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ABSTRACT. In Part I of this series of papers, we made Riley’s definition of Heckoid
groups for 2-bridge links explicit, and gave a systematic construction of epimorphisms
from 2-bridge link groups onto Heckoid groups, generalizing Riley’s construction. In
this paper, we give a complete characterization of upper-meridian-pair-preserving
epimorphisms from 2-bridge link groups onto even Heckoid groups, by proving that
they are exactly the epimorphisms obtained by the systematic construction.

1. Introduction

Let K(r) be the 2-bridge link of slope r € Q and let n be an integer or a
half-integer greater than 1. In [8], following Riley’s work [12], we introduced
the Heckoid group G(r;n) of index n for K(r) as the orbifold fundamental group
of the Heckoid orbifold S(r;n) of index n for K(r). According to whether n
is an integer or a non-integral half-integer, the Heckoid group G(r;n) and
the Heckoid orbifold S(r;n) are said to be even or odd. The even Heckoid
orbifold S(r;n) is the 3-orbifold such that

(i) the underlying space |S(r;n)| is the exterior, E(K(r)) =S>—

int N(K(r)), of K(r), and

(ii) the singular set is the lower tunnel of K(r), where the index of the

singularity is n.
For a description of odd Heckoid orbifolds, see [8, Proposition 5.3].

In [8, Theorem 2.3], we gave a systematic construction of upper-meridian-
pair-preserving epimorphisms from 2-bridge link groups onto Heckoid groups,
generalizing Riley’s construction in [12].
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The main purpose of this paper is to describe all upper-meridian-pair-
preserving epimorphisms from 2-bridge link groups onto even Heckoid groups
(Theorem 2.4). The theorem says that all such epimorphisms are contained
in those constructed in [8, Theorem 2.3]. To prove this result, we determine
those essential simple loops on a 2-bridge sphere in an even Heckoid orbifold
S(r;n) which are null-homotopic in S(r;n) (Theorem 2.3). These results form
an analogy of [3, Main Theorem 2.4], which describes all upper-meridian-pair-
preserving epimorphisms between 2-bridge link groups, and that of [3, Main
Theorem 2.3], which gives a complete characterization of those essential simple
loops on a 2-bridge sphere in a 2-bridge link complement which are null-
homotopic in the link complement. As in [3], the key tool is small cancellation
theory, applied to two-generator and one-relator presentations of even Heckoid
groups.

This paper is organized as follows. In Section 2, we describe the main
results. In Section 3, we introduce a two-generator and one-relator presen-
tation of an even Heckoid group, and review basic facts concerning its single
relator established in [3]. In Section 4, we apply small cancellation theory to
the two-generator and one-relator presentations of even Heckoid groups. In
Section 5, we prove Theorem 2.3.

2. Main results

We quickly recall notation and basic facts introduced in [8]. The Conway
sphere S is the 4-times punctured sphere which is obtained as the quotient of
R? — Z? by the group generated by the z-rotations around the points in Z2.
For each se€Q := QU {0}, let oy be the simple loop in § obtained as the
projection of a line in R?> — Z? of slope s. We call s the slope of the simple
loop a.

For each r e Q, the 2-bridge link K (r) of slope r is the sum of the rational
tangle (B3,t(c0)) of slope co and the rational tangle (B3, t(r)) of slope r.
Recall that d(B* — #(c0)) and d(B> — t(r)) are identified with S so that «., and
%, bound disks in B® —#(c0) and B? — #(r), respectively. By van-Kampen’s
theorem, the link group G(K(r)) = m1(S® — K(r)) is obtained as follows:

G(K(r)) =m(S* — K(r)) = mi(8) /Kot 03y = 11 (B — 1(00)) /Lot

We call the image in the link group of the “meridian pair” of 7 (B> — t(0))
the upper meridian pair.

If r is a rational number and n > 2 is an integer, then by the description of
the even Heckoid orbifold S(r;n) in the introduction, the even Hekoid group
G(r;n) = 1 (S(r;n)) is identified with

G(r;n) = m(S)/ Koo, 0" = 711 (B> — t(0)) /Lo
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In particular, the even Heckoid group G(r;n) is a two-generator and one-relator
group. We call the image in G(r;n) of the meridian pair of 7;(B*> — #(0)) the
upper meridian pair.

This paper and its sequel [9] are concerned with the following natural
question, which is an analogy of [2, Question 1.1] that is completely solved in
the series of papers [3, 4, 5, 6] and applied in [7].

QUuESTION 2.1.  For r a rational number and » an integer or a half-integer
greater than 1, consider the Heckoid group G(r;n) of index n for the 2-bridge
link K(r).

(1) Which essential simple loop o, on S determines the trivial element of

G(r;n)?
(2) For two distinct essential simple loops o, and oy on S, when do they
determine the same conjugacy class in G(r;n)?

In [8, Theorem 2.4], we gave a certain sufficient condition for each of the
questions. In this paper, we prove that, for even Heckoid groups, the sufficient
condition for (1) is actually a necessary and sufficient condition. This enables
us to describe all upper-meridian-pair-preserving epimorphisms from 2-bridge
link groups onto even Heckoid groups.

Let & be the Farey tessellation of the upper half plane H>. Then Qis
identified with the set of the ideal vertices of 2. Let I, be the group of
automorphisms of & generated by reflections in the edges of & with an end-
point co. For r a rational number and » an integer or a half-integer greater
than 1, let C.(2n) be the group of automorphisms of % generated by the
parabolic transformation, centered on the vertex r, by 2z units in the clockwise
direction, and let I'(r;n) be the group generated by I, and C,(2n). Suppose
that r is not an integer, i.e., K(r) is not a trivial knot. Then I'(r;n) is the free
product I, x C,(2n) having a fundamental domain, R, shown in Figure .
Here, R is obtained as the intersection of fundamental domains for 7, and
C,(2n), and so R is bounded by the following two pairs of Farey edges:

(1) the pair of adjacent Farey edges with an endpoint oo which cuts off a

region in H? containing r, and

(2) a pair of Farey edges with an endpoint » which cuts off a region in

H? containing oo such that one edge is the image of the other by a
generator of C,(2n).

