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Abstract. As a mathematical model of n-membered ringed hydrocarbon molecules,

we consider closed chains in R3. Assume that the bond angle y satisfies n�4
n�2 p <

y < n�2
n
p when n ¼ 5; 6; 7, and that 5

7 pa y < 3
4p when n ¼ 8. Then the configuration

space Cn of the model is homeomorphic to ðn� 4Þ-dimensional sphere Sn�4. By this

result, it is possible for approximating larger macrocyclic molecules by smaller ones to

be more widely applied.

1. Introduction

In Mathematics, the study of configurations of closed chains has been

considered from a topological, an algorithmic or a kinematic viewpoint. See,

for example ([2], [6], [8], [10], [11], [12], [15], [17]). As a mathematical model

of n-membered ringed hydrocarbon molecules, we consider closed chains in R3

with rigidity ([3], [5], [9], [14]).

A closed chain is defined to be a graph in R3 having vertices

fv0; v1; . . . ; vn�1g and bonds fb1; b2; . . . ; bn�1; b0g, where bi connects vi�1

with vi ði ¼ 1; 2; . . . ; n� 1Þ and b0 connects vn�1 with v0. For the sake of

simplicity, let bond vectors vi � vi�1 be denoted by bi ði ¼ 1; 2; . . . ; n� 1Þ and

v0 � vn�1 be denoted by b0.

We fix y, and put 3 vertices v0 ¼ ð0; 0; 0Þ, vn�1 ¼ ð�1; 0; 0Þ, vn�2 ¼
ðcos y� 1; sin y; 0Þ. We define a configuration space of closed chains by

the following:

Definition 1. We define fk : ðR3Þn�3 ! R by fkðv1; . . . ; vn�3Þ ¼
1
2 ðkbkk � 1Þ for k ¼ 1; . . . ; n� 2, and gk : ðR3Þn�3 ! R by g1ðv1; . . . ; vn�3Þ ¼
h�b0; b1i� cos y, gkðv1; . . . ; vn�3Þ ¼ h�bkþ1; bkþ2i� cos y for k ¼ 2; . . . ; n� 3,

where h ; i denotes the standard inner product in R3 and k � k the standard

norm kxk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
hx; xi

p
. We call y a bond angle.

Then the configuration space Cn is defined by the following;

Cn ¼ fp A ðR3Þn�3 j f1ðpÞ ¼ � � � ¼ fn�2ðpÞ ¼ g1ðpÞ ¼ � � � ¼ gn�3ðpÞ ¼ 0g:
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We call fk, gk rigidity maps. Rigidity maps determine bond lengths and angles

of a closed chain in Cn. The closed chains in Cn are equilateral polygons in

R3 with n vertices such that the bond angles are all equal to a given angle y

except for two successive ones.

The standard bond angle of 5,6,7-membered ringed hydrocarbon molecules

is equal to 7
12 p, cos�1

�
� 1

3

�
, cos�1

�
� 1

3

�
, respectively. Then the configuration

space Cn is homeomorphic to ðn� 4Þ-dimensional sphere Sn�4 for n ¼ 5; 6; 7

([4]).

We need to study the condition of the bond angle to satisfy that a config-

uration space Cn of the model is homeomorphic to ðn� 4Þ-dimensional sphere

Sn�4 in order to approximate larger macrocyclic molecules by smaller ones as

in [3], [5] and [14].

We obtain the following theorem:

Theorem 1. Assume that the bond angle satisfies n�4
n�2 p < y < n�2

n
p when

n ¼ 5; 6; 7 and that 5
7 pa y < 3

4 p when n ¼ 8. Then the configuration space Cn

is homeomorphic to ðn� 4Þ-dimensional sphere Sn�4 when n ¼ 5; 6; 7; 8.

This note is arranged as follows. In Section 2 we prove preliminary

results for the proof of Theorem 1. In Section 3 we prove Theorem 1.

In the following sections, we assume that n�4
n�2 p < y < n�2

n
p when n ¼ 5; 6; 7

and that 5
7 pa y < 3

4p when n ¼ 8.

