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ABSTRACT. In this paper, we define a class of cross-validatory model selection criteria
as an estimator of the predictive risk function based on a discrepancy between a
candidate model and the true model. For a vector of unknown parameters, n
estimators are required for the definition of the class, where n is the sample size. The
ith estimator (i =1,...,n) is obtained by minimizing a weighted discrepancy function
in which the ith observation has a weight of 1 — 1 and others have weight of 1.
Cross-validatory model selection criteria in the class are specified by the individual A.
The sample discrepancy function and the ordinary cross-validation (CV) criterion are
special cases of the class. One may choose 1 to minimize the biases. The optimal 4
makes the bias-corrected CV (CCV) criterion a second-order unbiased estimator for the
risk function, while the ordinary CV criterion is a first-order unbiased estimator of the
risk function.

1. Introduction

Let y;,...,y, be random vectors from a p-dimensional population y
whose probability density function ¢(y) is unknown, where n is the sample
size. Suppose that the true model can be expressed as

M* oy, .y, ~iidd. e(y). (1)
Consider a family of parametric models # = {f(y|0);0 € @ = R}, where 0 =
(01,...,0,)" is a g-dimensional vector of unknown parameters. This implies
that a candidate model is given by

M:y,....,y,~iid. f(y|0). (2)
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Most model selection criteria (or information criteria) for determining the best
model among all candidate models are estimators of the predictive risk function
based on the discrepancy between the candidate model and the true model.
For example, Akaike’s information criterion (AIC; [1, 2]), Takeuchi’s bias-
corrected information criterion (TIC; [24]), and the extended information
criterion (EIC; [14]) are estimators of the predictive Kullback-Leibler (K-L)
discrepancy [16]. On the other hand, the cross-validation (CV) criterion
[22, 23] serves as an estimator of the predictive risk function based on an
arbitrary discrepancy, e.g., K-L discrepancy, L, distance, and density power
divergence [6].

In this paper, we propose a class of model selection criteria by the cross-
validatory method. For a given discrepancy, n estimators of # are required to
define the class. The ith estimator (i = 1,...,n) is obtained by minimizing a
weighted discrepancy function in which the ith observation has a weight of
1—24(0<A<1) and others have weights of 1. Each A represents a cross-
validatory model selection criteria. The sample discrepancy function and
the ordinary CV criterion correspond to 1 =0 and 1, respectively. From
the viewpoint of second order asymptotics for biases, the optimal 1 can be
expanded as A=1—1/(2n) + O(n=2). The optimal A yields a bias-corrected
CV (CCV) criterion that corrects the bias to O(n~2) while the bias of the
ordinary CV criterion is O(n~!'). The CCV criterion extends the result of
Yanagihara, Tonda and Matsumoto [29], which consists of the K-L discrepancy.

In §2, we define the class of cross-validatory model selection criteria and
study its mathematical properties. In §3, we describe other model selection
criteria and their properties. When the used model and discrepancy func-
tion are specified, expressions of the developed criteria are simplified. In §4,
we show an example of the developed criteria applied to selecting structural
equation models (SEM) under the normal distribution assumption. In §5,
via the Monte Carlo method, we check the mathematical properties of the
developed model selection criteria and compare CV and CCV criteria with
other criteria such as AIC, TIC, and EIC. Conclusions and discussion are
given in §6. Technical details are provided in an appendix.

2. A class of cross-validatory model selection criteria

Suppose that y(p|@) is a discrepancy function for the candidate model M
in (2), which is typically a function of f(y|#). Let ¥(0|Y,w) be a weighted
discrepancy function defined by

YO1Y,w) = wih(30), 3)
i=1
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where Y = (y,...,»,) and w= (wy,...,w,)’. Then an estimator of @ is
obtained by minimizing the discrepancy function ¥(0|Y,w) in (3), i.e.,

O(w) = arg main Y(0)Y,w). 4)

It is easy to see that @(w) is the maximum likelihood estimator (MLE) of @
when (y|0) = —log f(»|@) and w=1,=(1,...,1)’. When

1
B

Y(0)Y,w) is the density power divergence [6]. An application of the density
power divergence can be found in Fujisawa and Eguchi [12]. For simplicity,
we use ¥(0]Y) = ¥(0|Y,1,) and 6 =6(1,). Furthermore, we write é[_i] =
0(1, — ¢;), where ¢; is an n-dimensional vector whose ith element is 1, and
the other elements are 0. Notice that é[_i] becomes the jackknife estimator
evaluated from the ith jackknife sample, which is obtained from Y by delet-
ing y;. Let wy,...,u, be p-dimensional random vectors from u ~ p(u) with
U= (u,... 7u,,)/, which is also independent from Y. It should be emphasized

that @ is a function of Y. We define a risk function based on the predictive
discrepancy ¥(0|) as

1

]
f(y|0) +1+ﬂ

Y(»l0) = J{ f(x]0)} Pdx,

Rep = E; E;[¥(01U)] = nE; E} [ (ul6)], (5)

where E; and Ej are expectations under the true model M* in (1) with respect
to y and u, respectively. In model selection based on y(y|@), we regard the
model having the smallest Rpp as the best model, which is typically different
from the true model. In many contexts of statistical modeling, the aim is to
determine the best model. Obtaining an unbiased estimator of Rpp will allows
us to correctly evaluate the discrepancy between data and model, which will
further facilitate the selection of the best model.