Let I(r;n) be the union of two closed intervals in {¢H?> = R obtained as the
intersection of the closure of R and dH?. (In the special case when r = +1/p
(mod Z) for some integer p > 1, one of the intervals may be degenerated to a
single point.) Note that there is a pair {ry,72} of boundary points of I(r;n)
such that r, is the image of r; by a generator of C.(2n). Set I(r;n):=

I(r;n) — {r;} with i =1 or 2. Note that I(r;n) is the disjoint union of a closed
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0 5/17=13,2,2]
2/7
0
1/4
Fig. 1. A fundamental domain of I'(r;n) in the Farey tessellation (the shaded domain) for
r=13/10 :;1 =:[3,3] and n=2. In this case, I(r;n)=[0,5/17]U[7/23,1].
3+3
3

interval and a half-open interval, except for the special case when r = +1/p
(mod Z).
Then we obtain the following refinement of [8, Theorem 2.4].

THEOREM 2.2. Suppose that r is a non-integral rational number and that
n is an integer or a half-integer greater than 1. Then, for any se Q, there is
a unique rational number sy € I(r;n)U{oo,r} such that s is contained in the
I'(r;n)-orbit of so. Moreover the conjugacy classes o5 and oy in G(r;n) are
equal. In particular, if sy = oo, then oy is the trivial conjugacy class in
G(r;n).

In fact, the first assertion is proved as in [3, Lemma 7.1] by using the
fact that R is a fundamental domain for the action of I'(r;n) on H>. The
remaining assertions are nothing other than [8, Theorem 2.4].

The following main theorem shows that the converse to the last statement
in Theorem 2.2 holds for even Heckoid groups.

THEOREM 2.3. Suppose that r is a non-integral rational number and that
n is an integer greater than 1. Then oy represents the trivial element of G(r;n)
if and only if s belongs to the I'(r;n)-orbit of co. In other words, if se€
I(r;n)U{r}, then oy does not represent the trivial element of G(r;n).

Arguing as in [8, Proof of Theorem 2.3], we see that the above theorem
implies the following theorem, which says that the converse to [8, Theorem 2.3]
holds for even Heckoid groups.

THEOREM 2.4. Suppose that r is a non-integral rational number and that n
is an integer greater than 1. Then there is an upper-meridian-pair-preserving
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epimorphism from G(K(s)) to G(r;n) if and only if s or s+ 1 belongs to the
I'(r;n)-orbit of .

REMARK 2.5. (1) When r is an integer, the Heckoid group G(r;n) =
G(0;n) is isomorphic to the subgroup (P, SPS~'> of the classical Hecke group
{P,S) introduced in [1], where

12005% B 0 1
P‘(o 1 > S_<—1 0)‘

Moreover, the group I'(0;n) is the free product of three cyclic groups of order
2 generated by the reflections in the Farey edges <{c0,0) and {o0,1) and the
geodesic m (The last geodesic is a Farey edge if » is an integer, whereas it
bisects a pair of adjacent Farey triangles if n is a non-integral half-integer.)
The region of H? bounded by these three geodesics is a fundamental domain
for the action of I'(0;n) on H?. It is easy to see that Theorem 2.2 continues
to be valid when r is an integer, provided that we set 1(0;n) := [1/n,n]. Tt is
plausible that Theorems 2.3 and 2.4 are also valid even when r is an integer.
However, we cannot directly apply the arguments of this paper, and this case
will be treated elsewhere.

(2) It is natural to expect that Theorems 2.3 and 2.4 also hold for odd
Heckoid groups. However, we do not know how to treat these groups at this
moment, because they are not one-relator groups by [8, Proposition 6.7].

3. Presentations of even Heckoid groups and review of basic facts from [3]

In the remainder of this paper, we restrict our attention to the even
Heckoid groups G(r;n). Thus n denotes an integer with n > 2. In order to
describe the two-generator and one-relator presentations of even Heckoid
groups to which we apply small cancellation theory, recall that

G(r;n) = m(S)/ LKoo, 2" = 71 (B> — t(0)) /Lo

Let {a,b} be the standard meridian generator pair of 7j(B® — #(o0),x0) as
described in [3, Section 3] (see also [2, Section 5]). Then z;(B> — #(0)) is
identified with the free group F(a,b). For the rational number r = ¢/p, where
p and ¢ are relatively prime positive integers, let u, be the word in {a,b}
obtained as follows. (For a geometric description, see [2, Section 5].) Set
& = (=1)/")where |x| is the greatest integer not exceeding x.

(1) If p is odd, then

L (DA
Ug/p = dilg)pb = Ugp>

where #,,, = b%a® .. .b%2a%.



270 Donghi LEe and Makoto SAKUMA
(2) If p is even, then

P P
Ug/p = AUg/p@ Uy,

where i, = b%a® ... a%2b%.
Then u, € F(a,b) = n;(B* — t(c0)) is represented by the simple loop o,, and
we obtain the following two-generator and one-relator presentation of the
even Heckoid group G(r;n), which is used throughout the remainder of this

paper:
G(r;n) = m (B> — t(0)) /LKo" = {a,b|u".