2. Preliminaries

We need the following lemmas in the proof of Theorem 1.

Lemma 1.

(1) When n ¼ 5; 6; 7, any closed chain in Cn does not have the local

configurations of successive three bonds bk, bkþ1 and b2 (k ¼ 0; 3) that

the bond vectors satisfy bk þ bkþ1 ¼ lb2 for any nonzero l as in Figs.

1, 2, 3 and 4.

(2) When n ¼ 5; 6; 7; 8, any closed chain in Cn does not have the local

configurations of successive three bonds bk, bkþ1 and bkþ2 with bond

angles y that the bond vectors satisfy bk ¼ bkþ2 as in Fig. 5, where all

indices are modulo n.

(3) When n ¼ 5; 6; 7; 8, all vertices cannot be in one plane for each closed

chain in Cn.

(4) When n ¼ 5; 6; 7; 8, the configuration space Cn is not the empty set.

We call such local configurations as (1) and (2) the forbidden local config-

urations.
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Proof. (1) First, we give the proof in the case that k ¼ 0 and l > 0. By

using the similar argument, we can prove the case that k ¼ 3 and l > 0. We

consider a non-closed chain Gbn�1; 0; 1; 2
which consists of four bonds bn�1, b0, b1

and b2, and assume that Gbn�1; 0; 1; 2
has the configuration as in Fig. 1. Then,

the minimal value of the distance between vn�2 and v2 is given by the following

function of y:

f ðyÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ð1� 2 cos yÞ2 þ ð1� 2 cos yÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� 2 cos y

pq
.

When n ¼ 5, we have f ðyÞ > 1 (y A 1
3 p;

3
5 p

� �
) since f ðyÞ is a monotonic

increasing function of y. Thus, we cannot get any closed chains in C5 from

non-closed chain Gb4; 0; 1; 2 by adding a bond b3 even if we forget the restriction

of the bond angle at v3.

When n ¼ 6, we have f ðyÞ >
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2þ

ffiffiffi
2

pp
>

ffiffiffi
3

p
(y A 1

2p;
2
3 p

� �
) since f ðyÞ is a

monotonic increasing function of y. Since the maximal value of the distance

between v2 and v4 on two bonds b3, b4 is
ffiffiffi
3

p
we cannot get any closed chains

in C6 from non-closed chain Gb5; 0; 1; 2 by adding two bonds b3, b4.

When n ¼ 7, we consider a non-closed chain Gb5; 6; 0; 1; 2 which consists of five

bonds b5, b6, b0, b1, b2, and assume that Gb5; 6; 0; 1; 2 has the configuration as

in Fig. 1.

We assume that b6 is on x-axis and v6 is the origin. Then, the coor-

dinate of v4 is given by ðcos y� 1; x1 sin y; y1 sin yÞ ðx2
1 þ y21 ¼ 1Þ. Note

that the coordinate of v4 is changed into ðx1 sin2 yþ cos y� cos2 y;

sin yð1� cos y� x1 cos yÞ; y1 sin yÞ after rotational transformation by clock-

wise angle p� y at v6. On the other hand, the coordinate of v2 is given

Fig. 1. (1) The forbidden

local configuration for k ¼ 0

and l > 0

Fig. 2. (1) The forbidden

local configuration for k ¼ 3

and l > 0

Fig. 3. (1) The forbidden

local configuration for k ¼ 0

and l < 0

Fig. 4. (1) The forbidden local configuration

for k ¼ 3 and l < 0

Fig. 5. (2) The forbidden local configuration

bk ¼ bkþ2
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by tðyÞ cos 3ðp�yÞ
4

� �
þ 1; x2tðyÞ sin 3ðp�yÞ

4

� �
; y2tðyÞ sin 3ðp�yÞ

4

� �� �
, where tðyÞ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2� 2 cos
�
pþy
2

�q
and x2

2 þ y22 ¼ 1. Thus, we have the following inequality:

dðv4; v2Þb jcos y� cos2 yþ x1 sin
2 y� ð1� cos y

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� 2 cos y

p
Þj:

Let m be the minimal value of the distance between v4 and v2 on Gb5; 6; 0; 1; 2 ,

and gðyÞ a continuous function with respect to y defined by

gðyÞ ¼ jcos y� 2 cos2 yþ cos y
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� 2 cos y

p
j:

Then, since when x1 ¼ 1 the value of this function of x1 is the minimal value,

we have mb gðyÞ. Moreover, we have gðyÞ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� 2 cos y

p
> 0:13 > 0 by

calculating.

