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Abstract. In this paper, we define a class of cross-validatory model selection criteria

as an estimator of the predictive risk function based on a discrepancy between a

candidate model and the true model. For a vector of unknown parameters, n

estimators are required for the definition of the class, where n is the sample size. The

ith estimator ði ¼ 1; . . . ; nÞ is obtained by minimizing a weighted discrepancy function

in which the ith observation has a weight of 1� l and others have weight of 1.

Cross-validatory model selection criteria in the class are specified by the individual l.

The sample discrepancy function and the ordinary cross-validation (CV) criterion are

special cases of the class. One may choose l to minimize the biases. The optimal l

makes the bias-corrected CV (CCV) criterion a second-order unbiased estimator for the

risk function, while the ordinary CV criterion is a first-order unbiased estimator of the

risk function.

1. Introduction

Let y1; . . . ; yn be random vectors from a p-dimensional population y

whose probability density function jðyÞ is unknown, where n is the sample

size. Suppose that the true model can be expressed as

M � : y1; . . . ; yn @ i:i:d: jðyÞ: ð1Þ

Consider a family of parametric models F ¼ f f ðyjyÞ; y A YHRqg, where y ¼
ðy1; . . . ; yqÞ0 is a q-dimensional vector of unknown parameters. This implies

that a candidate model is given by

M : y1; . . . ; yn @ i:i:d: f ðyjyÞ: ð2Þ
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Most model selection criteria (or information criteria) for determining the best

model among all candidate models are estimators of the predictive risk function

based on the discrepancy between the candidate model and the true model.

For example, Akaike’s information criterion (AIC; [1, 2]), Takeuchi’s bias-

corrected information criterion (TIC; [24]), and the extended information

criterion (EIC; [14]) are estimators of the predictive Kullback-Leibler (K-L)

discrepancy [16]. On the other hand, the cross-validation (CV) criterion

[22, 23] serves as an estimator of the predictive risk function based on an

arbitrary discrepancy, e.g., K-L discrepancy, L2 distance, and density power

divergence [6].

In this paper, we propose a class of model selection criteria by the cross-

validatory method. For a given discrepancy, n estimators of y are required to

define the class. The ith estimator ði ¼ 1; . . . ; nÞ is obtained by minimizing a

weighted discrepancy function in which the ith observation has a weight of

1� l ð0a la 1Þ and others have weights of 1. Each l represents a cross-

validatory model selection criteria. The sample discrepancy function and

the ordinary CV criterion correspond to l ¼ 0 and 1, respectively. From

the viewpoint of second order asymptotics for biases, the optimal l can be

expanded as l ¼ 1� 1=ð2nÞ þOðn�2Þ. The optimal l yields a bias-corrected

CV (CCV) criterion that corrects the bias to Oðn�2Þ while the bias of the

ordinary CV criterion is Oðn�1Þ. The CCV criterion extends the result of

Yanagihara, Tonda and Matsumoto [29], which consists of the K-L discrepancy.

In § 2, we define the class of cross-validatory model selection criteria and

study its mathematical properties. In § 3, we describe other model selection

criteria and their properties. When the used model and discrepancy func-

tion are specified, expressions of the developed criteria are simplified. In § 4,

we show an example of the developed criteria applied to selecting structural

equation models (SEM) under the normal distribution assumption. In § 5,

via the Monte Carlo method, we check the mathematical properties of the

developed model selection criteria and compare CV and CCV criteria with

other criteria such as AIC, TIC, and EIC. Conclusions and discussion are

given in § 6. Technical details are provided in an appendix.

2. A class of cross-validatory model selection criteria

Suppose that cðyjyÞ is a discrepancy function for the candidate model M

in (2), which is typically a function of f ðyjyÞ. Let CðyjY ;wÞ be a weighted

discrepancy function defined by

CðyjY ;wÞ ¼
Xn
i¼1

wicðyijyÞ; ð3Þ
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where Y ¼ ðy1; . . . ; ynÞ
0 and w ¼ ðw1; . . . ;wnÞ0. Then an estimator of y is

obtained by minimizing the discrepancy function CðyjY ;wÞ in (3), i.e.,

ŷyðwÞ ¼ arg min
y

CðyjY ;wÞ: ð4Þ

It is easy to see that ŷyðwÞ is the maximum likelihood estimator (MLE) of y

when cðyjyÞ ¼ �log f ðyjyÞ and w ¼ 1n ¼ ð1; . . . ; 1Þ0. When

cðyjyÞ ¼ � 1

b
f ðyjyÞb þ 1

1þ b

ð
f f ðxjyÞg1þb

dx;

CðyjY ;wÞ is the density power divergence [6]. An application of the density

power divergence can be found in Fujisawa and Eguchi [12]. For simplicity,

we use CðyjYÞ ¼ CðyjY ; 1nÞ and ŷy ¼ ŷyð1nÞ. Furthermore, we write ŷy½�i� ¼
ŷyð1n � eiÞ, where ei is an n-dimensional vector whose ith element is 1, and

the other elements are 0. Notice that ŷy½�i� becomes the jackknife estimator

evaluated from the ith jackknife sample, which is obtained from Y by delet-

ing yi. Let u1; . . . ; un be p-dimensional random vectors from u@ jðuÞ with

U ¼ ðu1; . . . ; unÞ0, which is also independent from Y . It should be emphasized

that ŷy is a function of Y . We define a risk function based on the predictive

discrepancy Cðyj�Þ as

RPD ¼ E �
yE

�
u ½CðŷyjUÞ� ¼ nE �

yE
�
u ½cðujŷyÞ�; ð5Þ

where E �
y and E �

u are expectations under the true model M � in (1) with respect

to y and u, respectively. In model selection based on cðyjyÞ, we regard the

model having the smallest RPD as the best model, which is typically di¤erent

from the true model. In many contexts of statistical modeling, the aim is to

determine the best model. Obtaining an unbiased estimator of RPD will allows

us to correctly evaluate the discrepancy between data and model, which will

further facilitate the selection of the best model.

The simplest estimator of RPD is the sample discrepancy function CðŷyjYÞ.
The CV criterion proposed by Stone [22, 23]

CV ¼
Xn
i¼1

cðyijŷy½�i�Þ; ð6Þ

is also an estimator of RPD. Let

gðyjQÞ ¼ q

qy
cðyjyÞ

����
y¼Q

; HðyjQÞ ¼ q2

qyqy 0 cðyjyÞ
����
y¼Q

; ð7Þ

and

rðyÞ ¼ E �
y ½gðyjyÞ�; IðyÞ ¼ E �

y ½gðyjyÞgðyjyÞ
0�; JðyÞ ¼ E �

y ½HðyjyÞ�: ð8Þ

151A class of cross-validatory model selection criteria



Let y0 be the minimizer of E �
y ½cðyjyÞ�, which satisfies

rðy0Þ ¼ 0q; ð9Þ

where 0q is a vector of q zeros. Suppose that
ffiffiffi
n

p
ðŷy � y0Þ ¼ Opð1Þ as n ! y,

which holds under a certain set of regularity conditions, as specified in [25].

The matrix Iðy0Þ is called the Fisher’s information matrix when cðyjyÞ ¼
�log f ðyjyÞ. Because E �

y ½cðyjyÞ� is the minimum at y0, Jðy0Þ becomes

positive semidefinite. In this paper, we assume that Jðy0Þ is positive definite.