We recall the definition of the sequences S(r) and 7T'(r) and the cyclic
sequences CS(r) and CT(r) of slope r defined in [3], all of which are read from
the word u, defined above, and review several important properties of these
sequences from [3] so that we can adopt small cancellation theory in the
succeeding section. To this end, we fix some definitions and notation. Let X
be a set. By a word in X, we mean a finite sequence xj'x5*...x;" where x; € X
and ¢ = +1. Here we call x;" the i-th letter of the word. For two words u, v
in X, by u=v we denote the visual equality of u and v, meaning that if
u=x".. . x"and v=y"" ...y (x;,y; € X; &,0; = +1), then t = m and x; = y;
and ¢; =0; for each i =1,...,t. For example, two words x1x2x51x3 and x|x3
(x; € X) are not visually equal, though xijx>x5 'x3 and xjx3 are equal as ele-
ments of the free group with basis X. The length of a word v is denoted by
lv|. A word v in X is said to be reduced if v does not contain xx~!
any x € X. A word is said to be cyclically reduced if all its cyclic permutations
are reduced. A cyclic word is defined to be the set of all cyclic permutations
of a cyclically reduced word. By (v) we denote the cyclic word associated with
a cyclically reduced word v. Also by (1) = (v) we mean the visual equality of
two cyclic words (u) and (v). In fact, (1) = (v) if and only if v is visually a
cyclic shift of wu.

or x!x for

DeriniTioN 3.1, (1) Let v be a reduced word in {a,b}. Decompose v
into

UV=0102...0;,

where, for each i =1,...,¢r— 1, all letters in v; have positive (resp., negative)
exponents, and all letters in v;;; have negative (resp., positive) exponents.
Then the sequence of positive integers S(v) := (|v1], |v2], ..., |vs]) is called the

S-sequence of v.
(2) Let (v) be a cyclic word in {a,b}. Decompose (v) into

(v) = (nvy...v),
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where all letters in v; have positive (resp., negative) exponents, and all letters
in v;;1 have negative (resp., positive) exponents (taking subindices modulo f).
Then the cyclic sequence of positive integers CS(v) := (|v1], |val, ..., |v]) 1s
called the cyclic S-sequence of (v). Here the double parentheses denote that
the sequence is considered modulo cyclic permutations.

(3) A reduced word v in {a,b} is said to be alternating if a*' and b*!
appear in v alternately, i.e., neither a*? nor h*? appears in v. A cyclic word
(v) is said to be alternating if all cyclic permutations of v are alternating. In

the latter case, we also say that v is cyclically alternating.

DerFINITION 3.2. For a rational number r with 0 < r <1, let u, be the
word defined in the beginning of this section. Then the symbol S(r) (resp.,
CS(r)) denotes the S-sequence S(u,) of u, (resp., cyclic S-sequence CS(u,) of
(ur)), which is called the S-sequence of slope r (resp., the cyclic S-sequence of
slope r).

In the remainder of this section, we suppose that r is a rational number
with 0 <r <1, and write r as a continued fraction expansion:

1
r=[my,my,...,my:= T ,
my +
my + -, L
s
where k > 1, (my,...,my) € (Z+)k and my; > 2 unless k = 1. For brevity, we

write m for m;.

LemMA 3.3 ([3, Proposition 4.3]). The following hold.
(1) Suppose k=1, ie., r=1/m. Then S(r) = (m,m).
(2) Suppose k = 2. Then each term of S(r) is either m or m + 1, and S(r)
begins with m+ 1 and ends with m.  Moreover, the following hold.
(@) If my =1, then no two consecutive terms of S(r) can be (m,m),
so there is a sequence of positive integers (t,tz,...,t;) such
that

S(r) = (tiim+ 1), m 6<4m+ 1y, m, ... t<m+ 1) m).

Here, the symbol “t;(m+ 1)"" represents t; successive m+ 1’s.

(b) If my =2, then no two consecutive terms of S(r) can be (m+ 1,
m+ 1), so there is a sequence of positive integers (t1,tz,..., 1)
such that

S(r)=(m+ 1, 65<my,m~+ 1, 6{my, ..., m+ 1, t{m)).

Here, the symbol “t;{m)”" represents t; successive m’s.
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DErFINITION 3.4, If k > 2, the symbol T(r) denotes the sequence (¢, 2, . . .,
t;) in Lemma 3.3, which is called the T-sequence of slope r. The symbol
CT(r) denotes the cyclic sequence represented by 7'(r), which is called the
cyclic T-sequence of slope r.

Lemma 3.5 ([3, Proposition 4.4 and Corollary 4.6]). Let 7 be the rational
number defined as

B {[m3,---7mk} if my=1,

- [le—l,l’ﬂ3,...,mk] lfI’I/IzZZ.
Then we have CS(¥) = CT(r).

Lemma 3.6 ([3, Proposition 4.5]). The sequence S(r) has a decomposition
(S1, 82, S1,82) which satisfies the following.
(1) Each S; is symmetric, ie., the sequence obtained from S; by reversing
the order is equal to S;. (Here, S\ is empty if k=1.)
(2) Each S; occurs only twice in the cyclic sequence CS(r).
(3) The subsequence S| begins and ends with m+ 1.
(4) The subsequence S, begins and ends with m.

Lemma 3.7 ([3, Proof of Proposition 4.5]). Let ¥ be the rational number
defined as in Lemma 3.5. Also let S(7F) = (T1,T»,T1,T>) and S(r) = (S1, Sz,
S1,82) be decompositions described as in Lemma 3.6.  Then the following hold.