Thus, we cannot get closed chains in C7 from non-closed chain Gbn�2; n�1; 0; 1; 2

by adding two bonds b3, b4 by the restriction of the bond angle at v3.

Next, we give the proof in the case that k ¼ 0 and l < 0. By the similar

argument we can prove the case that k ¼ 3 and l < 0. We consider a non-

closed chain Gb0; 1; 2 which consists of three bonds b0, b1 and b2, and assume

that this chain forms the local configuration as in Fig. 3. We remark that the

distance between vn�1 and v2 is equal to
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� 2 cos y

p
� 1.

When n ¼ 5, we cannot get any closed chains in C5 from Gb0; 1; 2 by adding

two bonds b3, b4 since the distance between v2 and v4 on two bonds b3, b4 is

equal to
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� 2 cos y

p
by the restriction of the bond angle at v3.

When n ¼ 6, we cannot get any closed chains in C6 from the non-closed

chain Gb0; 1; 2 by adding three bonds b3, b4, b5 since the minimal value of the

distance between v2 and v5 on three bonds b3, b4, b5 is 1� 2 cos y.

When n ¼ 7, we consider a non-closed chain which consists of four

bonds Gb6; 0; 1; 2 constructed by adding b6 to Gb0; 1; 2 . By calculating we have

the inequality
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� 2 cos y

p
> dðv2; v5Þ.

On the other hand, the minimal value of the distance between v2 and v5 on

a non-closed chain consisting of b3, b4, b5 is given 1� 2 cos y.

Thus, since we have 1� 2 cos y >
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� 2 cos y

p
we cannot get any closed

chains by adding three bonds b3, b4, b5.

(2) When n ¼ 5, we consider a non-closed chain Gbk�1; k; kþ1
which consists

of three bonds bk�1, bk and bkþ1, and assume that this chain forms the local

configuration as in Fig. 5. The distance between vk�2 and vkþ1 is given by the

function hðyÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5� 4 cos y

p
of y.

On the other hand, we have hðyÞ >
ffiffiffi
3

p
since hðyÞ is a monotonic

increasing function. Thus, we cannot get any closed chains in C5 from

Gbk�1; k; kþ1
by adding successive two bonds since the distance between the end-

points is at most

ffiffiffiffiffiffiffiffiffiffiffiffi
ð3þ

ffiffi
5

p
Þ

2

q
(< 1:62).
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For n ¼ 6, we consider a non-closed chain Gbk�1; k; kþ1; kþ2
which consists of

four bonds bk�1, bk, bkþ1 and bkþ2, and assume that this chain has a local

configuration as Fig. 5 constructed by bk, bkþ1 and bkþ2. We may assume that

the bond angles of bk�1, bk, bkþ1 and bkþ2 are y. When n ¼ 6, for the distance

dðvk�1; vkþ3Þ between vk�2 and vkþ2 on Gbk�1; k; kþ1; kþ2
, we have dðvk�1; vkþ3Þb

2� 2 cos y > 2. Thus, we cannot get any closed chain in C6 by adding

successive two bonds.

For n ¼ 7; 8, we consider a non-closed chain Gbk�2; k�1; k; kþ1; kþ2
which consists

of five bonds bk�2, bk�1, bk, bkþ1 and bkþ2.