Let ŷyiðlÞ ð0a la 1Þ be the estimator of y, which is obtained by

minimizing the weighted discrepancy function CðyjY ; 1n � leiÞ, i.e., ŷyiðlÞ ¼
ŷyð1n � leiÞ. With weight 1n � lei, the e¤ect of the ith observation yi on

ŷyiðlÞ decreases as l increases. The estimator ŷyiðlÞ includes the ordinary

estimator and the ith jackknife estimator as special cases, i.e., ŷyið0Þ ¼ ŷy and

ŷyið1Þ ¼ ŷy½�i�. Replacing ŷy by ŷyiðlÞ, we define the following cross-validatory

model selection criterion:

CVðlÞ ¼
Xn
i¼1

cðyi j ŷyiðlÞÞ; ð0a la 1Þ: ð10Þ

Let

Gl ¼ fE �
y ½CVðlÞ� j 0a la 1g;

and

R1 ¼
Xn
i¼1

E �
y ½rðŷyÞ

0ðŷy½�i� � ŷyÞ�;

R2 ¼
Xn
i¼1

E �
y ½ðŷy½�i� � ŷyÞ0JðyiðdiÞÞðŷy½�i� � ŷyÞ�;

ð11Þ

where

yiðdiÞ ¼ ŷy þ diðŷy½�i� � ŷyÞ; ði ¼ 1; . . . ; nÞ; ð12Þ

with di A ð0; 1Þ. The following theorem characterizes the properties of CVðlÞ
(the proof is given in Appendix A.1).

Theorem 1. The model selection criterion CVðlÞ has the following proper-

ties:

(1) CVð0Þ ¼ CðŷyjYÞ and CVð1Þ ¼ CV.

(2) CVðlÞ is an increasing function of l.

(3) nE �
y ½cðyjy0Þ� A Gl.

(4) RPD A Gl when R1 þ R2=2b 0.
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Appendix A.2 provides the detail leading to R1 ¼ Oðn�2Þ and R2 ¼
g1 þOðn�2Þ, where g1 is given by

g1 ¼ trfIðy0ÞJðy0Þ�1g: ð13Þ

Because Jðy0Þ is positive definite, g1 is positive. Thus, R1 þ R2=2b 0 asymp-

totically holds. Consequently, RPD A Gl when n is adequate. When cðyjyÞ
is a strictly convex function of y, HðyjyÞ is positive semidefinite for any y

and y (see e.g., [18, p. 49]). This directly implies that R2 b 0 when cðyjyÞ is

a strictly convex function of y. Thus, RPD A Gl when R1 b 0. Although the

order of R1 is Oðn�2Þ, R1 b 0 holds under special cases, as in the following

example.

Example 1. Suppose that the candidate model M and the true model M �

are given by

M : y1; . . . ; yn @ i:i:d: Npðm;SÞ;

M � : y1; . . . ; yn @ i:i:d: E½y� ¼ m� and Cov½y� ¼ S �:

If the K-L discrepancy is used to define CVðlÞ, Appendix A.3 shows that

R1 > 0 always holds. Thus, RPD A Gl.

An important issue is how to choose l. It follows from Theorem 1 that,

when R1 þ R2=2b 0, a l0 exists such that E �
y ½CVðl0Þ� ¼ RPD. However, since

l0 depends on the unknown distribution jðyÞ, it is very di‰cult to find the

exact l0. Even if we can obtain l0 somehow, it may be di‰cult to put it to

practice. This is because the optimal l0 may depend on cumulants of jðyÞ.
It is di‰cult to obtain good estimates of higher-order cumulants even when n is

relatively large (see [27], for the case of kurtosis). Thus, an estimator of l that

does not involve higher-order cumulants is preferable. The following theorem

characterizes the bias of CVðlÞ (the proof is given in Appendix A.4).

Theorem 2. Under a certain set of regularity conditions, the bias of CVðlÞ
is characterized as

RPD � E �
y ½CVðlÞ� ¼

ð1� lÞg1 þOðn�1Þ ðl is independent of nÞ

1� l� 1

2n

� �
g1 þOðn�2Þ ðl ¼ 1þOðn�1ÞÞ

8><
>: ; ð14Þ

where g1 is given by (13).

If l ¼ 1� 1=ð2nÞ, then the Oðn�1Þ term in the bias of CVðlÞ in Theorem 2

vanishes. Thus, using second-order asymptotics, the optimal value of l is l ¼
1� 1=ð2nÞ þOðn�2Þ. Based on this, we propose a bias-corrected CV (CCV)

criterion as in the following theorem.
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Theorem 3. Let an A ð0; 1Þ that can be expanded as an ¼ 1� 1=ð2nÞþ
Oðn�2Þ, and

CCV ¼ CVðanÞ ¼
Xn
i¼1

cðyi j ŷyiðanÞÞ: ð15Þ

Then the bias of the CCV criterion is Oðn�2Þ, while the bias in the ordinary CV

criterion is Oðn�1Þ. Because an < 1, the CCV criterion is always smaller than

the ordinary CV criterion.

The CCV in (15) coincides with the CCV criterion in Yanagihara, Tonda

and Matsumoto [29] when cðyjyÞ ¼ �2 log f ðyjyÞ.
Since our assumption is that y1; . . . ; yn are i.i.d., it may seem that Theorem

3 does not apply to selecting explanatory variables in regression models, which

are widely used in data analysis. Let y ¼ ðz 0; x 0Þ 0, where z is the vector of

response variables and x is the vector of explanatory variables. Then our

result immediately applies to the regression model. In order to calculate

CVðlÞ, it is often necessary to obtain each ŷyiðlÞ. However, CVðlÞ in the

linear regression model under the normal distribution assumption can be

derived using ŷy alone, as in the following example.

Example 2. Let z and x be m- and k-dimensional vectors and y ¼
ðz 0; x 0Þ 0. Suppose that the candidate model M and the true model M � are

given by

M : zijxi @NmðX 0~xxi;GÞ;

M � : y1; . . . ; yn @ i:i:d: E½y� ¼ m� and Cov½y� ¼ S �;

where ~xxi ¼ ð1; x 0
i Þ

0. Notice that the MLEs of X and G are X̂X ¼ ð ~XX 0 ~XXÞ�1 ~XX 0Z

and ĜG ¼ Z 0fIn � ~XXð ~XX 0 ~XXÞ�1 ~XX 0gZ=n, where Z ¼ ðz1; . . . ; znÞ0 and ~XX ¼
ð~xx1; . . . ; ~xxnÞ0. Then, CVðlÞ in the case of cðyjyÞ ¼ �2 log f ðyjyÞ is given by

CVðlÞ ¼ n logjĜG j þ nm log
2np

n� l

� �
þ
Xn
i¼1

log 1� lr̂r2i
nð1� lciÞ

� �

þ 1� l

n

� �Xn
i¼1

r̂r2i

ð1� lciÞ2
1� lr̂r2i

nð1� lciÞ

� ��1

;

where ci ¼ ~xx 0
i ð ~XX 0 ~XXÞ�1~xxi and r̂r2i ¼ ðzi � X̂X 0~xxiÞ0ĜG�1ðzi � X̂X 0~xxiÞ.

Yanagihara, Kamo, and Tonda [30] proposed a second-order bias-

corrected AIC, called CAICJ, in multivariate linear models. The order of

the bias of CAICJ is the same as that of CCV. However, CAICJ was obtained
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under the assumption that the explanatory variables x are nonstochastic, while

the condition here is that both the explanatory variables x and the response

variables z are stochastic.