(1) Ifmy=1andk =3, then T\ = &, Tr = (m3), and S| = (m3<m + 1)),

Sz = (m)
(2) Ifmy=1and k>4, then T\ = (t1,...,t5), To = (ts41,---,1s), and

St= (1 <m+ Uy, m, tx{m + 1,y m+ Uy, 1y am + 1),
Sy = (m,ty 1 {m+ 1y, m, ... omt,{m~+ 1), m).
(3) Ifmy=2and k=2, then Ty =, Th = (my— 1), and S} = (m+ 1),
Sy = ((my — 1)<my).
@4) If my=2and k=3, then T\ = (t1,...,t), To = (t4+1,---,1,), and
Sl = (I’}’l + 1; ts1+l<m>7m + 13 ce,mA 1; t.v2<m>am + 1)3
SZ - (tl<m>am + 17 t2<m>a ceey t‘\'171<m>7m + 17 [51 <m>)
By Lemmas 3.3 and 3.7, we easily obtain the following corollary.

CoROLLARY 3.8. Let S(r) = (S1,S2,51,52) be as in Lemma 3.6.  Then the
following hold.

() If my=1, then iIm+ 1,m+ 1) appears in S.

(2) If my>=2 and if r #[m,2] =2/(2m+ 1), then (m,m) appears in S,.
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4. Small cancellation theory

Let F(X) be the free group with basis X. A subset R of F(X) is said to
be symmetrized, if all elements of R are cyclically reduced and, for each w € R,
all cyclic permutations of w and w~! also belong to R.

DEerFINITION 4.1.  Suppose that R is a symmetrized subset of F(X). A
nonempty word b is called a piece if there exist distinct wi,w; € R such that
wy = bc; and wy = bc,. The small cancellation conditions C(p) and T(gq),
where p and ¢ are integers such that p > 2 and ¢ > 3, are defined as follows

(see [10]).
(1) Condition C(p): If we R is a product of ¢ pieces, then 7> p.
(2) Condition T(q): For wy,...,w, € R with no successive elements w;,
wiy1 an inverse pair (i mod ¢), if ¢ < ¢, then at least one of the
products wiwy, ..., w, 1w, wwy is freely reduced without cancellation.

We recall the following lemma from [3], which concerns the word u,
defined in the beginning of Section 3.

LemmA 4.2 ([3, Lemma 5.3]). Suppose that r is a rational number with
0 <r< 1, and write r = [my,ma, ..., mi), where k > 1, (my,...,my) € (Z+)k and
mg > 2. Let S(r) = (S51,82,51,52) be as in Lemma 3.6. Decompose

Uy = V1020304,

where S(v1) = S(v3) = S1 and S(v2) = S(v4) = So.  Then the following hold.
(1) If k=1, then the following hold.
(@) No piece can contain vy or vs.
(b) No piece is of the form vyva or vav2p, Where vy and v;, are
nonempty initial and terminal subwords of v;, respectively.
(c) Every subword of the form vy, V2., Vap, OF V4. is a piece, where
vip and v;, are nonempty initial and terminal subwords of v; with
[vis], [vie| < |vi| — 1, respectively.
(2) If k=2, then the following hold.
(@) No piece can contain vy or vs.
(b) No piece is of the form vi,0av3, OF V3.V401p, Where vy and v, are
nonempty initial and terminal subwords of v;, respectively.
(c) Every subword of the form vi,vs, V203, U3eVs, OF U4V1p IS @ piece,
where vy, and v are nonempty initial and terminal subwords of v;
with |vpl, [vie| < |vil — 1, respectively.

By using the above lemma, we establish the following key lemma con-
cerning the cyclic word (u)"), where u is the single relator of the presentation
G(r;n) = {a,b|ul).
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LemMmA 4.3.  Suppose that r is a rational number with 0 < r < 1, and write
r=[my,my,...,my|, where k>1, (my,...,my) € (Z+)k and my > 2. Decom-
pose u, = vivav3vs as in Lemma 4.2. Then for the relator u' = (vivy0304)",
where n > 2 is an integer, the following hold.

(1) The cyclic word (u') is not a product of t pieces with t < 4n — 1.

(2) Let w be a subword of the cyclic word (ul') which is a product

of 4n — 1 pieces but is not a product of t pieces with t < 4n — 1.
Then w contains a subword, w', such that S(w') = ((2n — 1)<S1,8:),7)
or SwW)=(4,2n—1){S2,81)), where S(r)=(S1,52,81,52) and
lely.

Proor. For simplicity, we prove the lemma when k > 2. The case where
k=1 is treated similarly.

(1) Let (u') = (wiwy...w;) be a decomposition of the cyclic word
(u') into t pieces. Such a decomposition is determined by a t-tuple of
“breaks” arranged in the cyclic word (u'), such that w; is the subword of
(u) surrounded by the (i — 1)-th break and the i-th break. (Here the indices
are considered modulo ¢.) Then Lemma 4.2(2-a) and (2-b) imply the fol-
lowing:

(a) Each subword of the form v; or v3 of (u)) contains a break in its

interior.

(b) Each subword of the form v, or vs of (u”) contains a break in its

interior or in its boundary.

Since each break is contained in either (a) the interior of a subword of the form
vy or v3 or (b) the interior or the boundary of a subword of the form v, or va,
the above observation implies that there is a well-defined surjection, #, from the
set of breaks onto the set of subwords of the form v, vy, v3 or vs. Since the
domain and the codomain of # have cardinalities # and 4n, respectively, we
have ¢ >4n. This completes the proof of assertion (1). Before proving (2),
we note that if ¢ is the smallest length of decompositions of (x") into pieces,
then Lemma 4.2(2-c) implies that # is injective.

(2) Let w=w;wy...wsy_ be a subword of the cyclic word (u), where
Wi,...,W4y—1 are pieces, such that w is not a product of ¢ pieces with
t<4n—1. As in the proof of (1), the decomposition w = wjw;...ws,_; is
determined by a (¢ + 1)-tuple of breaks in (), such that w; is the subword of
(u?') surrounded by the (i — 1)-th break and the i-th break. Lemma 4.2 implies
the following:

(a) Each subword of the form v; or v3 of (u) contains a unique break in

its interior.