When n ¼ 7, we assume that the local configuration as Fig. 5 is con-

structed by bk�1, bk and bkþ1. Then we have two cases: k ¼ 0 (resp. k ¼ 2)

or k0 0 (resp. k0 2). If k ¼ 0 or k ¼ 2, then the minimal value of the

distance between vk�2 and vkþ3 on five bonds bk�2, bk�1, bk, bkþ1, bkþ2 is

1� 2 cos y. On the other hand, the maximal value of the distance between

vk�2 and vkþ3 on the other bonds is
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� 2 cos y

p
. Then, we have 1� 2 cos y�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2� 2 cos y
p

¼ 1� 2 cos y�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� 2 cos y

p
> 0. If k0 0 and k0 2, then for

the distance dðvk�2; vkþ3Þ between vk�2 and vkþ3 on Gbk�2; k�1; k; kþ1; kþ2
we have

dðvk�2; vkþ3Þb 2� cos y > 2. Thus, we cannot get any closed chain in C7 by

adding successive three bonds by the restriction of the bond angles at vk, vkþ1,

vkþ2.

When n ¼ 8, we assume that the local configuration as Fig. 5 is con-

structed by bk, bkþ1 and bkþ2. In the following, we may assume that the bond

angles of bk�2, bk�1, bk, bkþ1 and bkþ2 are y, since the bond angles of five

bonds bk�3, bk�2, bk�1, bk, bkþ1 or bk�1, bk, bkþ1, bkþ2, bkþ3 are y if the local

configuration as Fig. 5 is constructed by bk�1, bk and bkþ1.

Then, the coordinates of vk�3 and vkþ2 are given by ðcos y� cos2 yþ
x1 sin

2 y; sin yð1� cos y� x1 cos yÞ; y1 sin yÞ ðx2
1 þ x2

2 ¼ 1Þ and ð2� cos y;

x2 sin y; y2 sin yÞ ðx2
1 þ x2

2 ¼ 1Þ respectively, when the origin is vk�1 and bk
is on x-axis. By calculating we have dðvk�2; vkþ3Þ � 3 > 0. Thus, we cannot

get any closed chains in C6 (resp. C7, C8) by adding one bond (resp. successive

two bonds, successive three bonds) to Gbk�2; k�1; k; kþ1; kþ2
.

(3) We assume that all vertices are in one plane for any closed chain.

By forgetting the bond b2 from the closed chain, we have the non-closed chain

with the end points v1, v2. By Lemma 1 (2) we see that the successive three

bonds in the non-closed chain from the planar local configuration as in Fig. 6.

Fig. 6. The planar local configuration of the succcessive three bonds
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When n ¼ 5, the distance between v1 and v2 is equal to

j2 cos y
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2� 2 cos yÞ

p
j. Then, we have j2 cos y

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2� 2 cos yÞ

p
j < 1. When

n ¼ 6, the distance between v1 and v2 is less than 1. When n ¼ 7, the distance

between v1 and v2 is less than 1. When n ¼ 8, the distance between v1 and v2
is less than 1.

Since the distance between v1 and v2 is not equal to 1, all vertices cannot

be in one plane for each closed chain in Cn.

(4) We fix the point v1, and consider the non-closed chains with the end

points v1, v2. The distance function between v1 and v2 is continuous with

respect to v2; . . . ; vn�3. The distance function between v1 and v2 takes a value

less than 1 from the above argument. When vertices are not in one plane, it is

easy to see that the distance function between v1 and v2 can take a value greater

than 1. Hence, the configuration space Cn is not the empty set. r

Lemma 2.

(1) When n ¼ 6; 7; 8, any closed chain does not locally contain a planar

configuration with b2 ¼ b4 as in Fig. 7.

(2) When n ¼ 8, any closed chain does not locally contain a planar

configuration with l ¼ �2 cos y, ab2 ¼ bðb3 � ðlþ 1Þb4Þ for some

nonzero a, b and the angle a A 1
2 p; y
� �

at v2 as in Figs. 8, 9.

Proof. (1) First, we remark that the distance between v1 and v5 is given

by �2 cos y. For n ¼ 6; 7; 8 we consider a non-closed chain Gb2; 3; 4; 5 which

consists of b2, b3, b4 and b5, and assume that Gb2; 3; 4; 5 forms the configuration

as in Fig. 7.

When n ¼ 6, from 1
2 p < y < 2

3p we have
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� 2 cos y

p
> 1 > �2 cos y.

Thus, we cannot get any closed chains from Gb2; 3; 4; 5 adding two bonds by the

restriction of the bond angle.