The simplest estimator of Rpp is the sample discrepancy function ¥(8|Y).
The CV criterion proposed by Stone [22, 23]

CV = "y(yl0y), (6)
i=1
is also an estimator of Rpp. Let
P 2
3 = — 0 H(y|9) = —— 0 7
9(319) = 2501 >\ (019) = sgzg V10| ™

and

r(0) = Elg(v10)],  1(0) = E;lg(y[0)g(0)],  J(0) = EJ[H(yl0)]. (8)
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Let @y be the minimizer of E;[/(y|0)], which satisfies
r(6) =0, 9)

where 0, is a vector of ¢ zeros. Suppose that V(0 — 6,) = 0,(1) as n — oo,
which holds under a certain set of regularity conditions, as specified in [25].
The matrix I(f,) is called the Fisher’s information matrix when y(y|0) =
—log f(y|0). Because E;[y(y|f)] is the minimum at 6o, J(0y) becomes
positive semidefinite. In this paper, we assume that J()) is positive definite.

Let 6,(2) (0</.<1) be the estimator of #, which is obtained by
minimizing the weighted discrepancy function ¥(0|Y,1, — Je,), ie., 6;()) =
é(ln—lei). With weight 1, — Je;, the effect of the ith observation y; on
0,(2) decreases as A increases. The estimator ;(1) includes the ordinary
estimator and the ith jackknife estimator as special cases, i.c., é,—(O) =0 and
0,(1) = é[,,»]. Replacing 8 by 6;(4), we define the following cross-validatory
model selection criterion:

V() =S U0, (0<i<1). (10)
i=1
Let
9, = {E}[CV(2)] |0 < A< 1},
and
R =3 Er0) 0y -0),
'j (11)
Ry =Y E;[(6_5 — 0)'J(0:)) 0y — )],
i=1
where
0:(6) = 0+0,0.1-0).  (i=1,....n), (12)

with d; € (0,1). The following theorem characterizes the properties of CV(1)
(the proof is given in Appendix A.1).

THEOREM 1. The model selection criterion CV(A) has the following proper-
ties:
(1) CV(0) = ¥(0)Y) and CV(1) = CV.
(2) CV(J) is an increasing function of A
(3) nE;[Y(»|00)] € %,
(4) RPD € g@ when R1 + R2/2 > 0.
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Appendix A.2 provides the detail leading to R; = O(n~2) and R, =
71 + O(n=2), where y, is given by

71 = uw{I(60)J(60)~"}. (13)

Because J(6y) is positive definite, y, is positive. Thus, R + Ry/2 > 0 asymp-
totically holds. Consequently, Rpp € 4, when n is adequate. When (y|6)
is a strictly convex function of @, H(y|@) is positive semidefinite for any 6
and y (see e.g., [18, p. 49]). This directly implies that R, > 0 when (y|0) is
a strictly convex function of #. Thus, Rpp € 4, when R; > 0. Although the
order of R; is O(n™2), R; >0 holds under special cases, as in the following
example.

ExampLE 1. Suppose that the candidate model M and the true model M*
are given by

M:y,...,y,~iid N,(u2),
M*:y,...,y, ~iid. E[y] =p" and Cov[y] = X".

If the K-L discrepancy is used to define CV(1), Appendix A.3 shows that
R; > 0 always holds. Thus, Rpp € %,.

An important issue is how to choose 4. It follows from Theorem 1 that,
when Ry + Ry/2 >0, a 4 exists such that £;[CV(49)] = Rpp. However, since
/o depends on the unknown distribution ¢(y), it is very difficult to find the
exact 4gp. Even if we can obtain 4y somehow, it may be difficult to put it to
practice. This is because the optimal 4y may depend on cumulants of ¢(y).
It is difficult to obtain good estimates of higher-order cumulants even when 7 is
relatively large (see [27], for the case of kurtosis). Thus, an estimator of 4 that
does not involve higher-order cumulants is preferable. The following theorem
characterizes the bias of CV(1) (the proof is given in Appendix A.4).

THEOREM 2. Under a certain set of regularity conditions, the bias of CV(A)
is characterized as

(1=Ay; +0m™Y) (1 is independent of n)

Rpp — E;[CV(/I)} = (1 _2 _2_ln>y1 + 0(1’1_2) (/1 =1+ O(n—l))7

(14)

where vy, is given by (13).

If A=1—1/(2n), then the O(n~!) term in the bias of CV(4) in Theorem 2
vanishes. Thus, using second-order asymptotics, the optimal value of A4 is 4 =
1 —1/(2n) + O(n~2). Based on this, we propose a bias-corrected CV (CCV)
criterion as in the following theorem.
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THEOREM 3. Let a, € (0,1) that can be expanded as a,=1-—1/(2n)+
O(n=?), and

COV = CV(@) = 3 by | bilan). (15)
i=1

Then the bias of the CCV criterion is O(n=?), while the bias in the ordinary CV
criterion is O(n="). Because a, < 1, the CCV criterion is always smaller than
the ordinary CV criterion.

The CCV in (15) coincides with the CCV criterion in Yanagihara, Tonda
and Matsumoto [29] when ¥(y|@) = —2 log f(|0).

Since our assumption is that y,,...,y, are i.i.d., it may seem that Theorem
3 does not apply to selecting explanatory variables in regression models, which
are widely used in data analysis. Let y = (z/,x)’, where z is the vector of
response variables and x is the vector of explanatory variables. Then our
result immediately applies to the regression model. In order to calculate
CV(J), it is often necessary to obtain each 6;(1). However, CV(1) in the
linear regression model under the normal distribution assumption can be
derived using 0 alone, as in the following example.