For linear regression models, the well-known CV criterion is defined by

the predicted residual sum of squares. Our general formula also applies to this

case, and the CVðlÞ is given by the following example.

Example 3. Let x be a k-dimensional vector and y ¼ ðz; x 0Þ 0. Suppose

that the candidate model M and the true model M � are

M : E½zijxi� ¼ b 0~xxi;

M � : y1; . . . ; yn @ i:i:d: E½y� ¼ m� and Cov½y� ¼ S �;

where ~xxi ¼ ð1; x 0
i Þ

0. Notice that the least square estimator of b is given by

b̂b ¼ ð ~XX 0 ~XXÞ�1 ~XX 0z, where z ¼ ðz1; . . . ; znÞ0 and ~XX ¼ ð~xx1; . . . ; ~xxnÞ0. Thus, CVðlÞ
in the case of the predicted residual sum of squares is given by

CVðlÞ ¼
Xn
i¼1

zi � b̂b 0~xxi

1� l~xx 0
i ð ~XX 0 ~XXÞ�1~xxi

( )2

:

3. Other model selection criteria

In this section, we discuss other criteria for selecting the best model among

all the candidate models using the general discrepancy function cðyjyÞ. The

AIC-type criterion can be defined by adding the number of parameters to the

sample discrepancy function as

AIC ¼ CðŷyjYÞ þ q: ð16Þ

However, unless cðyjyÞ ¼ �log f ðyjyÞ and F contains jðyÞ, (16) has a con-

stant bias in estimating RPD. The TIC-type criterion corrects the bias of the

AIC-type criterion, reducing the bias to Oðn�1Þ. The TIC-type criterion is

given by

TIC ¼ CðŷyjYÞ þ trfÎIðŷyÞĴJðŷyÞ�1g; ð17Þ

where

ÎIðŷyÞ ¼ 1

n

Xn
i¼1

gðyijŷyÞgðyijŷyÞ
0; ĴJðŷyÞ ¼ 1

n

Xn
i¼1

HðyijŷyÞ; ð18Þ

with gð�j�Þ and Hð�j�Þ being given by (7). Although the order of the bias in

TIC is the same as that in the CV criterion, the bias of TIC tends to be larger
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than that of CV because trfÎIðŷyÞĴJðŷyÞ�1g may contain a large bias. Actually,

Theorems A.1 and A.2 in Appendix A.2 show that the n�1 term of the bias

in TIC contains more terms of higher-order moments than that of the CV

criterion.

The bootstrap method can also correct the bias of the AIC-type criterion.

The resulting criterion is called the EIC-type criterion. Let y?
b;1; . . . ; y

?
b;n be

the bth bootstrap resample from Y (b ¼ 1; . . . ;B) and ŷy?
b be the estimator of y,

where

ŷy ?
b ¼ arg min

y

Xn
i¼1

cðy?
b; ijyÞ:

Replacing the log-likelihood function by the discrepancy function cðyjyÞ in the

formula of Konishi [15], the EIC-type criterion can be defined by

EIC ¼ CðŷyjYÞ þ 1

B

XB
b¼1

Xn
i¼1

cðyijŷy?
b Þ �

Xn
i¼1

cðy?
b; ijŷy?

b Þ
( )

: ð19Þ

By using random vectors distributed according to the multinomial distribu-

tion, we can rewrite the definition of EIC in (19). Let db ¼ ðdb1; . . . ; dbnÞ0
ðb ¼ 1; . . . ;BÞ be random samples of size n from the multinomial distribution

Multinðn; 1=n; . . . ; 1=nÞ. Then, the EIC in (19) is equivalent to the following

formula (the derivation is given in Appendix A.5):

EIC ¼ CðŷyjYÞ þ 1

B

XB
b¼1

CðŷyðdbÞ jY; 1n � dbÞ: ð20Þ

where ŷyð�Þ is given by (4). Because the bias of EIC is Oðn�1Þ, the order of

bias in EIC is the same as those in TIC and the ordinary CV criterion.

However, since EIC does not contain the term trfÎIðŷyÞĴJðŷyÞ�1g, the bias of EIC

tends to be smaller than that of TIC. On the other hand, EIC involves more

computation than the CV criterion. Furthermore, EIC may behave poorly

when the sample size is small and the number of parameters is large. Caution

is needed when using EIC with small samples.

4. Specific expressions of model selection criteria

When the used model and discrepancy function are specified, expressions

of the developed criteria are simplified. In this section, we show specific

expressions of model selection criteria applied to selecting SEM under the

normal distribution assumption.
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SEM is a multivariate statistical technique designed to model the covari-

ance matrix by a structure with relatively few parameters (see e.g., [17], [32]).

The normal distribution assumption is typically used in the practice of SEM

and is the default option of all statistical software (AMOS, EQS, LISREL,

Mplus, SAS Calis). We will obtain the analytical expression of CVðlÞ when

the candidate model is from the normal family while the true model is

unknown.

Let the candidate model M and the true model M � be

M : y1; . . . ; yn @ i:i:d: Npðm;SðxÞÞ;

M � : y1; . . . ; yn @ i:i:d: E½y� ¼ m� and Cov½y� ¼ S �;
ð21Þ

where m ¼ ðm1; . . . ; mpÞ
0 and x ¼ ðx1; . . . ; xqÞ0 are p- and q-dimensional un-

known vectors of parameters, respectively, and the true distribution of y is

unknown. Consider the K-L discrepancy with

cðyjyÞ ¼ �2 log f ðyjyÞ

¼ p logð2pÞ þ logjSðxÞj þ ðy� mÞ0SðxÞ�1ðy� mÞ; ð22Þ

where y ¼ ðm 0; x 0Þ 0. Let

y ¼ 1

n

Xn
i¼1

yi; S ¼ 1

n

Xn
i¼1

ðyi � yÞðyi � yÞ0; ð23Þ

and

F ðxjAÞ ¼ logjSðxÞj þ trfASðxÞ�1g: ð24Þ

Then, the CVðlÞ defined in (10) is given by the following example (the proof

is given in Appendix A.6).

Example 4. The CVðlÞ under the candidate model M in ð21Þ is given by

CVðlÞ ¼ np logð2pÞ þ
Xn
i¼1

logjSðŷyiðlÞÞj

þ n

n� l

� �2Xn
i¼1

ðyi � yÞ0Sðx̂xiðlÞÞ�1ðyi � yÞ; ð25Þ

where x̂xiðlÞ is the estimator of x defined by

x̂xiðlÞ ¼ arg min
x

F ðx jS iðlÞÞ; ð26Þ
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with

S iðlÞ ¼
n

n� l
S � l

n� l
ðyi � yÞðyi � yÞ0

� �
: ð27Þ

Browne and Cudeck [8], Cudeck and Browne [9] and De Gooijer [10]

proposed model selection criteria for selecting SEM, which are defined by the

cross-validation method, and Bandalos [5] studied performance of Cudeck and

Browne’s criterion by numerical simulations. In order to calculate above three

criteria, it is necessary to split the data set into the calibration sample and the

validation sample at random. In many cases, the calibration sample is defined

to the same size as the validation sample. Therefore, it is di‰cult to apply

those criteria to the small sample. In CVðlÞ, the size of calibration sample is 1

and the size of validation sample is n� 1. Consequently, CVðlÞ is more stable

under the small sample than those three criteria.