Fig. 7. (1) The forbidden

local configuration b2 ¼ b4

Fig. 8. (2) The forbidden

local configuration ab > 0

Fig. 9. (2) The forbidden

local configuration ab < 0
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When n ¼ 7, the minimal value of the distance between v1 and v5 on b1,

b0, b6 is equal to 1� 2 cos y. Thus, we cannot get any closed chains from

Gb2; 3; 4; 5 adding three bonds b1, b0, b6 to Gb2; 3; 4; 5 .

When n ¼ 8, the coordinates of v1 and v5 on four bonds b6, b7, b0, b1 can

be represented by ðcos y� cos2 yþ x1 sin
2 y; sin yð1� cos y� x1 cos yÞ; y1 sin yÞ

and ð1� cos y; x2 sin y; y2 sin yÞ when the origin is v7 and b0 is on x-axis,

where x2
1 þ y21 ¼ 1 and x2

2 þ y22 ¼ 1 respectively. For the distance dðv1; v5Þ
between v1 and v5 on b6, b7, b0, b1, we have the inequality dðv1; v5Þþ 2 cos y> 0

for y A 5
7 p;

3
4 p

� �
).

This implies that we cannot get any closed chains from Gb2; 3; 4; 5 adding four

bonds b1, b0, b7, b6 to Gb2; 3; 4; 5 .

(2) First, we consider a non-closed chain Gb2; 3; 4; 5; 6; 7 which consists of six

bonds b2, b3, b4, b5, b6, b7, and assume that Gb2; 3; 4; 5; 6; 7 has the local config-

uration as in Fig. 8. When the origin is v5 and b5 is on x-axis, we have the

inequality dðv1; v7Þ > dðv2; v7Þb
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� 2 cos y

p
.

Thus, we cannot get any closed chains from Gb2; 3; 4; 5; 6; 7 adding two bonds

b1, b0 to Gb2; 3; 4; 5; 6; 7 since the distance between v1 and v7 on b1, b0 is no less thanffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� 2 cos y

p
.

Finally, we consider a non-closed chain Gb2; 3; 4; 5; 6 which consists of five

bonds b2, b3, b4, b5, b6, and assume that Gb2; 3; 4; 5; 6 forms the local config-

uration as in Fig. 9. We assume that b3 is on x-axis of which origin

is v2. Then, the coordinate of v6 is given by ð4 cos3 y� 2 cos2 y� 2 cos y;

sin yð4 cos2 y� 2 cos yÞ; 0Þ. Since the coordinate of v1 is ðcosðp� aÞ;
sinðp� aÞ; 0Þ, we have the inequality ð1� 2 cos yÞ2 � ðdðv2; v7ÞÞ2 > ð1� 2 cos yÞ2
�ðð4 cos3 y� 2 cos2 y� cos yÞ2þðsin yð4 cos2 y� 2 cos y� 1ÞÞ2Þ > 0.

Since the minimal value of distance between v1 and v6 on b1, b0, b7 is

equal to 1� 2 cos y, we cannot get any closed chains from Gb2; 3; 4; 5; 6 adding

three bonds b1, b0, b7 to Gb2; 3; 4; 5; 6 . r

By Lemmas 1 and 2, we obtain the following proposition:

Proposition 1. The configuration space Cn is an orientable closed ðn� 4Þ-
dimensional submanifold of R3n�9 when n ¼ 5; 6; 7; 8.

Proof. We define F : ðR3Þn�3 ! R2n�5 by F ¼ ð f1; . . . ; fn�2; g1; . . . ; gn�3Þ.
Then Cn ¼ F �1ðfOgÞ for O ¼ ð0; . . . ; 0Þ A R2n�5.

We show that O A R2n�5 is a regular value of F . So, it su‰ces to prove

that the gradient vectors ðgrad f1Þp; . . . ; ðgrad fn�2Þp, ðgrad g1Þp; . . . ; ðgrad gn�3Þp
are linearly independent for any p A F �1ðfOgÞ ¼ Cn, where ðgrad f Þp ¼�
qf
qxj

ðpÞ
�
j
. It is convenient to decompose the gradient vectors of fk and gk

into 1� 3 blocks. We have the following forms:
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ðgrad f1Þp ¼ ðb1; 0; . . . . . . ; 0Þ;

..