(b) Each subword of the form v, or vs4 of (1)) contains a unique break in

its interior or in its boundary.
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Suppose first that the 0-th break is contained in the interior of a subword of
(u") of the form v;. Then we see from the above observations that w =
vle(vzvngl)”*lvzvgv%, where vy, is a nonempty proper terminal subword of v;
and vgp is a (possibly empty or nonproper) initial subword of v4. Let w’ be the
subword vie(vzvngl)"*lvzvg of w, where v{, is a nonempty positive or negative
terminal subword of vj,. Then we have S(w’) = (£,(2n — 1)<{S,, S1)), where
¢/ eZ,. Suppose next that the 0-th break is contained in the interior or the
boundary of a subword of (u”) of the form v;. Then we see from the above
observations WE1)2@(031741)11)2)"_1U3l)4l)1b, where vy, is a (possibly empty or
nonproper) terminal subword of v, and vy, is a nonempty proper initial sub-
word of v;. Let w’ be the subword (vgv4vlvz)”_lv3U4v{b of w, where v], is a
non-empty initial positive or negative subword of vj;,. Then we have S(w’) =
((2n — 1){S1,82>,/), where £/ € Z,. The case where the 0-th break is con-
tained in the interior of a subword of (#') of the form v3 and the case where
0-th break is contained in the interior or the boundary of a subword of (1)) of

the form v4 are treated similarly. O

The following proposition enables us to apply small cancellation theory to
our problem.

PrOPOSITION 4.4.  Suppose that r is a rational number with 0 <r < 1 and
that n is an integer with n>2. Let R be the symmetrized subset of F(a,b)
generated by the single relator u!' of the presentation G(r;n) = {a,b|u’'). Then
R satisfies C(4n) and T(4).

ProOF. The assertion that R satisfies C(4n) is nothing other than Lemma
4.3(1). The assertion that R satisfies 7'(4) is proved exactly as in [3, Proof of
Theorem 5.1]. ]

Now we want to investigate the geometric consequences of Proposition
4.4. Let us begin with necessary definitions and notation following [10]. A
map M is a finite 2-dimensional cell complex embedded in R?, namely a finite
collection of vertices (0-cells), edges (1-cells), and faces (2-cells) in R>. The
boundary (frontier), 0M, of M in R? is regarded as a 1-dimensional sub-
complex of M. An edge may be traversed in either of two directions. If v is
a vertex of a map M, then dy(v), the degree of v, will denote the number of
oriented edges in M having v as initial vertex. A vertex v of M is called an
interior vertex if v¢ OM, and an edge e of M is called an interior edge if
e oM.

A path in M is a sequence of oriented edges e, ...,e, such that the initial
vertex of e;;; is the terminal vertex of ¢; for every 1 <i<t—1. A cycle is
a closed path, namely a path ej,..., e, such that the initial vertex of e; is the
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terminal vertex of e¢,. If D is a face of M, then any cycle of minimal length
which includes all the edges of the boundary, 0D, of D is called a boundary
cycle of D. By dy(D), the degree of D, we denote the number of oriented
edges in a boundary cycle of D.

DeriNiTION 4.5. A non-empty map M is called a [p,g|-map if the
following conditions hold.

(1) dp(v) = p for every interior vertex v in M.

(i) dy(D) = g for every face D in M.

If M is connected and simply connected, then a boundary cycle of M is
defined to be a cycle of minimal length which contains all the edges of dM
going around once along the boundary of R? — M.

DErFINITION 4.6. Let R be a symmetrized subset of F(X). An R-diagram
is a map M and a function ¢ assigning to each oriented edge e of M, as a
label, a reduced word ¢(e) in X such that the following hold.

(1) If e is an oriented edge of M and e~! is the oppositely oriented edge,
then ¢(e™!) = ple) .

(2) For any boundary cycle ¢ of any face of M, ¢(J) is a cyclically
reduced word representing an element of R. (If a=e¢j,...,¢ is a
path in M, we define ¢(a) = ¢(ey) ... P(er).)

In particular, if a group G is presented by G = (X|R) with R being sym-
metrized, then a connected and simply connected R-diagram is called a van
Kampen diagram over the group presentation G = (X|R).

Let D; and D, be faces (not necessarily distinct) of M with an edge e =
0D;NoD,. Let ed; and dre~' be boundary cycles of D; and D,, respectively.
Let ¢(d1) = fi and ¢(d;) = /. An R-diagram M is called reduced if one
never has f, = f;"!. It should be noted that if M is reduced then ¢(e) is a
piece for every interior edge ¢ of M. A boundary label of M is defined to be
a word ¢(o) in X for a a boundary cycle of M. It is easy to see that any two
boundary labels of M are cyclic permutations of each other.

We recall the following lemma which is a well-known classical result in
combinatorial group theory (see [10]).

Lemma 4.7 (van Kampen). Suppose G = (X|R) with R being symme-
trized. Let v be a cyclically reduced word in X. Then v=1in G if and only if
there exists a reduced van Kampen diagram M over G = {X|R) with a boundary
label v.

As explained in [3, Convention 1], we may assume the following con-
vention.
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CoNVENTION 4.8. Let R be the symmetrized subset of F(a,b) generated
by the single relator u” of the presentation G(r;n)=<a,b|u). For any
reduced R-diagram M, we assume that M satisfies the following.

(1) Every interior vertex of M has degree at least three.

(2) For every edge e of M, the label ¢(e) is a piece.

(3) For a path ej,...,e, in OM of length n>2 such that the vertex

eiNeip1 has degree 2 for i=1,2,...,1— 1, ¢(e1)¢(e2) ... d(e;) cannot
be expressed as a product of less than ¢ pieces.

The following corollary is immediate from Proposition 4.4 and Convention
4.8.