The following example provides the analytical expression for other model

selection criteria.

Example 5. Let x̂x be the estimator of x such that

x̂x ¼ arg min
x

F ðxjSÞ: ð28Þ

Then, AIC, TIC, and EIC under the candidate model M in ð21Þ are given

by

AIC ¼ nF ðx̂xjSÞ þ np logð2pÞ þ 2ðpþ qÞ;

TIC ¼ AIC� 2ðpþ qÞ þ 2 trfSSðx̂xÞ�1g

þ trfŴWðSðx̂xÞ�1 nSðx̂xÞ�1ÞQðx̂xjSÞðSðx̂xÞ�1 nSðx̂xÞ�1Þg

� vecðSÞ0ðSðx̂xÞ�1 nSðx̂xÞ�1ÞQðx̂xjSÞðSðx̂xÞ�1 nSðx̂xÞ�1Þ vecðSÞ;

where

ŴW ¼ 1

n

Xn
i¼1

vecððyi � yÞðyi � yÞ0Þ vecððyi � yÞðyi � yÞ0Þ0;

Qðx̂xjSÞ ¼ q

qx 0 vecðSðxÞÞ
� �

q2

qxqx 0 FðxjSÞ
( )�1

q

qx
vecðSðxÞÞ0

� �����
x¼x̂x

;

EIC ¼ AIC � 2ðpþ qÞ þ n

B

XB
b¼1

trfVðdbÞSðx̂xðdbÞÞ�1g; ð29Þ
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where

x̂xðdbÞ ¼ arg min
x

F ðx jSðdbÞÞ; ð30Þ

VðdbÞ ¼
1

n
Y 0 Ip � diagðdbÞ þ

1

n
ð2dbd

0
b � 1nd

0
b � db1

0
nÞ

� �
Y ; ð31Þ

with

SðdbÞ ¼
1

n
Y 0 diagðdbÞ �

1

n
dbd

0
b

� �
Y : ð32Þ

The use of AIC for selecting the number of factors in the explanatory

factor model was discussed by Akaike [3]. TIC for selecting SEM models

under the normal distribution assumption was obtained by Yanagihara [26]

(another form of the TIC was given by Ichikawa and Konishi [13]). The

details leading to the expression for EIC are provided in Appendix A.7. For

an information criterion using a discrepancy other than KL discrepancy, see

e.g., [31].

5. Numerical examinations

In this section, we verify some properties of model selection criteria using a

Monte Carlo method. In particular, we compare CV and CCV criteria with

AIC, TIC, and EIC. Bayesian information criterion (BIC; [21]) and the con-

sistent Akaike’s information criterion (CAIC; [7]) are also frequently used for

model selection, but their expectations do not converge to RPD. Thus, our

study will not include BIC and CAIC.

In designing the Monte Carlo, we let the candidate distribution be multi-

variate normal as in the previous section, while the true distribution varies.

Let y be the 6-dimensional vector defined by y ¼ S � 1=2e, where

S � ¼

2 1 0 0 0 0

1 2 1 0 0 0

0 1 2 0 0 0

0 0 1 2 1 0

0 0 0 1 2 1

0 0 0 0 1 6

0
BBBBBBBB@

1
CCCCCCCCA
:

We use Mardia’s multivariate skewnesses k
ð1Þ
3;3 and k

ð2Þ
3;3 and kurtosis k

ð1Þ
4 (see

[20]) to measure the departure of the candidate distribution from the true

distribution. These are given by

k
ð1Þ
3;3 ¼ E½ðe 01e2Þ

3�; k
ð2Þ
3;3 ¼ E½ðe 01e1Þðe 01e2Þðe 02e2Þ�; k

ð1Þ
4 ¼ E½ðe 01e1Þ

2� � 48;
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where e1 and e2 are independent random vectors having the same distribution

of e.

Six populations or true models are created when the elements ej of e ¼
ðe1; . . . ; e6Þ0 are independently and identically distributed standardized variables

from each of the following six distributions:

(1) Normal Distribution: ej @Nð0; 1Þ, (k
ð1Þ
3;3 ¼ k

ð2Þ
3;3 ¼ 0 and k

ð1Þ
4 ¼ 0).

(2) Laplace Distribution: ej is generated from the Laplace distribution with

mean 0 and standard deviation 1 (k
ð1Þ
3;3 ¼ k

ð2Þ
3;3 ¼ 0 and k

ð1Þ
4 ¼ 18).

(3) Uniform Distribution: ej is generated from the uniform distribution on

ð�1; 1Þ, divided by the standard deviation 1=
ffiffiffi
3

p
(k

ð1Þ
3;3 ¼ k

ð2Þ
3;3 ¼ 0 and

k
ð1Þ
4 ¼ �7:2).

(4) Skew-Laplace Distribution: ej is generated from the skew-Laplace distri-

bution with location parameter 0, dispersion parameter 1 and skew param-

eter 1, standardized by mean 3/4 and standard deviation
ffiffiffiffiffi
23

p
=4 (k

ð1Þ
3;3 ¼

k
ð2Þ
3;3A7:32 and k

ð1Þ
4 A19:56).

(5) Chi-Square Distribution: ej is generated from the chi-square distribution

with 2 degrees of freedom, standardized by mean 2 and standard deviation

2 (k
ð1Þ
3;3 ¼ k

ð2Þ
3;3 ¼ 12 and k

ð1Þ
4 ¼ 36).

(6) Log-Normal Distribution: ej is generated from the lognormal distribution

such that log ej @Nð0; 1=2Þ, standardized by mean e1=4 and standard de-

viation
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e1=2ðe1=2 � 1Þ

p
(k

ð1Þ
3;3 ¼ k

ð2Þ
3;3A17:64 and k

ð1Þ
4 A111:06).

The skew-Laplace distribution was proposed by Balakrishnan and Ambagas-

pitiya [4] (for the probability density function, see e.g., [28]). The distributions

in 1, 2, and 3 are symmetric, and distributions in 4, 5, and 6 are skewed.

A sample of size 20 is generated from y ¼ S �1=2e. The three candidate

models are:

Model 1; M1 : y1; . . . ; y20 @ i:i:d: N6ðm; s2I6Þ;

Model 2; M2 : y1; . . . ; y20 @ i:i:d: N6ðm; ðs2 � rÞI 6 þ r161
0
6Þ;

Model 3; M3 : y1; . . . ; y20 @ i:i:d: N6ðm; diagðs2
1 ; s

2
2 ; s

2
3 ; s

2
4 ; s

2
5 ; s

2
6ÞÞ:

Because the sample size n ð¼ 20Þ is rather small compared with the dimension

p ð¼ 6Þ, the saturated model, i.e., y1; . . . ; y20 @ i:i:d: N6ðm;SÞ, is not consid-

ered here. Since S � 0SðxÞ for any x in any of the candidate models, all the

candidate models are misspecified. We use the K-L discrepancy to select the

best model among the three candidates. For each of the candidate models and

distributions, results of Appendix A.3 imply that R1 > 0 and R2 > 0. Thus,

RPD A Gl in all three models.