.

ðgrad fkÞp ¼ ð0; . . . ; 0;�bk; bk; 0; . . . ; 0Þ;

..

.

ðgrad fn�2Þp ¼ ð0; . . . . . . ; 0;�bn�2Þ;

ðgrad g1Þp ¼ ð�b0; 0; . . . . . . ; 0Þ;

..

.

ðgrad gkÞp ¼ ð0; . . . ; 0; bkþ2; bkþ1 � bkþ2;�bkþ1; 0; . . . ; 0Þ;

..

.

ðgrad gn�4Þp ¼ ð0; . . . ; 0; bn�2; bn�3 � bn�2Þ;

ðgrad gn�3Þp ¼ ð0; . . . . . . ; 0; bn�1Þ;

where bk denotes the bond vectors of the closed chain corresponding to p A Cn,

0 ¼ ð0; 0; 0Þ.
For instance, when n ¼ 8, the form is given by the following:

ðgrad f1Þp ¼ ð b1; 0; 0; 0; 0Þ;

ðgrad f2Þp ¼ ð�b2; b2; 0; 0; 0Þ;

ðgrad f3Þp ¼ ð 0; �b3; b3; 0; 0Þ;

ðgrad f4Þp ¼ ð 0; 0; �b4; b4; 0Þ;

ðgrad f5Þp ¼ ð 0; 0; 0; �b5; b5Þ;

ðgrad f6Þp ¼ ð 0; 0; 0; 0; �b6Þ;

ðgrad g1Þp ¼ ð�b0; 0; 0; 0; 0Þ;

ðgrad g2Þp ¼ ð 0; b4; b3 � b4; �b3; 0Þ;

ðgrad g3Þp ¼ ð 0; 0; b5; b4 � b5; �b4Þ;

ðgrad g4Þp ¼ ð 0; 0; 0; b6; b5 � b6Þ;

ðgrad g5Þp ¼ ð 0; 0; 0; 0; b7Þ:
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Assume that the gradient vectors ðgrad f1Þp; . . . ; ðgrad fn�2Þp, ðgrad g1Þp; . . . ;
ðgrad gn�3Þp are linearly dependent. Then ck 0 0 and

Pn�2
i¼1 ciðgrad fiÞp þPn�3

i¼1 ciþn�2ðgrad giÞp ¼ ð0; . . . ; 0Þ for some k.

Now we will show that all vertices of the closed chain corresponding to p

are in one plane by using Lemma 1 (1), (2) in what follows. Let v0; v1; . . . ; vn�1

denote the vertices of the closed chain corresponding to p. Since two

successive bond vectors bk, bkþ1 are linearly independent for k0 1; 2, we

get that c2 0 0. Then the first 1� 3 blocks of gradient vectors implies that

the vertices v0, v1, v2 and vn�1 are in one plane and the second 1� 3 blocks

of gradient vectors implies that the vertices v1, v2, v3 and v4 are in one

plane. When n ¼ 5, all vertices are in one plane since b0, b1, b2 and b2, b3, b4
are in one plane respectively.

When n ¼ 6, we consider two cases: c7 0 0 or c7 ¼ 0.

If c7 0 0, all vertices are in one plane. If c7 ¼ 0, we have c3 ¼ �c6, and

b2, b3, b4 has a local configuration as in Fig. 2. This case contradicts

Lemma 1 (1).

When n ¼ 7, we consider two cases: c8 ¼ 0 or c8 0 0.

If c8 ¼ 0, b2, b3, b4 has a configuration as in Fig. 2 from c3 ¼ �c7. This

case contradicts Lemma 1 (1).

If c8 0 0, we divide into two cases: c9 0 0 or c9 ¼ 0. We remark that

b3, b4, b5 are in one plane in this case.

If c9 0 0, b4, b5, b6 are in one plane. This implies that all vertices are in

one plane.