ExampLE 2. Let z and x be m- and k-dimensional vectors and y =
(z/,x')'. Suppose that the candidate model M and the true model M* are
given by

M : Zi|xi ~ Nm(E,iiar)a
M*:y,,...,y, ~iid. E[y|=u" and Cov[y] = 2%,

where %; = (1, x))'. Notice that the MLEs of = and I are E=(XX)'X'z
and I'=2Z'{I,- X(X'X)"'X'}Z/n, where Z=(z,...,7,) and X =
(%1,...,%,)". Then, CV(A) in the case of ¥(y|0) = —2log f(y|0) is given by

52
CV(/I)—nlogF|+nmlog< ) Z 108{1__1/1_”)6)}

NI~ 2 2 !
+ 1 _ 1 1 _ 1 ,
( n) ; (1-— ic[)z { n(l— /lct)}

where ¢; = %/(X'X) % and #? = (z; — E'%)' T " (z: — E'%).

Yanagihara, Kamo, and Tonda [30] proposed a second-order bias-
corrected AIC, called CAICj, in multivariate linear models. The order of
the bias of CAICj is the same as that of CCV. However, CAIC; was obtained
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under the assumption that the explanatory variables x are nonstochastic, while
the condition here is that both the explanatory variables x and the response
variables z are stochastic.

For linear regression models, the well-known CV criterion is defined by
the predicted residual sum of squares. Our general formula also applies to this
case, and the CV(1) is given by the following example.

ExaMPLE 3. Let x be a k-dimensional vector and y = (z,x')".
that the candidate model M and the true model M* are

Suppose

M E[z,-|x,-] = ﬂ/.XN,',',
M*:y,...,y, ~iid. E[y| =p" and Cov[y] = X*,
where % = (1,x/)’. Notice that the least square estimator of f is given by

p=(X'X)"'X'z, where z=(z1,...,z,)' and X = (%,...,%,)’. Thus, CV()
in the case of the predicted residual sum of squares is given by

n 0/~ 2
5= il o .
vy 2{1 —/IJE;(X’X)I,\”ci}

3. Other model selection criteria

In this section, we discuss other criteria for selecting the best model among
all the candidate models using the general discrepancy function y(y|6#). The
AIC-type criterion can be defined by adding the number of parameters to the
sample discrepancy function as

AIC = ¥(0]Y) + q. (16)

However, unless y/(y|@) = —log f(y|#) and & contains ¢(y), (16) has a con-
stant bias in estimating Rpp. The TIC-type criterion corrects the bias of the
AIC-type criterion, reducing the bias to O(n~'). The TIC-type criterion is
given by

TIC = ¥(8|Y) + tr{1(0)J () '}, (17)
where
10) =23 gibgrid). 30 =1Smwie. (s

i—1 i—1

with g(-|-) and H(:|-) being given by (7). Although the order of the bias in
TIC is the same as that in the CV criterion, the bias of TIC tends to be larger
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than that of CV because tr{I(6)J(#)'} may contain a large bias. Actually,
Theorems A.1 and A.2 in Appendix A.2 show that the n~! term of the bias
in TIC contains more terms of higher-order moments than that of the CV
criterion.

The bootstrap method can also correct the bias of the AIC-type criterion.
The resulting criterion is called the EIC-type criterion. Let y;,,...,p;, be
the bth bootstrap resample from Y (b =1,...,B) and Hh be the estimator of 6,
where

0; = arg min ;w(yb,ilﬂ)-

Replacing the log-likelihood function by the discrepancy function /(y|@) in the
formula of Konishi [15], the EIC-type criterion can be defined by

O GRS STET IR SN S
b=1  i=1 i=1

By using random vectors distributed according to the multinomial distribu-
tion, we can rewrite the definition of EIC in (19). Let dj = (dp1,...,dp)’
(b=1,...,B) be random samples of size n from the multinomial distribution
Multi,(n;1/n,...,1/n). Then, the EIC in (19) is equivalent to the following
formula (the derivation is given in Appendix A.5):

B
EIC=¥(0|Y)+)  ¥(0(ds)| Y, 1, — dp). (20)

1
BiH

where 6(-) is given by (4). Because the bias of EIC is O(n~!), the order of
bias in EIC is the same as those in TIC and the ordinary CV criterion.
However, since EIC does not contain the term tr{I(6)J(8) '}, the bias of EIC
tends to be smaller than that of TIC. On the other hand, EIC involves more
computation than the CV criterion. Furthermore, EIC may behave poorly
when the sample size is small and the number of parameters is large. Caution
is needed when using EIC with small samples.

4. Specific expressions of model selection criteria

When the used model and discrepancy function are specified, expressions
of the developed criteria are simplified. In this section, we show specific
expressions of model selection criteria applied to selecting SEM under the
normal distribution assumption.
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SEM is a multivariate statistical technique designed to model the covari-
ance matrix by a structure with relatively few parameters (see e.g., [17], [32]).
The normal distribution assumption is typically used in the practice of SEM
and is the default option of all statistical software (AMOS, EQS, LISREL,
Mplus, SAS Calis). We will obtain the analytical expression of CV(1) when
the candidate model is from the normal family while the true model is
unknown.

Let the candidate model M and the true model M* be

M:y, ...y, ~iid N,(u,Z(E)),

(21)
M*:y,...,y, ~iid. E[y] =p" and Cov[y] = 2",

where u = (ul,...,up)/ and &= (517...,@1)/ are p- and g¢-dimensional un-
known vectors of parameters, respectively, and the true distribution of y is
unknown. Consider the K-L discrepancy with

Y (y]0) = —2log f(y|0)
= p log(2n) + log|Z(&)| + (y — ) Z(&) ' (v — m), (22)

where 6 = (¢',&')'. Let

.}_’:%zn:.)’i» S:%i:(yi_y)(yi_y)/v (23)
i=1 i=1
and
F(&|4) = log|X(&)| + tr{AZ(&) ™'} (24)

Then, the CV(1) defined in (10) is given by the following example (the proof
is given in Appendix A.6).