The number of replications is chosen as Nr ¼ 10,000. The following

quantities are evaluated at each replication: CVðlÞ with l ¼ 0:00; 0:01;
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0:02; . . . ; 0:98; 0:99; 1:00; CCV ¼ CVðanÞ with an ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n=ðnþ 1Þ

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
20=21

p
;

AIC; TIC; and EIC using B ¼ 1,000 nested resamples. For each of the Nr

ŷy’s, R ¼
P20

i¼1 cðuijŷyÞ with u1; . . . ; u20 being simulated from u ¼ S �1=2e is also

obtained, where ui are independent of y1; . . . ; y20. The average of R across

the Nr replications, R, is regarded as the risk RPD. Let IC be the average

of any of the above criteria; the relative bias and relative root mean square

error (RMSE) of the criterion are evaluated by

Relative Bias ¼ R� IC

jRj
� 100;

Relative RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPNr

l¼1ðR� IClÞ2=Nr

q
jRj

� 100:

The smallest IC at each replication for a given model is recorded, as are its

frequencies among the 10,000 replications.

Table 1 contains the risks (R) of all the candidate models at each true

distribution. Model 3 has the smallest risk when the true distribution is

normal and uniform; model 2 becomes the best when the true distribution is

Laplace, skew-Laplace, chi-square, or log-normal.

Figures 1 and 2 contain the plots of relative biases and RMSEs of CVðlÞ
against l, respectively. Figure 3 contains the frequencies of the model being

selected by CVðlÞ. The plots in Figure 1 clearly show that there is an l0
which makes CVðlÞ an unbiased estimator of RPD. In all the figures, the

optimal l0 is close to 1.0 or approximately 1� 1=ð2nÞ ¼ 39=40. The bias

approaches 0 as l moves towards l0, and departs from 0 as l moves away

from l0. Larger biases of CVðlÞ are associated with more unknown param-

eters or larger multivariate kurtosis of the true distribution (k
ð1Þ
4 ). Comparing

the plots for Laplace and skew-Laplace distributions, we may notice that the

sizes of multivariate skewnesses k
ð1Þ
3;3 and k

ð2Þ
3;3 have little e¤ect on the bias of

CVðlÞ. Similar to Figure 1, the plots in Figure 2 clearly show that, regardless

Table 1. Risk of each candidate model

True Distribution Model 1 Model 2 Model 3

(1) 466.7 464.7 461.5

(2) 468.9 467.1 470.6

(3) 466.0 463.9 457.6

(4) 469.1 467.2 470.7

(5) 471.0 469.2 480.3

(6) 475.7 474.0 493.8
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of the model and distribution, there exists an lM A ð0; 1Þ such that CVðlMÞ has

the smallest RMSE. Furthermore, Figure 3 shows that CVðlÞ tends to choose

model 3 for smaller l and model 2 for larger l.

Table 2 contains the relative biases, RMSEs, and the frequencies of each

of the models being selected by AIC, TIC, EIC, CV, and CCV criteria. The

table clearly shows that the CCV criterion has the smallest bias among all the

Fig. 1. Relative biases of cross-validatory model selection criteria

162 Hirokazu Yanagihara et al.



criteria. Moreover, the CCV criterion not only improves the bias of the CV

criterion, but also its RMSE. The biases of AIC and TIC are greater than

those of EIC, CV, and CCV criteria. In particular, AIC has a very large bias

when k
ð1Þ
4 is large. RMSE of EIC tends to be smaller than that of the CV

criterion, although the bias of EIC tends to be greater than that of the

CV criterion. Comparing Tables 1 and 2, CV and CCV select the model

Fig. 2. Relative RMSEs of cross-validatory model selection criteria
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with the smallest risk most often. But AIC and TIC select model 3 most often

while the best model changes with the true distribution. Notice that the

frequency of choosing the best model by each criterion varies when the true

distribution changes. Table 3 contains the average frequencies of choosing

the best model by each criterion across all the true models. Among the 5

criteria, CCV chooses the best model most frequently; EIC and CV also work

well.

Fig. 3. Selection frequencies of cross-validatory model selection criteria
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Table 2. Relative biases, RMSEs, and selection frequencies of five information criteria

Model 1 Model 2 Model 3
True

Dist.

Cri-

terion Bias (RMSE Freq.) Bias (RMSE Freq.) Bias (RMSE Freq.)

AIC 0.52 (4.3 0.0) 1.13 (4.4 43.1) 0.99 (4.2 56.9)

TIC �0.51 (4.7 1.6) 0.12 (4.8 35.7) 0.62 (4.4 62.7)

(1) EIC 0.05 (4.3 11.4) 0.08 (4.4 31.6) 0.16 (4.2 57.0)

CV �0.08 (4.3 13.5) �0.10 (4.4 31.8) �0.16 (4.2 54.6)

CCV 0.02 (4.3 12.4) 0.02 (4.4 31.5) 0.05 (4.2 56.1)

AIC 1.40 (6.3 0.0) 2.04 (6.6 37.2) 4.21 (7.0 62.8)

TIC �2.71 (8.8 1.7) �2.04 (8.8 26.3) 2.25 (6.6 72.0)

(2) EIC 0.30 (6.5 19.6) 0.36 (6.7 38.6) 1.08 (6.4 41.7)

CV �0.04 (6.7 24.4) �0.07 (6.9 40.2) �0.19 (7.0 35.4)

CCV 0.09 (6.7 22.8) 0.09 (6.9 40.0) 0.22 (6.8 37.2)

AIC 0.16 (3.1 0.0) 0.74 (3.2 47.0) �0.50 (3.2 53.0)

TIC 0.68 (3.1 1.2) 1.29 (3.3 43.8) 0.11 (3.2 55.1)

(3) EIC �0.02 (3.0 4.4) �0.02 (3.1 22.7) �0.20 (3.1 72.8)

CV �0.08 (3.0 3.7) �0.11 (3.1 20.9) �0.15 (3.1 75.3)

CCV 0.01 (3.0 3.3) 0.00 (3.1 20.7) �0.01 (3.1 76.0)

AIC 1.39 (6.4 0.0) 2.02 (6.6 37.8) 4.16 (6.9 62.2)

TIC �2.71 (9.6 1.8) �2.08 (9.5 26.8) 2.37 (6.8 71.5)

(4) EIC 0.27 (6.8 19.7) 0.30 (6.9 38.5) 1.02 (6.7 41.9)

CV �0.11 (7.1 24.7) �0.15 (7.3 39.3) �0.33 (7.6 36.0)

CCV 0.03 (7.0 22.9) 0.02 (7.2 39.2) 0.12 (7.3 37.8)

AIC 2.06 (7.7 0.0) 2.74 (8.0 32.2) 7.12 (9.6 67.8)

TIC �4.34 (12.8 1.6) �3.69 (12.7 19.6) 4.46 (8.8 78.8)

(5) EIC 0.37 (8.4 24.2) 0.46 (8.5 41.3) 1.73 (8.7 34.5)

CV �0.25 (9.1 29.4) �0.25 (9.4 41.1) �0.55 (10.9 29.5)

CCV �0.07 (9.0 27.2) �0.04 (9.2 41.2) 0.26 (10.0 31.6)

AIC 4.07 (10.5 0.0) 4.75 (10.9 27.1) 11.65 (13.8 72.9)

TIC �6.10 (20.0 1.1) �5.45 (19.9 13.4) 8.05 (12.4 85.5)

(6) EIC 1.22 (12.9 25.6) 1.29 (13.2 42.1) 3.72 (14.4 32.3)

CV �0.21 (16.5 30.6) �0.26 (16.9 42.5) �0.77 (21.9 26.9)

CCV 0.13 (15.5 28.7) 0.13 (15.8 42.3) 1.17 (15.9 29.0)

Table 3. Averages of frequencies of choosing the model having the smallest risk

Criterion AIC TIC EIC CV CCV

Average of Frequencies (%) 40.7 34.0 48.4 48.8 49.1
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In addition to the results reported above, several other models were also

studied and similar results were obtained. While the frequency of choosing the

best model by each criterion changes with the true model/distribution, the best

criterion is mostly among EIC, CV and CCV.

