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ABSTRACT. We deal with the problem of classifying a new observation vector into one
of two known multivariate normal populations. Linear discriminant analysis (LDA) is
now widely available. However, for high-dimensional data classification problem, due
to the small number of samples and the large number of variables, classical LDA has
poor performance corresponding to the singularity and instability of the sample co-
variance matrix. Recently, Xu et al. [10] suggested modified linear discriminant analysis
(MLDA). This method is based on the shrink type estimator of the covariance matrix
derived by Ledoit and Wolf [6]. This estimator was proposed under the asymptotic
framework Ag:n= O(p) and p= O(n) when p — co. In this paper, we propose a
shrink type estimator under more flexible high-dimensional framework. Using this
estimator, we define the new MLDA. Through the numerical simulation, the expected
correct classification rate of our MLDA is larger than the ones of other discrimination
methods when p > n. In addition, we consider the limiting value of the expected
probability of misclassification (EPMC) under some assumptions.

1. Introduction

We deal with the problem of classifying a p x 1 observation vector x into
one of two groups I7; and I1,. Let the group II; have p-dimensional normal
distribution N, (#;, 2) with the mean vector g; and the common positive definite
covariance matrix X, where u; # u,. Assume that, for i = 1,2, the random
vectors x;, j=1,...,N;, are taken from /I;. Linear discriminant analysis
(LDA) is one of the standard classical methods for classifying x into either
Il or II,, which is as follows:

1
W= (¥ — J?z)'S_l{x - E(fl + Ez)} >0 (resp., <0)
= x eIl (resp., II,). (1)
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Here, S is the pooled sample covariance matrix, which is given by

Ni

2
S:n’lz

N;
(xl/_fl)(xl/_il)/a xi:N;leiﬁ = 1727
=1 j=1 =

n=N;+ N, —2.

Recently, needs of discriminating high-dimensional data have increased. LDA
is one of the most popular methods of discrimination. However, LDA cannot
be used when p > n. For, in this case, S becomes singular, and so W cannot
be defined. A simple way to adapt LDA to the high dimensional case is to
use the Moore-Penrose inverse of S in (1) (MPLDA). Another simple way
is to use the diagonal matrix with the same diagonal elements as S in (1)
(DLDA). These analyses are applied to microarray data of leukemia in
Dudoit et al. [1]. On the other hand, Xu et al. [10] proposed modified
linear discriminant analysis (MLDA) as a more efficient method than DLDA
and MPLDA. This method is based on the estimator of covariance matrix
given by Ledoit and Wolf [6]. The basic idea is to find the linear com-
bination X* = p,I + p,S such that the expected quadratic loss E[||Z* — X||*]
becomes minimum. Here, ||A]| = +/tr AA’/p is the normalized version of
the Frobenious norm. Ledoit and Wolf [6] proved that the solution for
min, , E[|2* - X||%] satisfies
B

o
2r==ail +=8
5611 +5 )

where o = ay —af, f = (p/m){(a2/p) + ai}, 6 = {1 + (1/m)}a> + {(p/n) — 1}ai,
ai=trX'/p,i=1,...,4, and

Bzt -z =%,

Here, the notation X' denotes i-th power of matrix X. In practice, it is
necessary to replace the unknown parameters with their consistent estimators.
For this reason, Ledoit and Wolf [6] derived the consistent estimators under
the asymptotic framework Ayg: n = O(p) and p = O(n) when p — 0. How-
ever, it should be noticed that, in many microarray data, »n is much smaller
than p. Consistent estimators should be proposed under more flexible high-
dimensional framework. In this paper, we propose such consistent estimators
under the following high-dimensional framework:

Cl:n,p— oo with p*/n— ¢, for some ¢, € (0,00) and (e (1/3,1].
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In addition to C1, we assume the following condition:

C2:0< lim a; < o0, i=1,...,4

p—o

Under C1 and C2 the consistent estimators d, ﬁ and § of o, f and J are,
respecitvely,

. B=(p/m{(a/p)+a},
6= {1+ (1/n)}ar + {(p/n) — 1}a?, 2)

where a; and 4, are the consistent estimators of a; and a,, respectively, given
by

a=a—a

I s ) A R

tr S X n’ (tr S (tr S)2>

The derivation of these consistent estimators are given in Section 2. Let
s =Parils (3)
0 0
We define the adapted version of MLDA as follows:
1
W= (¥ — Ez)'S*l{x - 5()71 +22)} >0 (resp., <0)

= x eIl (resp., II,).