ExampLE 4. The CV(A) under the candidate model M in (21) is given by

CV(X) = np log(2r) + Z log| Z(6,(2))|

i=1

n

2
+(555) Lo 9 EED) - ) 23)

i=1

where &(4) is the estimator of & defined by

&(2) = arg min F(£|Si(2), (26)
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with

5= s - - no- ) @)

Browne and Cudeck [8], Cudeck and Browne [9] and De Gooijer [10]
proposed model selection criteria for selecting SEM, which are defined by the
cross-validation method, and Bandalos [5] studied performance of Cudeck and
Browne’s criterion by numerical simulations. In order to calculate above three
criteria, it is necessary to split the data set into the calibration sample and the
validation sample at random. In many cases, the calibration sample is defined
to the same size as the validation sample. Therefore, it is difficult to apply
those criteria to the small sample. In CV(4), the size of calibration sample is 1
and the size of validation sample is » — 1. Consequently, CV(4) is more stable
under the small sample than those three criteria.

The following example provides the analytical expression for other model
selection criteria.

ExaMPLE 5. Let é be the estimator of & such that
¢ = arg min F(&S). (28)

Then, AIC, TIC, and EIC under the candidate model M in (21) are given
by

AIC = nF(&|S) + np log(27) + 2(p + q);
TIC = AIC - 2(p +¢) + 2 tr{SZ(&) '}
+u{2(Z(©) T @2 HeEHE@ @@ )
—vec(S)'(Z(&) ' @ X&) HQES)(Z(©) T ® (&) ) vec(S),

where

E\'—‘

Z (yi—=»)") vee((y;i = P) (i — ¥)"),

~2 -1
0(éls) = {;5 <z<é>>}{5§aé F@ >} {3 vz}

n

EIC = AIC —2(p + q) + 5 > tr{¥(d) Z(&(ds) "}, (29)
b=1

i

&=¢

&
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where
&(dy) = arg min F(&|S(dp)), (30)
v = v {1, - dingla) + - Qady 1y it Y. )
with
1o, 1,
S(dy) = ~Y diag(d,) — ~dpd; Y. (32)

The use of AIC for selecting the number of factors in the explanatory
factor model was discussed by Akaike [3]. TIC for selecting SEM models
under the normal distribution assumption was obtained by Yanagihara [26]
(another form of the TIC was given by Ichikawa and Konishi [13]). The
details leading to the expression for EIC are provided in Appendix A.7. For
an information criterion using a discrepancy other than KL discrepancy, see
e.g., [31].

5. Numerical examinations

In this section, we verify some properties of model selection criteria using a
Monte Carlo method. In particular, we compare CV and CCV criteria with
AIC, TIC, and EIC. Bayesian information criterion (BIC; [21]) and the con-
sistent Akaike’s information criterion (CAIC; [7]) are also frequently used for
model selection, but their expectations do not converge to Rpp. Thus, our
study will not include BIC and CAIC.

In designing the Monte Carlo, we let the candidate distribution be multi-
variate normal as in the previous section, while the true distribution varies.
Let y be the 6-dimensional vector defined by y =2 *1/ %¢, where

2100 00
1 21000
. 01 2000
2_001210
0001 21
00001 6

. S 1 2 .
We use Mardia’s multivariate skewnesses Kgl and Ké% and kurtosis Ki) (see

[20]) to measure the departure of the candidate distribution from the true
distribution. These are given by

1

k) = Eleler)’], k) = Ellele)(gle) (@), &y = El(e]en)?] - 48,
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where ¢ and &, are independent random vectors having the same distribution

of &.

Six populations or true models are created when the elements ¢ of &=
(e1,...,86)" are independently and identically distributed standardized variables
from each of the following six dlstrlbutlons
(1) Normal Distribution: & ~ N(0, 1), (K3 % = K3 3 =0 and K4 =0).

(2) Laplace Distribution: 8, is generated from the Laplace dlstrlbutlon with
mean 0 and standard deviation 1 (KQ = K323 =0 and K4 = 18).

(3) Uniform Distribution: ¢ is generated from the unlform dlstrlbunon on
(=1,1), divided by the standard deviation 1/v/3 (K33 —K33 =0 and
k) = —7.2).

(4) Skew-Laplace Distribution: ¢; is generated from the skew-Laplace distri-
bution with location parameter 0, dispersion parameter 1 and skew param—
eter 1, standardlzed by mean 3/4 and standard deviation v/23/4 (ic2 5=
K33~732 and K'4 ) % 19.56).

(5) Chi-Square Distribution: ¢ is generated from the chi-square distribution
with 2 degrees of freedom standardized by mean 2 and standard deviation
2 (6§} = k3 = 12 and «}" = 36).

(6) Log-Normal Distribution: ¢; is generated from the lognormal distribution
such that log ¢ ~ N(0,1/2), standardized by mean el/ 4 and standard de-
viation \/eT2(eT2=1) (x§} = x{} ~17.64 and x| ~ 111.06).

The skew-Laplace distribution was proposed by Balakrishnan and Ambagas-

pitiya [4] (for the probability density function, see e.g., [28]). The distributions

in 1, 2, and 3 are symmetric, and distributions in 4, 5, and 6 are skewed.

A sample of size 20 is generated from y=2X *1/2; " The three candidate
models are:

Model 1, M, : y,,..., 0 ~ i.i.d. Ng(u,0>Is),
Model 2, My : y, ..., s ~ i.i.d. Ne(u, (6% — p)Is + plgly),
Model 3, M3 : y,..., yy ~ i.i.d. Ne(u, diag(o%,a%,a%,aﬁ,ag,aé)).