COROLLARY 4.9. Suppose that r is a rational number with 0 < r < 1 and
that n is an integer with n>2. Let R be the symmetrized subset of F(a,b)
generated by the single relator u!' of the presentation G(r;n) = <{a,b|ul'y. Then
every reduced R-diagram is a [4,4n]-map.

We recall the following lemma obtained from the arguments of [10,
Theorem V.3.1].

LemMA 4.10 (cf. [10, Theorem V.3.1]). Let M be an arbitrary connected
and simply-connected map. Then

4< ) B-duw)+ D (—du)+ Y (4—du(D)).

vedM ve M—0M DeM

In particular, if M is a [4,4n]-map, then

4< > (B—dulv)+ ) (4—4n).

vedM DeM

We now close this section with the following proposition which will play
an important role in the proof of Theorem 2.3.

PropoSITION 4.11.  Let M be an arbitrary connected and simply-connected
[4,4n)-map such that there is no vertex of degree 3 in M. Put

A = the number of vertices v in OM such that dy(v) =2,

B = the number of wvertices v in M such that dy(v) > 4.
Then the following inequality holds.

A > (4n—3)B+4n
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Proor. Put

V = the number of vertices of M,
E = the number of (unoriented) edges of M,

F = the number of faces of M.

Then, since every interior vertex in M has degree at least 4, we have
1
E> §{2A—|—4(V—A)} =2V —A.

This inequality together with Euler’s formula 1 =V — E+ F yields 1 <V —
(2V —A) + F, so that

F>V—-A+1>(A+B)—A+1=B+1. 1)

On the other hand, by Lemma 4.10, we have

4< > (B—dy)+ Y (4—4n) = > (3—du(v)) + (4—4n)F,

vedM DeM vedM

so that > _,,,(3—dy(v)) =4+ (4n—4)F. Here, since A—-B>
Y vean(3—du(v)) and since (4n —4)F > (4n —4)(B+ 1) by (}), we have

A—B>@4n—4)(B+1)+4=(4n—4)B+4n,
so that 4 > (4n —4)B+4n+ B = (4n — 3)B+ 4n, as required. O

COROLLARY 4.12.  Let r be a rational number with 0 <r <1 and let n be
an integer with n > 2.  Write r = [my,ma, ..., my|, where k > 1, (my,...,my) €
(Z.)* and my > 2, and let S(r) = (S1, 81, S1,S3) be as in Lemma 3.6.  Suppose
that v is a cyclically alternating word which represents the trivial element in
G(r;n) = <a,b|u'>. Then the cyclic word (v) contains a subword w of the
cyclic word (ux") which is a product of 4n — 1 pieces but is not a product of less
than 4n — 1 pieces. In particular, the cyclic S-sequence CS(v) of the cyclic word
(v) satisfies the following conditions.

(1) If k=1, then CS(v) contains ((2n —2){my)) as a subsequence.

(2) If k=2, then CS(v) contains ((2n — 1){S1,S2)) or ((2n — 1)<{S,,81))

as a subsequence.

Proor. By Lemma 4.7, there is a reduced connected and simply-
connected diagram M over G(r;n) = <a,b|u’) with (¢(0M)) = (v). By Cor-
ollary 49, M is a [4,4n]-map over G(r;n) = <a,b|u’'). Furthermore, since
(p(0M)) = (v) is cyclically alternating, there is no vertex of degree 3 in dM.
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Then by Proposition 4.11, we have 4 > (4n — 3)B + 4n, where 4 and B denote
the numbers of vertices v in dM such that dy(v) =2 and dy(v) >4,
respectively. This implies that there are at least 4n — 2 consecutive vertices
of degree 2 on dM. Hence, by Convention 4.8, the cyclic word (¢(0M)) = (v)
contains a subword w of the cyclic word (#*") which is a product of 4n — 1
pieces but is not a product of less than 4n — 1 pieces. By Lemma 4.3(2), we
may assume that S(w) = ((2n — 1){S},82),7) or S(w) = (£,(2n — 1){S2, S1)),
where /e Z,. It follows that if k=1, then CS(v) contains ((2n — 2){m))
as a subsequence, while if k >2, then CS(v) contains ((2n — 1)<S},S2)) or
((2n —1){S5,S1>) as a subsequence. O

REMARK 4.13. In [11, Theorem 3] (cf. [10, Theorem IV.5.5]), Newman
gives a powerful theorem for the word problem for one relator groups with
torsion, which implies that if a cyclically reduced word v represents the trivial
element in G(r;n) = <{a,b|u), then the cyclic word (v) contains a subword of
the cyclic word (uf") of length greater than (n—1)/n=1—1/n times the
length of u!. Though the above Corollary 4.12 is applicable only when v is
cyclically alternating, it imposes a stronger restriction on (v). In fact, since
every piece has length less than a half of the length of u, (see Lemma 4.2),
Corollary 4.12 implies that such a cyclic word (v) contains a subword of the
cyclic word (uf") of length greater than 1 —1/(2n) times the length of u”.

5. Proof of Theorem 2.3

Throughout this section, suppose that r is a rational number with 0 < r <
1, write r = [my,my,...,mi], where k> 1, (my,...,my) € (Z+)k and my > 2,
and let n be an integer with n > 2. Recall that the region, R, bounded by
a pair of Farey edges with an endpoint co and a pair of Farey edges with an
endpoint r forms a fundamental domain for the action of I'(r;n) on H? (see
Figure 1). Let I;(r;n) and L(r;n) be the (closed or half-closed) intervals in R
defined as follows:

5(rn) [0,r1), where r| = [my,...,my,2n— 2], if k is odd,

rn) =

Ho [0,r1], where r| = [my,... ,me_1,my —1,2], if k is even,

h(rn) [F2, 1], where 1, = [my, ... ,m_1,mp — 1,2], if k is odd,
rn) =

20 (r2,1], where r, = [my,...,my,2n — 2], if k is even.