Our simulation results, which are omitted in this paper, show that the above
adapted version of MLDA has better performance than that used in Xu et al.
[10]. Hereafter, we refer the former simply as MLDA. In Section 3, we
present the comparison between the performance of MLDA method and those
of other LDA methods, based on expected correct classification rate. In
Section 4, we consider the expected probability of misclassification (EPMC) of
MLDA. However, it is generally difficult to obtain an explicit expression for
the EPMC. So we approximate it by its limiting value. The approximation
under a framework such that N; and N, are large and p is fixed has been
studied by many authors. For a review of the results, see, e.g., Siotani [9].
See also, e.g., Fujikoshi and Seo [3] for the asymptotic approximation when
all of Ny, N, and p are large. These results were given when p < n, and were
based on asymptotic expansions. When p > n, we cannot use the classical
theory of asymptotic expansions, so some other theory is needed. It should
be noted that the EPMC can be expressed as E[®@(Q,)] with a statistic Q,,
where @(-) denotes the cumulative distribution function of the standard normal
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distribution. In Section 4, we find the constant g such that Q, converges in
probability to ¢, and give the limiting value of the EPMC as @(g). In Section
5, we evaluate our result numerically by Monte Carlo simulations. Section 6
presents the conclusions of this paper. The proofs of key lemmas are given in
Appendix.

2. Asymptotic results related to the estimator S*

In this section, we show some asymptotic results related to S* given in (3).

The following lemma shows the convergence in quadratic mean of o — &, f — f
and 0 — 0 under the conditions C1 and C2.

LEMMA 1. Under the conditions Cl1 and C2, it holds that

R q.m. . q.m. A q.m. 2 q.m.
alz—alz—>0, a—o— 0, f—p—0, 0—0— 0.

%3

. qm. ,, . .
Here, the notation *“ — 0" means the convergence to zero in quadratic mean.

ProOF. Let a and b be (arbitrary) constants. Using Lemma A.2,
E[|(aa} + bay) — (aa} + bay)|’]
{48a2 48ab  (2n* +3n — 6)b2} {12a2 4b> } )
= 4

wp3  np?  pnln—1)(n+2) w2 = Dn+2) "
324> 16ab 84>

+{2az+a}a1a3 +Lalza2. 4)
n2p? " np np

When ¢ =1 and b =0, (4) becomes

12

1= 48 et 32
Tt T n2p

2 8 2
2a2—|— 75 d1d3 +—ajay,
n-p np

E[lat - ai|?
which is O(p~'7¢) under the conditions C1 and C2. In the similar manner,
Ella—af’]=0(p™),  E[B-BP)=0(p*""),

E[l6 - o]’] = 0(p*"). (5)
Thus, under the conditions C1 and C2,
Ella—o’) =0,  E[B-p1—0,  E[6-0]°] =0,
which prove Lemma 1. [

Using Lemma 1, we can prove ||[S* — X7 2,0 under the conditions C1
and C2. This means that the loss of S* converges in probability to that of X*.
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3. Comparison of linear discriminant analyses

In this section, we do simulation study to compare the performance of
our proposed discrimination method with the MPLDA and DLDA methods.
Let

W(A4) = (% — fz)/A{x - % (%1 + xz)}7
where 4 = A(S) is a certain symmetric matrix which depends only on S.
Then, MPLDA, DLDA and MLDA are defined as follows:
MPLDA : W(S™) >0 (resp., <0) = x e I, (resp., IT,),
DLDA : W(D™') >0 (resp., <0) = xe Il (resp., II,),
MLDA : W(S* ') = W* >0 (resp., <0) = x eIl (resp., II),

where ST denotes the Moore-Penrose inverse matrix of S and D denotes the
diagonal matrix with the same diagonal elements as those of S. Error rates
are given as follows:

ra(2]1) =Pr(W(A) <0|xell,,%,%,A),
ra(1)2) =Pr(W(A) > 0| x e I, %, %, A).