If c9 ¼ 0, from Lemma 1 (2) we have b3 þ 2 cos yb4 þ b5 ¼ 0.

If �2 cos y ¼ 1, we have y ¼ 2
3 p. Then, we obtain configurations as in

Fig. 1 or 2 since we have b3 � b4 þ b5 ¼ 0. However, this is impossible to

realize from the restriction of the bond angle y ¼ 2
3 p.

If �2 cos y0 1, we have c3 ¼ 0 by using the above relation. Then any

closed chain has a configuration as in Fig. 7. However, this case contradicts

Lemma 2 (1).

When n ¼ 8, we consider two cases: c9 ¼ 0 or c9 0 0.

First, we consider the case c9 ¼ 0. Then, we have two subcases: c10 ¼ 0

or c10 0 0. If c10 ¼ 0, from Lemma 1 (2) we have b3 þ 2 cos yb4 þ b5 ¼ 0

(�2 cos y0 1). However, this implies c9 0 0.

If c10 0 0, we have two subcases c11 0 0 or c11 ¼ 0. When c11 0 0, all

vertices are in one plane. When c11 ¼ 0, any closed chain obtains the config-

uration with the relation aðb3 þ b4Þ ¼ bðb5 þ b6Þ for some nonzero a, b as in

Fig. 10. However, this contradicts Lemma 1 (2).

Finally, we consider the case c9 0 0. Then, we have two subcases:

c10 ¼ 0 or c10 0 0. If c10 ¼ 0, from Lemma 1 (2) we have b3 þ 2 cos yb4 þ
b5 ¼ 0 (�2 cos y0 1). By using this relation, we have c3 ¼ 0. Since this
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implies that we obtain the configuration as in Fig. 7, this case contradicts

Lemma 2 (1). If c10 0 0, we have two cases: c11 0 0 or c11 ¼ 0. When

c11 0 0, all vertices are in one plane. When c11 ¼ 0, from Lemma 1 (2) we

have b4 þ 2 cos yb5 þ b6 ¼ 0 (�2 cos y0 1). By using this relation, we have

c8 ¼ ð1� 2 cos yÞc3. This implies that we obtain the configuration as in

Fig. 8 or 9. However, from 2 cos
�
3
4 p

�
< 2 cos ya 2 cos

�
5
7 p

�
this contradicts

Lemma 2 (2).

Hence we see that all vertices v0; v1; . . . ; vn�1 are in the plane through v1, v2
and vn�1 for n ¼ 5; 6; 7; 8.

This contradicts Lemma 1 (3). Therefore O A R2n�5 is a regular value of

F and we obtain that Cn is an orientable closed ðn� 4Þ-dimensional submani-

fold of R3n�9 by the regular value theorem. The proof of Proposition 1 is

completed. r

3. The proof of Theorem 1

We define h : ðR3Þn�3 ! R by hðv1; . . . ; vn�3Þ ¼ x2ffiffiffiffiffiffiffiffiffiffi
x2
2
þx2

3

p , where v1 ¼
ðx1; x2; x3Þ. Due to [13, p.25, REMARK1], [16, p.380, Lemma1] we have

the extension of Reeb’s theorem that M is homeomorphic to a sphere if M is

a compact manifold and f is a di¤erentiable function on M with only two

critical points.

We show that hjCn is a di¤erentiable function on Cn with only two critical

points. Due to [7] for a function on a manifold embedded in Euclidean space,

p A Cn is a critical point of hjCn for h : ðR3Þn�3 ! R if and only if there exist

ai A R such that ðgrad hÞp ¼
Pn�2

i¼1 aiðgrad fiÞp þ
Pn�3

i¼1 aiþn�2ðgrad giÞp. We

can easily check that ðgrad hÞp ¼ 0;
x2
3

sin3 y
;� x2x3

sin3 y
; 0; . . . ; 0

� �
. Note that the first

1� 3 block 0;
x2
3

sin3 y
;� x2x3

sin3 y

� �
is orthogonal to b0 and b1. So, we see that

a2 0 0 if ðgrad hÞp ¼
Pn�2

i¼1 aiðgrad fiÞp þ
Pn�3

i¼1 aiþn�2ðgrad giÞp. By the same

argument as the proof of Proposition 1 in § 2, we obtain that the configuration

of the closed chain corresponding to a critical point p satisfies that the vertices

vi ði ¼ 1; . . . ; n� 1Þ are in one plane Spanhb2; b3i ¼ Spanhb2; . . . ; bn�1i.