Then we may choose a fundamental domain R so that the intersection of R
with dH? is equal to the union I;(r;n)UTI(r;n) U {co,r}.

ProposITION 5.1.  Let S(r) = (S1,52,51,S52) be as in Lemma 3.6. Then,
Jor any 0 # s e Ii(r;n)UL(r;n), the following hold.



280 Donghi LEe and Makoto SAKUMA

(1) If k=1, that is, r=1/m=[m], then CS(s) does not contain
((2n —2){m)) as a subsequence.

(2) If k=2, then CS(s) does not contain ((2n—1)<Si,S,>) nor
((2n —1){S2,81)>) as a subsequence.

In the above proposition, we mean by a subsequence a subsequence
without leap. Namely a sequence (ai,a,...,q,) is called a subsequence of
a cyclic sequence, if there is a sequence (by,bs,...,b,) representing the cyclic
sequence such that p <t and a; =b; for 1 <i < p.

Proor. (1) Suppose that r=1/m = [m]. Then any rational number
0#seli(r;n)UL(r;n) =[0,r)Ulr,1], where rj = 2n—2)/(2n—-2)m+1) =
[m,2n —2] and r, =2/(2m —1) = [m —1,2], has a continued fraction expan-
sion s = [Ij,...,1], where t > 1, (Iy,...,l;) € (Z,)" and I, > 2 unless ¢ = 1, such
that
) t>1land 1</ <m-—2;

) t=1and , =m—1;
i) t>2, h=m—1 and L, > 2;

) t=3, h=mand h=1;

) t=22, h=mand 2<L <2n-3; or
vi) t>1and /; >m+ 1.
If (i) happens, then s=[/;,h,...,/] with 1 </ <m —2, so each component
of CS(s) is equal to [y <m—2or [; +1 <m—1 by Lemma 3.3. Hence the
assertion holds. If (ii) happens, then s = [m — 1], so CS(s) = (m — 1,m —1)).
Hence the assertion holds. If (iii) happens, then s=[m—1,h,... /] with
L =2, so CS(s) consists of m —1 and m but it does not have (m,m) as a
subsequence by Lemma 3.3. Hence the assertion holds. If (iv) happens, then
s=[m,1,h,...,1], so CS(s) consists of m and m+ 1 but it does not have
(m,m) as a subsequence by Lemma 3.3. Hence the assertion holds. If (v)
happens, then s = [m,h,...,[] with 2 <h <2n—3, so CS(s) consists of m
and m+1 by Lemma 3.3. Also by Lemma 3.5, §=[hL—1,4,...,/] and
CS(5) = CT(s). Again by Lemma 3.3, each component of CS(§) = CT(s) is
equal to L —1<2n—4 or I, <2n—3. This implies by Definition 3.4 that
CS(s) contains at most ((2n — 3){m)) as a subsequence, as required. Finally,
if (vi) happens, then s=[/\,/,...,/] with /; >m+ 1, so each component of
CS(s) is equal to /y >m—+1 or [} +1 >m+2 by Lemma 3.3. Hence the
assertion holds.

(2) The proof proceeds by induction on k£ > 2. For simplicity, we write
m for m;. By Lemma 3.6, S| begins and ends with m + 1, and S, begins and
ends with m. Suppose on the contrary that there exists some 0 # s € I (r;n) U
L (r;n) for which CS(s) contains ((2n — 1){Sy,S8>)>) or ((2n —1){S,,S1)) as a
subsequence. This implies by Lemma 3.3 that CS(s) consists of m and m + 1.
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So s has a continued fraction expansion s = [/,..., /], where t > 2, (/},...,];) €

(Z,)',  =mand I, > 2. For the rational numbers r and s, define the rational

numbers 7 and § as in Lemma 3.5 so that CS(7) = CT(r) and CS(§) = CT(s).
We consider three cases separately.

Case 1. my =1.

In this case, k > 3 and, by Corollary 3.8(1), (m+ 1,m+ 1) appears in S}
as a subsequence, so in CS(s) as a subsequence. Thus by Lemma 3.3, /, =1
and so 7> 3. So, we have

f:[mg,...,mk] and §:[l3,...,lt}.

It follows from 0 # s€ I;(r;n)UL(r;n) that 0 # §e€ I)(F;n) U L(F;n). At this
point, we divide this case into two subcases.

Case l.a. k=23

By Lemma 3.7(1), S;=(m{m+1)) and S, = (m). Since
((2n — 1){S1,82)) or ((2n—1){S»,S1)) is contained in CS(s) by assumption,
(S2, (2n — 2)<S1,82)) is contained in CS(s). This implies that CS(§) = CT(s)
contains ((2n — 2){m3)) as a subsequence. But since 7 = 1/m3 = [m3] and 0 #
§e I, (F;n)U L,(7;n), this gives a contradiction to (1).

Case 1.b. k>4

Let S(F) = (T4, T», T1, T») be the decomposition of S(7) given by Lemma
3.6. Since S; begins and ends with m+ 1, S, begins and ends with m, and
since ((2n — 1){S1, S2)) or ((2n —1){S,,S1)) is contained in CS(s) by assump-
tion, we see by Lemma 3.7(2) that CS(5) = CT'(s) contains, as a subsequence,

(l] + /’, b, .o ls 1, L, Tz, (21’1 — 2)<T17 T2>), or
(2n =2)XT>, Ty ), T, t1, 10, ..yt 1, 1 + ),

where (71, t,...,t,) =Ty and /', /" e Z,. U{0}. (Note that ((2n — 1)<Sj, S2))
begins with m + 1 and ends with m, whereas ((2n — 1){S,S])) begins with
m and ends with m+ 1.) Since ¢} =, = m3 + 1 by Lemma 3.6, this actually
implies that /=0 or /” =0 accordingly, and therefore CS(5) contains
((2n— 1){Ty,Try) or ((2n—1){T»,T1») as a subsequence. But since 7=
[ms,...,m] and 0 #5e I;(F;n)UL(Fn), this gives a contradiction to the
induction hypothesis.