Since r4(1|2) can be obtained from r,(2|1) by interchanging N; and N,, we
deal with only r4(2|1). Let

V(A) = (¥ — %) AZA(% — %),
Z(A) = VR A)(® - ) A(x — ),
U(A) = (51~ %) AGE: — ) ~ 3 D*(4),
where D*(A4) = (¥ — X,)'A(¥ — X2). Then, W(A) can be expressed as
W(A)=V'2(4)Z(A4) — U(A). (6)

Since Z(A) and (U(A), V(A)) are independent, and Z(A) is distributed accord-
ing to the standard normal distribution under the condition x € I7; (hereafter,
denoted by Z(4) ~ N(0,1)),

ra2l) = 2(V12(4)U(4)), ()

where @(-) denotes the cumulative distribution function of N(0,1). Using (7),
we can calculate the following three expected correct classification rates:



214 Masashi Hyopo et al.

MLDA (solid line): 1 — %{E[rs*,l(zu)] + Elrg (12)]),

MPLDA (dotted line) : 1 — %{E[ry (2|11)] + E[rs+(1]2)]},
DLDA (dashed line) : 1 —%{E[VD71(2|1)] + E[rp-1(1]2)]}.

Now, we compare these rates for some values of p. The data sets are
generated as follows:

U

lL.1.d.

X1, %12, .-, X1y~ Np(py, 2,
iid.

X21,X22, ..., X2N, ~ Np(ﬂ272)7

where
M :p71/2(ﬂ1,ﬂ2,...,ﬂp)/, :u2:(0707"'70>l7
== (ph.

We set Ny =N, =40 and p=0.2,0.5. In each simulation, we set values
drawn from a uniform distribution on the interval [-5,5] for y;, i=1,...,p.
Figure 1 (resp., Figure 2) illustrates the graphs of expected correct classification
rate of three discrimination methods for p=1,...,400 and p=0.2 (resp.,
p=0.5).

In Figure 1, we can see that DLDA is as good as MLDA, and MPLDA is
much inferior to the other two methods for most p. In Figure 2, MLDA is

0.6}
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Fig. 1. The expected correct classification rate when p = 0.2.
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Fig. 2. The expected correct classification rate when p = 0.5.

much superior to the other methods. From these results we can see that
MLDA gives a good performance even if the variables are strongly correlated.

4. Asymptotic approximations of EPMC for MLDA
In this section, we consider the following EPMC for MLDA:
e2)l) =Pr(W* <0|xe ), e(1)2) =Pr(W”* > 0|x e Il,).

It is generally difficult to obtain an explicit expression for the EPMC. So, we
derive asymptotic approximations of EPMC for MLDA under the following
high dimensional asymptotic framework:

Al : N, N,, p — © with py/l/l—>C3 and N]/N2—>C4
for some ¢3,c4 € (0,00) and y e (1/2,1).

Here recall from Section 1 that n = Ny + N, — 2. In addition, we assume the
following:

A2:0< lim 4; < oo,
p— 0

A3:0 < lim 4y = lim ¢'d/p' 7 < 0.
p— 0

p— 0

Here, 4, is the maximum eigenvalue of 2 and 6 = u; — u,. Since ¢(1|2) can be
obtained from ¢(2|1) simply by interchanging N; and N,, we only deal with
e(2|1). Using (7),

e(2|1) = E[@(V (s U (S ).
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To evaluate U(S*~!) and V(S*7!), set

721 = NV2NI% + NaXy — Nipty — Nopy),

N2
2=\ (X1 =X —py + o),

where N = N; + N,. Note that z; ~ N,(0,2), i =1,2. In addition, z; and z,
are independent. We can express U(S*~!) and V(S*7!) in terms of z; and z,
as

U™ = —Lais o+ _arsi; —-AQ}MWS“%
2 N2 AN, :
1 1 gx—1 Ni =Ny ;i
ST . 5*
i (N\Ny)'2 l . 2NN, 7 e

1/2
6/S*712S*—1
o) o

V@*Uzéﬁ*iS*%+2(

+ ZES*712S*71z2.

NN,

For notational simplicity, we write U = U(S*7!), ¥V = V(S§*~!). Define the
following constant &:

. 1 (Nl — Nz)py Zpr -1/2
= pt=ni2) __ 4 X122 A

where 41 = 6’26 /p'~7. Since ®(&;) = 1/2 when &, = 0, we deal only with the
case &y # 0. Using Lemma A.6 in Appendix, we derive the following lemma.

LEMMA 2. Under the assumptions Al1-3, it holds that

= 0,(1).

R
v

The proof of Lemma 2 is given in Appendix. Using Lemma 2, we get the
following lemma.