6. Conclusion

In this paper, we defined the class of cross-validatory model selection

criterion CVðlÞ ð0a la 1Þ, which includes the sample discrepancy function

and the ordinary CV criterion as special cases. CVðlÞ is an increasing func-

tion of l. In particular, under proper conditions, there exists an l0 A ½0; 1� such
that CVðl0Þ is unbiased for RPD. Because R1 ¼ Oðn�2Þ and R2 ¼ g1 þOðn�2Þ
with g1 > 0, jR1j tends to be smaller than jR2j. Thus, RPD A Gl in most cases.

From the viewpoint of second-order asymptotics for the bias, l ¼ 1� 1=ð2nÞþ
Oðn�2Þ is optimal. We found that l ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n=ðnþ 1Þ

p
worked well empirically.

In particular, without estimating any higher-order cumulants, such a l reduces

the bias in CCV to Oðn�2Þ. Such a result is especially valuable with small

samples, where any criterion involving higher-order cumulants will inevitably

perform poorly. The Monte Carlo results in the previous section verify the

merit of CCV. In addition to the CCV criterion, other second-order bias-

corrected criteria also exist. Those other criteria were generally obtained under

specified models and distributions. The CCV criterion here is obtained under

the general assumption, and can be applied broadly.

The aim of the CCV criterion is to minimize the bias in estimating RPD.

More important theme is to have a criterion that selects the model with the

smallest risk. An unbiased estimator of RRD does not necessarily lead to

the model with the smallest RPD being selected most frequently. Fortunately,

the merits of least bias and selecting the best model both occur most frequently

with CCV. Thus, we recommend the use of the CCV criterion for general

model selection.

Appendix

A.1. Proof of theorem 1

Proof of Property 1. We omit the proof because it is easy to verify.

Proof of Property 2. Let CiðyjY ; lÞ ¼ CðyjY ; 1n � leiÞ, and l1 < l2.

Because ŷyiðlÞ minimizes CiðyjY ; lÞ, there exist

Ciðŷyðl1Þ jY ; l1ÞaCiðŷyðl2Þ jY ; l1Þ;

Ciðŷyðl2Þ jY ; l2ÞaCiðŷyðl1Þ jY ; l2Þ:
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By using these relations we obtain

Cðŷyiðl1Þ jYÞ � l1cðyi j ŷyiðl1ÞÞ

¼ Ciðŷyiðl1Þ jY ; l1Þ

aCiðŷyiðl2Þ jY ; l1Þ

¼ Cðŷyiðl2Þ jYÞ � l1cðyi j ŷyiðl2ÞÞ

¼ Ciðŷyiðl2Þ jY ; l2Þ þ ðl2 � l1Þcðyi j ŷyiðl2ÞÞ

aCiðŷyiðl1Þ jY ; l2Þ þ ðl2 � l1Þcðyi j ŷyiðl2ÞÞ

¼ Cðŷyiðl1Þ jYÞ � l2cðyi j ŷyiðl1ÞÞ þ ðl2 � l1Þcðyi j ŷyiðl2ÞÞ:

Thus,

cðyi j ŷyiðl1ÞÞacðyi j ŷyiðl2ÞÞ: ðA1Þ

It follows from (A1) that

CVðl1Þ ¼
Xn
i¼1

cðyi j ŷyiðl1ÞÞa
Xn
i¼1

cðyi j ŷyiðl2ÞÞ ¼ CVðl2Þ:

Consequently, CVðlÞ is an increasing function of l.

Proof of Property 3. Because ŷy½�i� minimizes
Pn

j0i cðyjjyÞ, there exists

Xn
j0i

cðyjjŷy½�i�Þa
Xn
j0i

cðyj jŷyÞ:

Thus,

E �
y ½cðyjjŷy½�i�Þ�aE �

y ½cðyjjŷyÞ�; ð j0 iÞ: ðA2Þ

Let ŷyn be the minimizer of the discrepancy function based on y1; . . . ; yn, and

an ¼ E �
y ½cðy1jŷynÞ�. Then an�1 ¼ E �

y ½cðyjjŷy½�i�Þ� and an ¼ E �
y ½cðyjjŷyÞ�. It fol-

lows from (A2) that an�1 a an for any n. Thus, an monotonically increases.

Let gðyÞ ¼ E �
y ½cðyjyÞ�. Then limn!y an ¼ gðy0Þ follows from ŷyn ! y0.

Therefore, an is bounded and monotonically increases. This directly implies

that an a gðy0Þ and

E �
y ½CVð0Þ�a nE �

y ½cðyjy0Þ�: ðA3Þ
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On the other hand, when y0 is the minimizer of gðyÞ, there must exist

gðy0Þa gðyÞ for any y. Thus, gðy0ÞaE �
y ½cðyijŷy½�i�Þ�, or equivalently

nE �
y ½cðyjy0Þ�aE �

y ½CVð1Þ�: ðA4Þ

Equations (A3) and (A4) imply nE �
y ½cðyjy0Þ� A Gl.

Proof of Property 4. We will first show E �
y ½CVð0Þ�aRPD, where RPD

is given by (5). Let ŷyU be the minimizer of CðyjUÞ. Because U and Y are

identically distributed, E �
yE

�
u ½CðŷyU jYÞ� ¼ E �

yE
�
u ½CðŷyjUÞ� ¼ RPD. The property

E �
y ½CVð0Þ�aRPD follows by noticing that CVð0Þ ¼ CðŷyjYÞaCðŷyU jYÞ. We

next show that RPD aE �
y ½CVð1Þ� when R1 þ R2=2b 0, where R1 and R2 are

given by (11). Notice that CVð1Þ ¼ CV and ŷy½�i� and yi are independent.

Because the distribution of ui is identical to that of yi, E �
y ½cðyijŷy½�i�Þ� ¼

E �
yE

�
u ½cðuijŷy½�i�Þ�. Applying the Taylor expansion at ŷy, we obtain

Xn
i¼1

cðuijŷy½�i�Þ ¼
Xn
i¼1

cðuijŷyÞ þ
Xn
i¼1

gðuijŷyÞ0ðŷy½�i� � ŷyÞ

þ 1

2

Xn
i¼1

ðŷy½�i� � ŷyÞ0Hðui j yiðdiÞÞðŷy½�i� � ŷyÞ;

where yiðdiÞ is given by (12). Thus,

E �
y ½CV� ¼ RPD þ R1 þ

1

2
R2: ðA5Þ

Consequently, RPD aE �
y ½CVð1Þ� whenever R1 þ R2=2b 0.

