ 1; 2; 3; 4). It follows by the definition of q3
that

Fig. 3
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q3ðxðD; gÞÞ ¼ ð�a1 þ a3Þð0; 1Þ þ ða1 � a3Þð0; 6Þ

þ ð�b3 þ b4Þð1; 0Þ þ ðb2 � b4Þð1; 5Þ

þ ð�a1 þ a2 þ b3 � b4Þð2; 0Þ þ ð�a2 þ a4Þð2; 1Þ þ ðb1 � b3Þð2; 5Þ

þ ð�a3 þ a4 þ b1 � b2Þð5; 0Þ þ ð�b1 þ b3Þð5; 2Þ þ ða2 � a4Þð5; 6Þ

þ ð�b1 þ b2Þð6; 0Þ þ ð�b2 þ b4Þð6; 2Þ:

Since q3ðxðD; gÞÞ ¼ 0, we have

a1 ¼ a2 ¼ a3 ¼ a4 and b1 ¼ b2 ¼ b3 ¼ b4:

Therefore, it holds that

yðxðD; gÞÞ ¼ a1fyð0; 1; 0Þ þ yð2; 1; 0Þ þ yð0; 6; 0Þ þ yð5; 6; 0Þg

þ b1fyð5; 2; 0Þ þ yð6; 2; 0Þ þ yð2; 5; 0Þ þ yð1; 5; 0Þg

¼ a1ð6þ 1þ 1þ 6Þ 1
7 þ 67 � 2 � 07

7

þ b1ð3þ 4þ 4þ 3Þ 2
7 þ 57 � 2 � 07

7
¼ 0:

Theorem 2. Let F be a 7-colorable 2-knot. If j7ðF Þ ¼ 7, then C7ðFÞb 6.

Proof. Assume that C7ðF Þa 5. Let ðD; gÞ be a non-trivially 7-colored

diagram with NðD; gÞ ¼ C7ðF Þ. Since j7ðF Þ ¼ 7, we have NðD; gÞ ¼ 5 by

Lemmas 2 and 3(ii). It follows by Proposition 1 that yðxðD; gÞÞ ¼ 0. This

implies that j7ðFÞ > 7 and we have a contradiction.

3. Twist-spun 52-knots

Let T be a tangle diagram of a knot K . We consider a sequence of tangle

diagrams as shown in Figure 4. We perform a Reidemeister move I to

Fig. 4
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produce a crossing below T , slide T over the crossing (the process A) and then

under the crossing (the process B), and perform a Reidemeister move I to

eliminate the crossing above T . This sequence presents a full twist of the

tangle in the meridional direction.

For an integer n > 0, we construct a 2-knot diagram Dn by piling up the

above sequence n times. Namely, we take a 2-sphere in R3 with n pairs of

branch points connected by n double-point arcs. See the left of Figure 5. Let

C be a closed curve which travels around the sphere intersecting each double-

point arc twice. Then we replace a neighborhood of C by the product T � S1

to obtain Dn.

At the intersections between C and each double-point arc, crossing

information is given in such a way that T goes over the transverse sheet

(process A) and under the the transverse sheet (process B) as shown in the right

of Figure 5. Then it is proved in [11] that Dn represents the n-twist-spinning,

tnK, of K [14].

Lemma 6 ([1]). The n-twist-spun knot tnK is p-colorable if and only if K is

p-colorable and n is even. Moreover, any p-coloring for T can be extended to

that for Dn uniquely.

Let K be the 52-knot. We consider a 7-coloring g for D2 of the 2-twist-

spun 52-knot as shown in Figure 6. We first color the tangle diagram T at the

upper left of the figure. The coloring for T does not change after passing over

the transverse sheets in the process A. Since the end-arcs of T admit the color

0, so do the outermost transverse sheets. The coloring for the other sheets

comes from the shadow coloring for the complementary regions of T .

The process B in the first twist changes the coloring for T in such a way

that x 7! 2 � 0� x ¼ �x (mod 7). In fact, T passes under the transverse sheet

with color 0. See the lower left of the figure.

We proceed the same argument on the coloring for T under the second

twist. The coloring for T after two twists is coincident with the original one as

shown in the lower right of the figure.

Fig. 5

697-colored 2-knot diagram with six colors



Remark 1. The diagram D2 has twenty sheets, and the numbers of the

sheets colored by 0; 1; . . . ; 6 are given by the following table.

color 0 1 2 3 4 5 6 total

number of sheets 2 3 5 1 1 5 3 20

Therefore, we have NðD2; gÞ ¼ 7.

Theorem 3. Let K be the 52-knot. Then t2nK ðn > 0Þ has a 7-colored

diagram ðD; gÞ with NðD; gÞ ¼ 6; that is, C7ðt2nKÞa 6.