Case 2. k=2 and mp =2.

In this case, r = [m, 2], so by Lemma 3.7(3), S; = (m+ 1) and S, = (m).
Since ((2n—1)<S81,8:)) or ((2n—1){S,,S1>) is contained in CS(s) by
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assumption, both (m+ 1, (2n —2)<{m,m+ 1)) and ((2n —2){m,m + 1), m) are
contained in CS(s). This implies that CS(§) = CT(s) contains ((2n — 2){1))
as a subsequence. Moreover, we can see that this subsequence is proper, i.e.,
it is not equal to the whole cyclic sequence CS(§) = CT(s). As described
below, this in turn implies that s has the form either s = [m,1,1,l;...,]] or
s=[m2, k... L) with 5 >2n—2. If L =1, then §=[4,...,/] and so /5 is
the minimal component of CS(5) (see Lemma 3.3). Hence we must have
=1, ie, s=[m1,1,l;...,]], because CS(5) contains 1 as a component.
On the other hand, if ,, > 2, then §=[h —1,...,/] and so ,, — 1 is the minimal
component of CS(§) (see Lemma 3.3). Since CS(§) contains 1 as a compo-
nent, we have , — 1 =1, i.e,, L, =2. Since CS(§) contains ((2n —2){1)) as a
subsequence, we see that CS(§) = CT(5) contains a component > 2n — 2.
Since the subsequence ((2n —2)<1)) of CS(5) is proper, we see >3 and
Iy >2. Thus §= [l5—1,...,1] and therefore /3 — 1 is the minimal component
of CS(5). Hence we must have 5= (5 —1)+1>2n—2 and so s=[m,?2,
I, ..., 0] with I3 >2n— 2.

But then s cannot belong to the interval Ij(r;n)UL(r;n) = [0,r1]U (2, 1],
where r; = [m, 1,2] and r, = [m,2,2n — 2], a contradiction to the hypothesis.

Case 3. Either both k=2 and my >3 or both k >3 and mp > 2.

In this case, by Corollary 3.8(2), (m,m) appears in S, as a subsequence,
so in CS(s) as a subsequence. Thus , >2 by Lemma 3.3, and so we
have

f:[mz—l,mg,...,mk] and 5‘2[12—1,13,...,1,].

It follows from 0 # se I;(r;n)UL(r;n) that 0 # §e€ I1(F;n) U L(F;n). At this
point, we consider two subcases separately.

Case 3.a. k=2 and mp > 3.

By Lemma 3.7(3), S;=(m+1) and S»=((m—1){m)). Since
((2n —1){S1,82)) or ((2n—1){S»,S1)) is contained in CS(s) by assumption,
(S1, (2n — 2)<S,, S1)) is contained in CS(s). This implies that CS(§) = CT(s)
contains ((2n —2){my — 1)) as a subsequence. But since 7= 1/(my—1) =
[my — 1] and 0 # 5§ e I, (F;n) U I,(7;n), this gives a contradiction to (1).

Case 3.b. k>3 and mp, > 2.

Let S(F) = (T4, T», T1, T») be the decomposition of S(7) given by Lemma
3.6. Since S; begins and ends with m+ 1, S, begins and ends with m, and
since ((2n — 1)<S1,82)) or ((2n — 1)<S,, S1)) is contained in CS(s) by assump-
tion, we see by Lemma 3.7(4) that CS(5) = CT(s) contains, as a subsequence,
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((21’! - 2)<T27 T1>7 TZa tl7 t27 sy l‘sl,h tsl + //)a or
(i +¢" 0ty 1ty To, (20 = 2)KT, To)),

where (t1,06,...,t,) =Ty and /',/" € Z, U{0}. Since 1 =t;, = (my — 1) +1
=m, by Lemma 3.6, this actually implies that /' =0 or /” = 0 accordingly,
and therefore CS(5) contains ((2n — 1){T1,T>)) or ((2n— 1){T»,T1)) as a

subsequence. But since 7= [my — 1,m3,...,mi] and 0 # §e I, (F;n) U L(F;n),
this gives a contradiction to the induction hypothesis.
The proof of Proposition 5.1 is completed. O

We are now in a position to prove Theorem 2.3.

PrOOF OF THEOREM 2.3. Suppose on the contrary that there exists a
rational number se I(r;n)U{r} = I,(r;n)UL(r;n)U{r} for which «, is null-
homotopic in S(r;n). Then u, equals the identity in G(r;n). Since u, is a
non-trivial torsion element in G(r;n) = <{a,b|u") by [10, Theorem IV.5.2], we
may assume s € [;(r;n) U L(r;n). By Corollary 4.12, the cyclic word (u,) con-
tains a subword w of the cyclic word (u*") which is a product of 4n — 1 pieces
but is not a product of less than 4n — 1 pieces. Since 4n — 1 > 7, the length of
such a subword w is greater or equal to 7. So s cannot be zero, because the
word ug = ab cannot contain such a subword w. By Corollary 4.12 again, if
r=1/m, then CS(u;) = CS(s) contains ((2n — 2){m)) as a subsequence, while
if r# 1/m, then CS(s) contains ((2n — 1){S1,S2)) or ((2n—1)<S,,S1)) as a
subsequence, where S(r) = (51, S2,S1,S2) is as in Lemma 3.6. This contradicts
Proposition 5.1. ]
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