LemMmA 3. Under the assumptions Al1-3,
[ D(U/NTV) = D(&o)| = op(e™")

holds for any ve (0,1 —y).
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This result means that the conditional probability of misclassification for
MLDA converges to @(&,) in probability. The proof of Lemma 3 is given in
Appendix. Now, we turn to the evaluation. It holds that

le(2[1) — @(&)| = [E[@(U/VV)] = (&)
= [E[@(U/VT) — &(&)]|
<E[lo(U/VV) — ®(&)l].

Lemma 3 and Lebesgue’s dominated convergence theorem yield that the
sequence {|®(U/VV) — ®(&)|} is uniformly integrable. Hence, under the
assumptions Al-3,

E[[@(U/VV) = ®(&)[] — 0.

Thus, we can see that @(&;) provides an asymptotic approximation to e(2|1)
which is given in the following theorem.

THEOREM 1. Under the assumptions Al1-3, the following statement holds:

le(2[1) — @(&o)| — 0.

5. Accuracy of approximation

To investigate the accuracy of asymptotic approximation proposed in
Theorem 1, a numerical experiment was performed. We calculated ¢(2|1) by a
10000 iterations of simulation. In each step, the data sets are generated as
follows:

L.1.

U

%

P(ﬂlvz)v

X11,X12,...,X15, ~ N,
' NP(IuZaz)a

1.1

QU

¢

X21, X225 - - -, X2N,

where the structure of X was assumed to have serial correlation X = (pli=/1),
and p; = (n) (w1, ..., )" and p, = (0,0,...,0)". The sample sizes Ny and
N, were assumed to be equal to N =2 [p’], where [¢] denotes the integer part
of a. The values of e(2|1) in tables are the average values of ®(U/\/T)
calculated by 10000 repetitions. We consider the asymptotic approximation
for EPMC: e*(2|1) = &(&;). Here, & is given in Section 4. Tables 1-4 give
the values of ¢(2|1) and e*(2|1) when y = 0.4,0.5,0.6 and 0.7, respectively. In
each table, values were shown for the cases in which p = 100,200, p = 0.2,0.4,
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u=1,1.5. Through these simulation results, we can see that ¢*(2|1) has better
approximation for large y than for small j.

Table 1. Accuracy of approximation when y = 0.4
(p,N) p u=10 u=15

e(2l)  e(21) | e2]1) e*(2[1)

(100,12) 0.2 | 0290  0.275 0.140  0.120

0.4 | 0324 0304 | 0.186  0.160

(200,16) 0.2 | 0.216  0.199 | 0.059  0.049

04 | 0250 0.233 0.099  0.080

Table 2. Accuracy of approximation when y = 0.5
(p,N) p u=10 u=15

e2l)  e(21) | e2]1) e*(2[1)

(100,20) 0.2 | 0334  0.322 | 0.193  0.182

0.4 | 0355 0344 | 0240 0.221

(200,28) 0.2 | 0.265 0256 | 0.112  0.100

0.4 | 0302 0286 | 0.155 0.139

Table 3. Accuracy of approximation when y = 0.6
(p,N) p u=10 u=15

e(2]1)  er(21) | e(21) e (21)

(100,30) 0.2 | 0359 0352 | 0.234  0.229

04 | 0382 0372 | 0.280  0.269

(200,48) 0.2 | 0306  0.296 | 0.158  0.148

04 | 0334 0322 | 0202 0.188

Table 4. Accuracy of approximation when y = 0.7
(p,N) p u=10 u=15

e(2]1)  e*(2]1) | e(2]1) e*(2]1)

(100,50) 0.2 | 0.388  0.384 | 0.289  0.283

0.4 | 0408  0.400 | 0.325 0.313

(200,80) 0.2 | 0342 0.339 | 0.213  0.209

04 | 0370 0360 | 0.257  0.246
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6. Conclusions

We introduced a new method for linear discriminant analysis based
on shrink type estimators of covariance matrices for high-dimensional data.
From Section 3, for p > N, MLDA is much superior to other discrimination
methods in the sense of expected correct classification rate. In addition, we
considered the EPMC of MLDA. Since it is generally difficult to obtain an
explicit expression for the EPMC, we derived a limiting value of EPMC under
the assumption: n, p — oo with p”/n — ¢3 for some ¢3 € (0,00) and y € (1/2,1)
in Section 4. By simulation results, @(&) is close to the true value for high-
dimensional data. It should be noted that, in MLDA, the EPMC becomes
smaller as |&,| becomes larger, while, in LDA, the EPMC becomes smaller as
Mahalanobis distance becomes larger. The explicit formula of error bounds
for limiting value of EPMC is not obtained. This problem should be examined
in a high-dimensional case, which is left as a future problem.