Because the sample size n (= 20) is rather small compared with the dimension
p (=0), the saturated model, i.e., y;,..., yy ~ i.i.d. Ng(u, 2), is not consid-
ered here. Since 2™ # X'(£) for any & in any of the candidate models, all the
candidate models are misspecified. We use the K-L discrepancy to select the
best model among the three candidates. For each of the candidate models and
distributions, results of Appendix A.3 imply that R; > 0 and R, > 0. Thus,
Rpp € 9, in all three models.

The number of replications is chosen as N, = 10,000. The following
quantities are evaluated at each replication: CV(4) with 1= 0.00,0.01,
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0.02,...,0.98,0.99,1.00;, CCV =CV(a,) with a,=/n/(n+1)=./20/21;
AIC; TIC; and EIC using B = 1,000 nested resamples. For each of the N,
0’s, R= 2,2:01 x//(u,-|é) with uy,...,uy being simulated from u = >*12¢ is also
obtained, where u; are independent of y;,...,y,. The average of R across
the N, replications, R, is regarded as the risk Rpp. Let IC be the average
of any of the above criteria; the relative bias and relative root mean square
error (RMSE) of the criterion are evaluated by
Relative Bias = R|_—_IC x 100,

R|

N. ' p 2
sV (R—1C)%/N,
Relative RMSE — \/ = 7 AT

The smallest IC at each replication for a given model is recorded, as are its
frequencies among the 10,000 replications.

Table 1 contains the risks (R) of all the candidate models at each true
distribution. Model 3 has the smallest risk when the true distribution is
normal and uniform; model 2 becomes the best when the true distribution is
Laplace, skew-Laplace, chi-square, or log-normal.

Figures 1 and 2 contain the plots of relative biases and RMSEs of CV(4)
against A, respectively. Figure 3 contains the frequencies of the model being
selected by CV(4). The plots in Figure 1 clearly show that there is an A
which makes CV(1) an unbiased estimator of Rpp. In all the figures, the
optimal Ay is close to 1.0 or approximately 1—1/(2n) =39/40. The bias
approaches 0 as 4 moves towards Ay, and departs from 0 as A moves away
from Ag. Larger biases of CV(1) are associated with more unknown param-
eters or larger multivariate kurtosis of the true distribution (Kil)). Comparing
the plots for Laplace and skew-Laplace distributions, we may notice that the
sizes of multivariate skewnesses Kéll and zcézg have little effect on the bias of

CV(Z). Similar to Figure 1, the plots in Figure 2 clearly show that, regardless

Table 1. Risk of each candidate model

True Distribution | Model 1 Model 2 Model 3
(1) 466.7 464.7 461.5
() 468.9 467.1 470.6
(3) 466.0 463.9 457.6
(4) 469.1 467.2 470.7
(5) 471.0 469.2 480.3
(6) 475.7 474.0 493.8
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Laplace Distribution

Fig. 1.
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Relative biases of cross-validatory model selection criteria

of the model and distribution, there exists an Ay € (0, 1) such that CV(4y) has
the smallest RMSE. Furthermore, Figure 3 shows that CV(1) tends to choose
model 3 for smaller A and model 2 for larger /.

Table 2 contains the relative biases, RMSEs, and the frequencies of each
of the models being selected by AIC, TIC, EIC, CV, and CCV criteria. The
table clearly shows that the CCV criterion has the smallest bias among all the
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Fig. 2. Relative RMSEs of cross-validatory model selection criteria

those of EIC, CV, and CCV criteria.

a
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Moreover, the CCV criterion not only improves the bias of the CV
criterion, but also its RMSE. The biases of AIC and TIC are greater than
In particular, AIC has a very large bias
when K4> is large. RMSE of EIC tends to be smaller than that of the CV
criterion, although the bias of EIC tends to be greater than that of the
Comparing Tables 1 and 2, CV and CCV select the model
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Fig. 3. Selection frequencies of cross-validatory model selection criteria

with the smallest risk most often. But AIC and TIC select model 3 most often
while the best model changes with the true distribution. Notice that the
frequency of choosing the best model by each criterion varies when the true
distribution changes. Table 3 contains the average frequencies of choosing
the best model by each criterion across all the true models. Among the 5
criteria, CCV chooses the best model most frequently; EIC and CV also work
well.
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Table 2. Relative biases, RMSEs, and selection frequencies of five information criteria