A.2. Expansions of biases of CV and TIC

Let

LðyjQÞ ¼ q

qy 0 n
q2

qyqy 0

 !
cðyjyÞjy¼Q;

and

KðyÞ ¼ E �
y ½LðyjyÞ�; K̂KðŷyÞ ¼ 1

n

Xn
i¼1

LðyijŷyÞ:

Because ŷyiðlÞ is the minimizer of CðyjY ; 1n � leiÞ, there exists

Xn
j¼1

gðyj j ŷyiðlÞÞ ¼ lgðyi j ŷyiðlÞÞ; ðA6Þ
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where gð�j�Þ is given by (7). The following stochastic expansion is needed

ŷyiðlÞ ¼ ŷy þ l

n
z1; i þ

l2

n2
z2; i þOpðn�3Þ; ðA7Þ

where l ¼ Oð1Þ and z1; i and z2; i are to be determined. Applying the Taylor

expansion to both sides of (A6) at ŷy, replacing ŷyiðlÞ by (A7), and compar-

ing the Oðn�1Þ and Oðn�2Þ terms in both sides of the resulting equation in

sequence, we obtain

z1; i ¼ ĴJðŷyÞ�1gðyijŷyÞ;

z2; i ¼ ĴJðŷyÞ�1 HðyijŷyÞz1; i �
1

2
K̂KðŷyÞ vecðz1; iz 01; iÞ

� �
;

ðA8Þ

where Hð�j�Þ and ĴJðŷyÞ are given by (7) and (18), respectively. Notice that

ŷy½�i� ¼ ŷyið1Þ. Substituting l ¼ 1 into (A7), we obtain the stochastic expansion

of ŷy½�i� as

ŷy½�i� ¼ ŷy þ 1

n
z1; i þ

1

n2
z2; i þOpðn�3Þ: ðA9Þ

In order to calculate the asymptotic expansion of the bias of the CV

criterion in (6), we first substitute the stochastic expansion of ŷy½�i� in (A9)

into R1 and R2, where R1 and R2 are given by (11); we then use the relation

yiðdiÞ ! y0, where yiðdiÞ and y0 are given by (12) and (9), respectively. These

two steps yield

R1 ¼
1

n

Xn
i¼1

E �
y rðŷyÞ0 z1; i þ

1

n
z2; i

� �� �
þOðn�2Þ;

R2 ¼
1

n2

Xn
i¼1

E �
y ½z 01; iJðy0Þz 01; i� þOðn�2Þ;

where rð�Þ and Jð�Þ are given by (8). Notice that
Pn

i¼1 gðyijŷyÞ ¼ 0q due to ŷy

being the minimizer of CðyjYÞ. Thus,

Xn
i¼1

E �
y ½rðŷyÞ

0z1; i� ¼ E �
y rðŷyÞ0ĴJðŷyÞ�1

Xn
i¼1

gðyijŷyÞ
" #

¼ 0:

Moreover, from ŷy ! y0 and rðy0Þ ¼ 0q, the second term in the expansion of R1

is expanded as

1

n2

Xn
i¼1

E �
y ½rðŷyÞ

0z2; i� ¼
1

n2

Xn
i¼1

E �
y ½rðy0Þ

0zi;2� þOðn�2Þ ¼ Oðn�2Þ:
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Consequently, R1 ¼ Oðn�2Þ. Using ŷy ! y0 and ĴJðŷyÞ ! Jðy0Þ, R2 is expanded

as

R2 ¼
1

n2

Xn
i¼1

E �
y ½gðyijy0Þ

0Jðy0Þ�1Jðy0ÞJðy0Þ�1gðyijy0Þ� þOðn�2Þ

¼ 1

n
g1 þOðn�2Þ;

where g1 is given by (13). Substituting the above two results into (A5) yields

the following theorem.

Theorem A.1. Under a certain set of regularity conditions, the bias of the

CV criterion is expanded as

RPD � E �
y ½CV� ¼ � 1

2n
g1 þOðn�2Þ: ðA10Þ

Using Theorem A.1, we can easily obtain an expansion of the bias of TIC

in (17). Applying the Taylor expansion of CV at ŷy yields

CV ¼ CðŷyjYÞ þ C1 þ
1

n
C2 þ

1

2
C3

� �
þOpðn�2Þ;

where C1, C2, and C3 are given by

C1 ¼
1

n

Xn
i¼1

gðyijŷyÞ
0z1; i; C2 ¼

1

n

Xn
i¼1

gðyijŷyÞ
0z2; i;

C3 ¼
1

n

Xn
i¼1

z 01; iHðyijŷyÞ
0z1; i:

ðA11Þ

Notice that C1 ¼ trfÎIðŷyÞĴJðŷyÞ�1g and TIC ¼ CðŷyjYÞ þ trfÎIðŷyÞĴJðŷyÞ�1g. Thus,

E �
y ½TIC� ¼ E �

y ½CV� �
1

n
E �
y ½C2� þ

1

2
E �
y ½C3�

� �
þOðn�2Þ:

By using ŷy ! y0, ĴJðŷyÞ ! Jðy0Þ, and K̂KðŷyÞ ! Kðy0Þ, we obtain

E �
y ½C2� ¼

1

n

Xn
i¼1

�
E �
y ½gðyijŷyÞ

0ĴJðŷyÞ�1HðyijŷyÞĴJðŷyÞ
�1gðyijŷyÞ�:

� 1

2
E �
y ½gðyijŷyÞ

0ĴJðŷyÞ�1K̂KðŷyÞf½ĴJðŷyÞ�1gðyijŷyÞ�n ½ĴJðŷyÞ�1gðyijŷyÞ�g�
�

¼ g2 �
1

2
g3 þOðn�1Þ;

E �
y ½C3� ¼

1

n

Xn
i¼1

E �
y ½gðyijŷyÞ

0ĴJðŷyÞ�1HðyijŷyÞĴJðŷyÞ
�1gðyijŷyÞ� ¼ g2 þOðn�1Þ;
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where

g2 ¼ E �
y ½gðyjy0Þ

0Jðy0Þ�1Hðyjy0ÞJðy0Þ�1gðyjy0Þ�;

g3 ¼ E �
y ½gðyjy0Þ

0Jðy0Þ�1Kðy0Þf½Jðy0Þ�1gðyjy0Þ�n ½Jðy0Þ�1gðyjy0Þ�g�:

Thus,

E �
y ½TIC� ¼ E �

y ½CV� �
1

2n
ð3g2 � g3Þ þOðn�2Þ: ðA12Þ

Equations (A10) and (A12) lead to the following theorem.

Theorem A.2. Under a certain set of regularity conditions, the bias of TIC

is expanded as

RPD � E �
y ½TIC� ¼ � 1

2n
ðg1 � 3g2 þ g3Þ þOðn�2Þ:

A.3. Proof of example 1

The discrepancy function corresponding to the multivariate normal dis-

tribution is

cðyjyÞ ¼ 1

2
fp logð2pÞ þ logjSj þ ðy� mÞ0S�1ðy� mÞg;

where y ¼ ðm 0; vechðSÞ0Þ with vechðAÞ being the vector of stacking the distinct

elements of an symmetric matrix A columnwise. Let Dp be the duplication

matrix such that vecðAÞ ¼ Dp vechðAÞ (see [19 p. 48]). Then, the correspond-

ing rðyÞ in (8) is given by

rðyÞ ¼ 1

2
ðIp D 0

pDpÞ
2S�1ðm� m�Þ

vechðS�1 � S�1fS � þ ðm� m�Þðm� m�Þ0gS�1Þ

� �
:

It is well known that the MLE of y is ŷy ¼ ðy 0; vechðSÞ0Þ0, where y and S

are the sample mean and covariance matrix given by (23). On the other hand,

the ith jackknife estimator of y is ŷy½�i� ¼ ðy 0
½�i�; vechðS ½�i�Þ 0Þ 0, where y½�i� ¼