Proof. We consider the case n ¼ 1. The other cases are similarly

proved.

Fig. 6
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Let ðD2; gÞ be the 7-colored diagram as above. There is a unique sheet S

with color 3. The neighborhood of S is illustrated in the upper left of Figure

7. Let S 0 be the sheet with 0 next to S as shown in the figure.

We deform the diagram D2 as follows: We wrap S with S 0 by swelling S 0

like a balloon such that S 0 is higher than any other sheets in 4-space. See the

bottom of the figure. This modification is similar to the ones used in [10, 13].

Then the colors of the sheets inside the balloon are obtained from those

of the original sheets by mapping x 7! �x. See the upper right of Figure 7.

Since there is no sheet with color 3 in the obtained diagram, we have the

conclusion.

4. Quandle cocycle invariants of twist-spun 52-knot

Let K be an oriented p-colorable knot, and t2nK the 2n-twist-spinning of

K . It is known that the quandle cocycle invariant Fpðt2nKÞ is calculated from

a diagram of K instead of that of t2nK as follows (cf. [1, 12]).

We take a diagram D of K and fix a base point on it di¤erent from the

crossings. Let D denote the plane curve obtained from D by ignoring crossing

information of D. Each p-coloring g : fthe arcs of Dg ! Z=pZ for D defines

a shadow p-coloring

g 0 : fthe connected regions of R2nDg ! Z=pZ

Fig. 7
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uniquely such that (i) s1 þ s2 1 2x ðmod pÞ holds along any arc of D, where x

is the color of the arc, and s1 and s2 are the shadow colors of the regions

adjacent to the arc, and that (ii) the shadow colors of the regions adjacent to

the base point are the same as the color of the arc containing the base point.

We denote by eðpÞ the sign of a crossing p of D. In a neighborhood of p,

there are four regions of R2nD. The specified region at p is the one of them

which is on the right sides of the upper and lower arcs.

The color of p with respect to g is an ordered triple

ðsðpÞ; aðpÞ; bðpÞÞ A ðZ=pZÞ3

such that sðpÞ is the shadow color of the specified region, and aðpÞ and bðpÞ
are the colors of the lower and upper arcs adjacent to the specified region. See

the left of Figure 8, where the specified region is marked with a small circle and

the shadow color is surrounded by a square.

The 3-chain hðD; gÞ associated with ðD; gÞ is defined by

hðD; gÞ ¼
X
p

eðpÞðsðpÞ; aðpÞ; bðpÞÞ A C3:

Then we have the following.

Theorem 4 ([1, 12]). For any p-colorable knot K, it holds that

Fpðt2nKÞ ¼ f2nyðhðD; gÞÞ A Z=pZ j g : a p-coloring for Dg:

In particular, if the number of p-colorings for K is exactly p2, then it holds that

Fpðt2nKÞ ¼ f2nyðhðD; gÞÞk2 ðp timesÞ j k A Z=pZg

for any non-trivial p-coloring g.

Theorem 5. Let K be the 52-knot. If n2 0 (mod 7), then C7ðt2nKÞ ¼ 6.

Proof. We have C7ðt2nKÞa 6 by Theorem 3. To prove C7ðt2nKÞb 6,

we calculate the quandle cocycle invariant F7ðt2nKÞ by using Theorem 4. We

remark that the number of 7-colorings for K is equal to 72.

Fig. 8
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We consider the 7-coloring g for the diagram D of K as shown in the right

of Figure 8. Since the 3-chain associated with ðD; gÞ is given by

hðD; gÞ ¼ þð2; 1; 5Þ þ ð2; 5; 2Þ þ ð2; 2; 1Þ þ ð5; 0; 6Þ þ ð5; 6; 0Þ;

we have

yðhðD; gÞÞ ¼ 1þ 27 � 2 � 57
7

� 3
57 þ 67 � 2 � 27

7
þ 5

57 � 2 � 67
7

� 67 þ 1

7

¼ 7 � 27 � 14 � 67
7

¼ 27 � 2 � 67 1 128� 2 � ð�1Þ1 4 ðmod 7Þ:

Therefore, it follows by Theorem 4 that

F7ðt2nKÞ ¼ f0; . . . ; 0|fflfflfflffl{zfflfflfflffl}
7

; n; . . . ; n|fflfflfflffl{zfflfflfflffl}
14

; 2n; . . . ; 2n|fflfflfflfflfflffl{zfflfflfflfflfflffl}
14

; 4n; . . . ; 4n|fflfflfflfflfflffl{zfflfflfflfflfflffl}
14

g:

Since j7ðt2nKÞ ¼ 7 for n2 0 (mod 7), we have C7ðt2nKÞb 6 by Theorem 2.
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