. Model 1 Model 2 Model 3
True | Cri-
Dist. | terion | Bias (RMSE Freq.) | Bias (RMSE Freq.) | Bias (RMSE Freq.)
AIC 0.52 43 0.0) 1.13 44 43.1) 0.99 4.2 56.9)
TIC | —-0.51 4.7 1.6) 0.12 4.8 35.7) 0.62 4.4 62.7)
(1) EIC 0.05 4.3 11.4) 0.08 (4.4 31.6) 0.16 4.2 57.0)
Cv | —0.08 43 13.5) | —0.10 44 31.8) | —0.16 4.2 54.6)
CcCcv 0.02 4.3 12.4) 0.02 (4.4 31.5) 0.05 4.2 56.1)
AIC 1.40 (6.3 0.0) 2.04 (6.6 37.2) 4.21 (7.0 62.8)
TIC | 271 (8.8 1.7) | —2.04 (88 263) | 225 (66 720
2 EIC 0.30 (6.5 19.6) 0.36 (6.7 38.6) 1.08 (6.4 41.7)
CV | —004 (67 244) | —0.07 (69  402) | —0.19 (7.0  35.4)
cCcv | 009 (67 228 | 009 (69 40.0) | 022 (68  37.2)
AIC 0.16 (3.1 0.0) 0.74 (3.2 47.0) | —0.50 (3.2 53.0)
TIC | 068 (3. 12) | 129 (33 438) | 011 (32  551)
(3) | EIC | =002 (3.0  44) | —0.02 (3.1 22.7) | =020 (3.1  72.8)
Cv | -0.08 (3.0 3.7) | —0.11 (3.1 20.9) | —0.15 (3.1 75.3)
ccv | 001 (30  33) | 000 (31 207) | 001 (31  76.0)
AIC | 139 (64  00) | 202 (66 378 | 416 (69  622)
TIC | —2.71 (9.6 1.8) | —2.08 9.5 26.8) 2.37 (6.8 71.5)
@) | EIC | 027 (68 197) | 030 (69 385 | 102 (67 419
Cv | -0.11 (71 24.7) | —0.15 (7.3 39.3) | —0.33 (7.6 36.0)
Cccv 0.03 (7.0 22.9) 0.02 (7.2 39.2) 0.12 (7.3 37.8)
AIC 2.06 (7.7 0.0) 2.74 8.0 32.2) 7.12 (9.6 67.8)
TIC | —434 (128 1.6) | -3.69 (127 19.6) 4.46 (8.8 78.8)
(5) EIC 0.37 (8.4 24.2) 0.46 (8.5 41.3) 1.73 (8.7 34.5)
CV | -0.25 (9.1 29.4) | —0.25 (94 41.1) | =0.55  (10.9 29.5)
CCV | —0.07 (9.0 272) | 004 (92  412) | 026 (100  31.6)
AIC 4.07 (105 0.0) 475 (109 27.1) | 11.65 (138 72.9)
TIC | —=6.10  (20.0 1.1) | =545 (199 13.4) 8.05 (124 85.5)
(6) | EIC | 122 (129 256) | 129 (132 42.1) | 372 (144  32.3)
Cv | -0.21 (165 30.6) | —0.26  (16.9 42.5) | -0.77 (219 26.9)
ccv 0.13 (155 28.7) 0.13  (15.8 42.3) 1.17 (159 29.0)

Table 3. Averages of frequencies of choosing the model having the smallest risk

Criterion
Average of Frequencies (%)

40.7

34.0

48.4

48.8  49.1

AIC TIC EIC CV CCV
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In addition to the results reported above, several other models were also
studied and similar results were obtained. While the frequency of choosing the
best model by each criterion changes with the true model/distribution, the best
criterion is mostly among EIC, CV and CCV.

6. Conclusion

In this paper, we defined the class of cross-validatory model selection
criterion CV(4) (0 <1 < 1), which includes the sample discrepancy function
and the ordinary CV criterion as special cases. CV(/1) is an increasing func-
tion of 1. 1In particular, under proper conditions, there exists an 4y € [0, 1] such
that CV(J) is unbiased for Rpp. Because R; = O(n~2) and Ry =y, + O(n~?)
with p; > 0, |R;| tends to be smaller than |R,|. Thus, Rpp € ¥, in most cases.
From the viewpoint of second-order asymptotics for the bias, A =1—1/(2n) +
O(n=?%) is optimal. We found that 1 = +/n/(n+ 1) worked well empirically.
In particular, without estimating any higher-order cumulants, such a 4 reduces
the bias in CCV to O(n~?). Such a result is especially valuable with small
samples, where any criterion involving higher-order cumulants will inevitably
perform poorly. The Monte Carlo results in the previous section verify the
merit of CCV. In addition to the CCV criterion, other second-order bias-
corrected criteria also exist. Those other criteria were generally obtained under
specified models and distributions. The CCV criterion here is obtained under
the general assumption, and can be applied broadly.

The aim of the CCV criterion is to minimize the bias in estimating Rpp.
More important theme is to have a criterion that selects the model with the
smallest risk. An unbiased estimator of Rgp does not necessarily lead to
the model with the smallest Rpp being selected most frequently. Fortunately,
the merits of least bias and selecting the best model both occur most frequently
with CCV. Thus, we recommend the use of the CCV criterion for general
model selection.

Appendix

A.1. Proof of theorem 1
PrOOF OF PROPERTY 1. We omit the proof because it is easy to verify.

PrROOF OF PrOPERTY 2. Let ¥;(0|Y,1) = ¥ (0|Y,1,— Je;), and 1; < A,.
Because 6;(1) minimizes %;(6|Y, 1), there exist

Pi(0(2)| Y, h) < Pi(0(2) | Y, hv),

Yi(0(32) | Y, ha) < Pi(0(01) | ¥, Ja).
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By using these relations we obtain

WO V) — 29 610)

= Wi(0(41) | Y, 1)

< V02| Y, )

= O02) | Y) — b1 8,002))

= Vi(0:(42) | Y, Jo) + (2 — 2 (3, | 0:(02))

< Wi(0:i(A)| Y, ha) + (2 — A (p; | 0:(32))

= WO0) | V) = 223 Bi00)) + (2 — A, 02)).
Thus,

D01 0) < Y01 6(2). (A1)
It follows from (Al) that
V() = Zim 16,0) < Ziwm 16,22)) = CV(3a).

Consequently, CV(2) is an increasing function of .

PrOOF OF PROPERTY 3. Because 9[,,~] minimizes Y ", ¥/(y,]0), there exists

j#i
ZW(J’/W[—:‘]) < Zt/f(y,lé)
J# J#
Thus,
E(y)|0 )] < (10, (G #1). (A2)
Let 6, be the minimizer of the discrepancy function based on y,,...,y,, and

% = E;[Y(y,10,)]. Then o,y = E;[Y(y;[0 )] and o, = EJ[Y(y;0)]. Tt fol-
lows from (A2) that o,_; < a, for any n. Thus, , monotonically increases.
Let »(0) = E;[y/(|0).. Then lim, .. o, = () follows from 6, — 6.
Therefore, o, is bounded and monotonically increases. This directly implies
that o, < y(6p) and

EJ[CV(0)] < nE;[y(»|00)]. (A3)
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On the other hand, when 6y is the minimizer of (@), there must exist
»(0) < (@) for any 6. Thus, y(6y) < E;[(y;/0 )], or equivalently

nEy [y (y160)] < EZ[CV(1)]. (A4)
Equations (A3) and (A4) imply nE;[/(y|00)] € %;.