ðn� 1Þ�1Pn
j0i yj and S ½�i� ¼ ðn� 1Þ�1Pn

j0iðyj � y½�i�Þðyj � y½�i�Þ
0. Fujikoshi

et al. (2003) gives

y½�i� ¼ y� 1

n� 1
ðyi � yÞ; S ½�i� ¼

n

n� 1
S � 1

n� 1
ðyi � yÞðyi � yÞ0

� �
:
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Therefore, ŷy½�i� � ŷy becomes

ŷy½�i� � ŷy ¼ 1

n� 1

�ðyi � yÞ

vechðSÞ � n

n� 1
vechððyi � yÞðyi � yÞ0Þ

0
@

1
A:

Notice that vechðAÞ0D 0
pDp vechðBÞ ¼ trðB 0AÞ ¼ trðA 0BÞ for symmetric matrices

A and B. It follows from the definition of R1 in (11) that

R1 ¼
n

2ðn� 1Þ2
fE �

y ½trðS �S�1Þ� þ E �
y ½ðy� m�Þ0S�1ðy� m�Þ� � pg:

Jensen’s inequality implies E �
y ½trðS �S�1Þ�b np=ðn� 1Þ > p, and thus R1 > 0.

A.4. Proof of theorem 2

It follows from (A9) and (A7) that

ŷyiðlÞ ¼ ŷy½�i� þ
1

n
ðl� 1Þz1; i þ

1

n2
ðl2 � 1Þz2; i þOpðn�3Þ; ðl ¼ Oð1ÞÞ; ðA13Þ

where z1; i and z2; i are given by (A8). Using the expansion (A13) after apply-

ing the Taylor expansion of CVðlÞ at ŷy½�i� yields

CVðlÞ ¼ CV þ ðl� 1ÞC1 þ
1

n
ðl2 � 1ÞC2 þ

1

2
ðl� 1Þ2C3

� �
þOpðn�3Þ;

where C1, C2 and C3 are given by (A11). Notice that E �
y ½C1� ¼ Oð1Þ,

E �
y ½C2� ¼ Oð1Þ and E �

y ½C3� ¼ Oð1Þ. Using the expansion of E �
y ½CV� in (A10),

we obtain

E �
y ½CVðlÞ� ¼ RPD þ ðl� 1ÞE �

y ½C1�

þ 1

2n
fg1 þ 2ðl2 � 1ÞE �

y ½C2� þ ðl� 1Þ2E �
y ½C3�g þOðn�2Þ;

where g1 is given by (13). The first equation in (14) follows by noticing that

E �
y ½C1� ¼ g1 þOðn�1Þ. If l ¼ 1þOðn�1Þ, then l� 1 ¼ Oðn�1Þ and l2 � 1 ¼

Oðn�1Þ. Consequently,

E �
y ½CVðlÞ� ¼ RPD þ 1

2n
fg1 þ 2nðl� 1ÞE �

y ½C1�g þOðn�2Þ;

and from which the second equation in (14) follows.
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A.5. Derivation of redefining EIC

Notice that the bth bootstrap resample y?
b; i ði ¼ 1; . . . ; nÞ is one of

y1; . . . ; yn. Let db ¼ ðdb1; db2; . . . ; dbnÞ with dbi equal to the number of times

yi appears in the bth bootstrap resample. Then

Xn
i¼1

cðy?
b; ijyÞ ¼

Xn
i¼1

dbicðyijyÞ ¼ CðyjY ; dbÞ:

Thus, ŷy ?
b ¼ ŷyðdbÞ. Consequently,

Xn
i¼1

cðyijŷy ?
b Þ �

Xn
i¼1

cðy?
b; ijŷy ?

b Þ ¼
Xn
i¼1

cðyi j ŷyðdbÞÞ �
Xn
i¼1

dbicðyi j ŷyðdbÞÞ

¼
Xn
i¼1

ð1� dbiÞcðyi j ŷyðdbÞÞ

¼ CðŷyðdbÞ jY ; 1n � dbÞ: ðA14Þ

Substituting (A14) into (19) yields equation (20). The distribution property

db @Multinðn; 1=n; . . . ; 1=nÞ is the definition of the bootstrap sampling.

A.6. Proof of example 4

For the discrepancy function given by (22), we obtain by direct calculation

q

qm
CðyjY ; 1n � leiÞ ¼ �2SðxÞ�1fðn� lÞm� ðny� lyiÞg;

q

qx
CðyjY ; 1n � leiÞ ¼

q

qx
ðn� lÞF ðx jM iðm; lÞÞ;

where Fðxj�Þ is given by (24) and

M iðm; lÞ ¼
1

n� l

Xn
j¼1

ðyj � mÞðyj � mÞ0 � lðyi � mÞðyi � mÞ0
( )

:

Denote ŷyiðlÞ ¼ ðm̂miðlÞ
0; x̂xiðlÞ0Þ0. Solving the equation qCðyjY ; 1n � leiÞ=qm ¼

0p leads to

m̂miðlÞ ¼ y� l

n� l
ðyi � yÞ:
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Notice that

yj � m̂miðlÞ ¼

n

n� l
ðyi � yÞ ð j ¼ iÞ

yj � yþ l

n� l
ðyi � yÞ ð j0 iÞ

8>><
>>: : ðA15Þ

It follows from (A15) that M iðm̂miðlÞ; lÞ ¼ S iðlÞ, where S iðlÞ is given by (27).

Equation (22) implies

CVðlÞ ¼ np logð2pÞ

þ
Xn
i¼1

flogjSðx̂xiðlÞÞj þ ðyi � m̂miðlÞÞ
0Sðx̂xiðlÞÞ�1ðyi � m̂miðlÞÞg;

where x̂xiðlÞ is given by (26). Substituting (A15) into the above equation yields

(25).

A.7. Derivation of EIC in example 5

Notice that ŷyðdbÞ is the minimizer of CðyjY ; dbÞ and 1 0
ndb ¼ n. With the

discrepancy function given by (22), by direct calculations we obtain

q

qm
CðyjY; dbÞ ¼ �2SðxÞ�1ðY 0db � nmÞ;

q

qx
CðyjY; dbÞ ¼

q

qx
ðn� lÞFðx jMðm; dbÞÞ;

where FðxjSÞ is given by (24) and

Mðm; dbÞ ¼
1

n
ðY � 1nm

0Þ 0 diagðdbÞðY � 1nm
0Þ:

Denote ŷyðdbÞ ¼ ðm̂mðdbÞ0; x̂xðdbÞ0Þ0. Solving the equation qCðyjY ; dbÞ=qm ¼ 0p
leads to

m̂mðdbÞ ¼
1

n
Y 0db: ðA16Þ

Substituting (A16) into Mðm; dbÞ yields M iðm̂mðdbÞ; dbÞ ¼ SðdbÞ, where SðdbÞ is

given by (32). Notice that the EIC under the candidate model M in (21) is

EIC ¼ nFðx̂xjSÞ þ np logð2pÞ þ n

B

XB
b¼1

trfMðm̂mðdbÞ; 1n � dbÞSðx̂xðdbÞÞ�1g;
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where x̂x is given by (28). Substituting (A16) into Mðm; 1n � dbÞ yields

Mðm̂mðdbÞ; 1n � dbÞ ¼ VðdbÞ in (31), which further leads to (29).
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