Fig. 10. The forbidden local configuration aðb3 þ b4Þ ¼ bðb5 þ b6Þ
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We transform the closed chains by the congruent transformation that maps

vn�1, vn�2 and vn�3 to ð0; 0; 0Þ, ð�1; 0; 0Þ and ðcos y� 1; sin y; 0Þ in this order,

and we denote the image of vk as wk. This congruent transformation can be

expressed by the composition of a translation and a rotation around z-axis and

a rotation around x-axis. Because the vertices wi ði ¼ 1; . . . ; n� 1Þ are in the

xy-plane, it becomes easy to find the coordinates of the vertices wi concre-

tely. We only show the case n ¼ 8, since other cases can be proved in the

same way. When n ¼ 8, since w1; . . . ;w7 are in xy-plane, we can calculate the

coordinate of w2 concretely by the restriction of the bond angle at w3. We

have the coordinates of w2, w3, w4, w5, v6, v7.

w2 ¼ ð�8 cos4 yþ 4 cos3 yþ 6 cos2 y� 2 cos y� 1;

2 cos y sin yð�4 cos2 yþ 2 cos yþ 1Þ; 0Þ;

w3 ¼ ð2 cos yð2 cos2 y� cos y� 1Þ; 2 sin y cos yð2 cos y� 1Þ; 0Þ;

w4 ¼ ðcos yð1� 2 cos yÞ; sin yð1� 2 cos yÞ; 0Þ;

w5 ¼ ðcos y� 1; sin y; 0Þ;

w6 ¼ ð�1; 0; 0Þ;

w7 ¼ ð0; 0; 0Þ;

where 5
7 pa y < 3

4 p. Since w1; . . . ;w7 are in xy-plane, we put w1 ¼ ða; b; 0Þ.
From the restriction of the bond length, we have kw2 � w1k ¼ 1. Moreover,

from the restriction of the bond angle, we have kw7 � w1k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� 2 cos y

p
.

Then, we have two solutions ða1; b1; 0Þ or ða2; b2; 0Þ of a pair of equations in

a and b: a2 þ b2 ¼ 2� 2 cos y, ða� aÞ2 þ ðb � bÞ2 ¼ 1, since the discriminant

of the quadratic equation with respect to a or b obtained from the pair of

equations is no less than 0 respectively. We put w0 ¼ ð�cos y; x sin y; y sin yÞ
(x2 þ y2 ¼ 1). From kw1 � w0k ¼ ðaþ cos yÞ2 þ ðb � x sin yÞ2 þ ðy sin yÞ2 ¼ 1

we have x ¼ ðaþcos yÞ2þb2�cos2 y

2b cos y
. Note that there is only one solution of ða; bÞ

that satisfies jxja 1. The other solution gives jxj > 1. Then, we can repre-

sent the coordinate of w0 ¼ ðx1; x2; x3Þ by the following:

x1 ¼ �cos y;

x2 ¼ ða2 þ b2 þ 2a cos yÞ=2b;

x3 ¼G
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� cos2 y� x2 sin2 y

p
:

Thus the coordinate of w1 is uniquely decided, since either of solutions

ða1; b1; 0Þ or ða2; b2; 0Þ satisfies cos2 yþ x2 sin2 y > 1.
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Hence the vertices v1; v2; . . . ; vn�1 are uniquely determined and just two

positions of the vertex v0 are determined for original closed chains with ver-

tices fv0; v1; . . . ; vn�1g. Then we have just two configurations of closed

chains corresponding to the critical points. These two are mirror symmetric

with respect to the plane Spanhb2; b3i. Hence we obtain that hjCn has

only two critical points. In fact, we can see Figs 11, 12, 13 and 14 for

the critical configurations. We choose viewpoints in order to see easily

configurations. r
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