PrOOF OF PROPERTY 4. We will first show E;[CV(0)] < Rpp, where Rpp
is given by (5). Let Oy be the minimizer of ‘P(G\U) Because U and Y are
identically distributed, E;E;[¥ (Oy|Y)] = EJE; [V 0|U)) = Rpp. The property
E;[CV(0)] < Rpp follows by noticing that CV(0) = ¥(0]Y) < ¥(0y|Y). We
next show that Rpp < Ey*[CV(l)] when R; + Rz/? >0, where R, and R, are
given by (I1). Notice that CV(1)=CV and 6_; and y,; are independent.
Because the distribution of w; is identical to that of y;, E;[y(yil0-y)]=

EJES W (u1|0 7)].  Applying the Taylor expansion at 0, we obtain

n

> (w6 Zwu,w +Zgu,|0 - 0)

i=1

ZZ 0)'H (u;|0,(6,)) (6 — 0),
where 0;(5;) is given by (12). Thus,
1
E; [CV] = Rpp + R + ERz. (AS)

Consequently, Rpp < E;[CV(1)] whenever R; + Ry/2 > 0.

A.2. Expansions of biases of CV and TIC
Let

0 o?
L(y|%) = 20 ® 2000 lﬁ(y|0)|9:3,

and
KO)= ELO0).  KO)=13 L0)
i=1

Because (/) is the minimizer of ¥(6|Y,1, — Je;), there exists

S a0 16:0)) = 29031 6:01), (A6)
=
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where g(-|-) is given by (7). The following stochastic expansion is needed

. yi 22
6.(0)=0+= z1,+;zz.,~+0p(n‘3), (A7)

where A= O(1) and z;; and z,; are to be determined. Applying the Taylor
expansion to both sides of (A6) at @, replacing 6;(1) by (A7), and compar-
ing the O(n™') and O(n=2) terms in both sides of the resulting equation in
sequence, we obtain

2.0=J(0)"'g(v10),
g o, (A8)
o= J0) B30~ 3K(6) vectan el )}

where H(|) and J(@) are given by (7) and (18), respectively. Notice that
#;(1). Substituting 1 =1 into (A7), we obtain the stochastic expansion
of 0[_,] as

. | 1
0[71-] :0+2z1,,’+ﬁz2,[+0p(}’173). (Ag)

In order to calculate the asymptotic expansion of the bias of the CV
criterion in (6), we first substitute the stochastic expansion of 9[,,»] in (A9)
into R; and R, where R; and R, are given by (11); we then use the relation
0:(6;) — 09, where 0;(5;) and 6 are given by (12) and (9), respectively. These
two steps yield

a2 B[y (s1 ) |+ 00

1 n
=52 B[z, J(00)z] ) + O™,
i=1

where r(-) and J(-) are given by (8). Notice that ) ;" 1g(yl|6?) =0, due to 0
being the minimizer of ¥(0|Y). Thus,

> Er6) 7. = E;
i=1

Moreover, from 0— 0y and r(6y) = 0,, the second term in the expansion of R;
is expanded as

r(0)'J(6) ig(y,wé)] =
i=1

I )
EZI:EJ,[V(H)’Q,: 2ZE [1(00)'zi2] + O(n™?) = O(n?).
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Consequently, R; = O(n~2). Using § — 6, and J(8) — J(6,), R, is expanded
as

o ZE (51160)'7(00) ™' T (00)J (B0) "' g(¥:160)] + O(n"?)

1
=N + 0(”72),
n

where 7, is given by (13). Substituting the above two results into (AS5) yields
the following theorem.

THEOREM A.l1. Under a certain set of regularity conditions, the bias of the
CV criterion is expanded as

Rep — E{[CV] = 33, + O(n™?). (A10)

Using Theorem A.1, we can easily obtain an expansion of the bias of TIC
n (17). Applying the Taylor expansion of CV at @ yields

- 1 1
CV=¥0Y) + i+ (C+ 3G+ 0,070

where C;, C,, and C; are given by

1 & AN/ 5N 9\
Ci ZEZg(yi\ﬂ) an G :EZg(y,-lﬂ) .0
i=1 i=1
ZZ1, yt|0 2L,

Notice that C; = tr{I(8)J()"'} and TIC = ¥(0|Y) + tr{I(6)J(6)'}. Thus,

(Al1)

E;[TIC] = E;[CV] — % { 1G] + ;Ey [C3) } +0(n?).

By using § — 6, J() — J(6), and K(6) — K(6,), we obtain

B 1G] =13 { 5 l0(0/0) 70 H(3/0)0) 'a(y0)]

i=1

- %E;‘[g(yflé)/f(é)’lk(é){[f(é)’lg(yilé)] ® [J(é)ly(yilé)]}]}

1 _
=" 753)3 + O(n 1)7

E1C] = LS Eila(1)0)3(0) ' H(y 03 (0) a(0)8)] = 72 + O™,
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where

v2 = E;[g(»100)'J(00) " H(y100)J (66) ' g(¥160)],
v3 = E;[g(¥100)'J(06) ' K (00){[J(00) 'g(¥100)] ® [J(80) " g(¥]60)]}]-

Thus,

E;[TIC] = E;[CV] — % (3, — 73) + O(n™2). (A12)

Equations (A10) and (A12) lead to the following theorem.

THEOREM A.2. Under a certain set of regularity conditions, the bias of TIC
is expanded as

* 1 —
Rpp — E;[TIC] = _5(3’1 — 37,4 73) +0(n™?).

A.3. Proof of example 1

The discrepancy function corresponding to the multivariate normal dis-
tribution is

W(310) = 5 {p log(2) +loglZ| + (y ) E " (y ~ )},

where @ = (u',vech(X)’) with vech(4) being the vector of stacking the distinct
elements of an symmetric matrix 4 columnwise. Let D, be the duplication
matrix such that vec(4) = D, vech(A4) (see [19 p. 48]). Then, the correspond-
ing r(@) in (8) is given by

o) , 25 N u— )
=30 20 anz_rz e wa—wy)

It is well known that the MLE of 0 is @ = (j/,vech(S)')’, where 7 and S
are the sample mean and covariance matrix given by (23). On the other hand,
the ithi{'ackfnife estimator of € is 701[_,4] = (yf’i]’YeCh(S[—i])?/’ “,,here .J?H] =
(n—1) Zj;éiyj and S|_j=(n—1) Zj;&i(yj = V) = ¥i_g)’.  Fujikoshi
et al. (2003) gives
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Therefore, é[,i] — 0 becomes

0 —0=

1 (=¥
n =1\ veeh(s) - vech((y; = 7)(y; = 7)) |
Notice that vech(4)'D,D, vech(B) = tr(B'4) = tr(A'B) for symmetric matrices

A and B. It follows from the definition of R; in (11) that

Ry = ﬁ{E;[tr(z*S—l)] JrE;[(j"—ﬂ*),S_l(j)—ﬂ*)} b

Jensen’s inequality implies E*[tr(Z*S™")] = np/(n — 1) > p, and thus R; > 0.

A.4. Proof of theorem 2
It follows from (A9) and (A7) that

G()=0g+ G Vet (2 = e+ 0,(n7), (1= 0(1)), (AI3)

where z;; and z»; are given by (A8). Using the expansion (A13) after apply-
ing the Taylor expansion of CV(4) at 6_; yields

CV(A) =CV+ (41— 1)C +%{(12 e %(z - 1)2c3} +0,(n7%),

where C), C; and C; are given by (All). Notice that E;[Ci]= O(1),

E;[G] = 0O(1) and E;[C5] = O(1). Using the expansion of E;[CV] in (A10),
we obtain

EJ[CV(A)] = Rep + (4 — DES[C]
1
5o {0 + 227 = DEJG] + (2= 1) E][G]} + 0(n™?),
where 7, is given by (13). The first equation in (14) follows by noticing that
ECl=y4+0n"). If A=1+0(n""), then A—1=0(n"") and 1* - 1=
O(n~'). Consequently,

E{ V() = Ren + 5 (1 + 200~ DE]CI} + 00,

and from which the second equation in (14) follows.
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A.5. Derivation of redefining EIC

Notice that the bth bootstrap resample y;, (i=1,...,n) is one of
Yis---s ¥, Let dyp = (dp1,dpa, ..., dp,) with dp; equal to the number of times
y; appears in the bth bootstrap resample. Then

D Vi) = diib(vil0) = ¥(O]Y dy).
=1 =1
Thus, é; = 0(dy). Consequently,

Zlﬁ(yiléff)—z (v5.167) Zlﬁy,lﬂdb de (v;16(ds))
i=1 i=

i=1
= Z 1= dy)(y; | 0(ds))
= V(0(dy) | Y, 1, — dy). (Al4)
Substituting (A14) into (19) yields equation (20). The distribution property
dy, ~ Multi,(n;1/n,...,1/n) is the definition of the bootstrap sampling.
A.6. Proof of example 4

For the discrepancy function given by (22), we obtain by direct calculation

i 'II(0|Y7 1, - }vei) = _22(‘:)71{01 - )*):u - (”)_} - }'yi)}a

0 0 ,
% Y(0\Y,1,— e;) = (3_6(’1 —WF(EIM;(p 1)),

where F(£|-) is given by (24) and

M;(pn,2) = ni/l {zn:(yj —ﬂ)(yj _,”)/ — Ay — ) (y; _ﬂ)/}-

Denote 0;(2) = (ji;(2),&(4)"). Solving the equation d¥(0|Y,1, — Je;)/ou =
0, leads to
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Notice that

¥, — (3 = S (A15)
yp=yt =y U#0)

It follows from (A15) that M;(i; (1), ) = Si(4), where S;(1) is given by (27).
Equation (22) implies

CV(4) = np log(2n)

> {10glZE U]+ (3~ A0 FE) 3~ AU,

where &) is given by (26). Substituting (A15) into the above equation yields
(25).

A.7. Derivation of EIC in example 5

Notice that @(d,) is the minimizer of ¥(0|Y,d,) and 1)d, =n. With the
discrepancy function given by (22), by direct calculations we obtain

0
awwwﬂw:—uwy%r@—wp

SWO1Ydy) = 20— DF(E| M. dy),

where F(&|S) is given by (24) and
1 .
M(pdp) = (Y — L) diag(dy)(Y — L,p').

Denote 0(d,) = (ii(dy)', &(d)")’. Solving the equation 0¥(0|Y,d,)/du =0,
leads to

Aldy) = % Y'd,. (A16)

Substituting (A16) into M (u,d;) yields M;(i(dy),d,) = S(dy), where S(d,) is
given by (32). Notice that the EIC under the candidate model M in (21) is

o

EIC = nF(&|S) + np log(2n) + Z tr{ M (g(dy), 1, — dp) Z(&(dy)) '},

b=1

ol =
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where & is given by (28). Substituting (A16) into M(u,1,—dp) yields
M (a(dy),1, —dy) = V(dp) in (31), which further leads to (29).

(1]

(5]
(6]
(7]
(8]
(9]
(10]

(11]
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