Appendix

In this appendix, we prove Lemmas 2 and 3 stated in Section 4. We
begin with some preliminary results.

LemMmA A.l1. Let P and Q be non-singular matrices of proper order. Then,
ifQ=P+UV,

o'=pP'—PlUua+vrP'v)'vrP "
For the proof, see Schott [8].

LEmMMA A.2. Let V = XX', where X = (x1,...,x,) and the components x;
are iid N,(0,%). Then the following assertions hold:

(i) E[(tr V)] =n’(tr £)* + 2ntr 22,

(ii) Eftr V2] = (n® +n) tr 2% + n(tr 2)?%,

(il) E[tr V2 tr VZ] =4n(n+1) tr Z* + n’(n+ 1) (tr 22)?
+dntr 23 tr 2+ n(tr 2)* tr 22,

(iv) E[(tr V) = n’(tr 22) + 2n tr *,

V) E[(tr V)Y = n*(tr 2)* + 1203 (tr 2)% tr 22 + 1202 (tr 2)°

+32n tr X tr 23 4 48n tr 24,
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(vi) E[(tr V)2 tr V2] = nd(tr 2)* + (n* + n® + 1002)(tr 2) tr 22
203 4 n® + An)(tr 22)°
+8(n3 +n® + 2n) tr 2 tr 23
+24(n* +n) tr 24,
(vii) EJ(tr V2)2] =n?(tr 2)* +2(n + n® + 4n) (tr 2)* tr 22
+ (n* + 21 + 50° + 4n) (tr 22)?
4+ 16(n* +n) tr X tr 23
+4(2n* + 50° + 5n) tr 24,
(vii) E[tr(4V?)?] = (n* 4 40 + Tn’ + 4n) tr(4272)?
+ (2n® 4+ 6n* 4 8n) tr A AZ tr X
+ (20 +14n? + 16n) tr AX3AX
+ (20 + 6n* 4+ 8n) tr AX3 tr AX
+ (4n® +4n) tr AS* tr A tr X
+ (20 + 4n® + 2n)(tr AX?)?
+ (n® +n) tr(4Z)?(tr 2)?
+ (n® +3n) tr(AZ) tr 22 4+ n(tr AZ)*(tr 2)?
+ (n* +n)(tr AX)* tr 22,
(xi) E[(tr 4V?)?] = (n* + 20> 4 3n® + 2n)(tr 422)?
21 4 2n% 4-4n) tr X tr A tr A3

4n® + 8n® + 4n) tr(427)?

+(
+(
+ (4n® +12n° + 16n) tr AXA23
+ (8n* +8n) tr X tr AXAX?

+ (8n* +8n) tr AX tr 423

+ (2n% +2n) tr 22 tr(AX)? + 2n(tr 2)* tr(42)*

+n2(tr 2)2(tr AZ)? 4 2n(tr AX)* tr 22,
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ProoF. The results in (i) and (ii) are well known (see, e.g., Gupta and
Nagar [4]). For the proofs of (v)—(vii), see Hyodo and Yamada [5]. We give
the proof of (iii). Let U = (uy,...,u,), where u; are iid N,(0,2). Suppose P
is an orthogonal matrix such that X = PAP’, where A = diag(4i,...,4,) and,
for i=1,...,p, J; is the i-th eigenvalue of X. Then X = X'?U and

E[ ( I/ZUU 21/2) ( 1/2UUIZI/2)Z]

E[tr(Z'AZ)* t1(Z' A% Z))]

P )4
=E| Y4 (zlz) +Z/H (z/z)) )(ZA zz,)]
i=1 i#] i=1
p
=F Zzlf(zz, +Z;»121 ZZI)(zz/)
i=1 i#]

4 )4
+2) Rkl Y A Ai(Ey) (zh)

i#] i) jEk ki

=dnin+ D) 2+ n(n+ D(tr 22 +dntr 2° tr X+ n(tr 2)* tr 22,

where U'P' = Z' = (z1,...,%), and z; are iid N,(0,7). The proof of (iv) can be
similarly derived. Next, we prove (viii). Let A'/2P'APA'? = B= (bij); =1

Then
tr<BZ<lz]:/lz, )ZBZ(IZ:M, ) )

=tr B( > zkx,bq,,.E[z;zkz,;zqz;z;z,’z_,]>
i,j=1,...p

E[tr(AV?)? = E

k,l,q,r

.....

= (n* +4n® 4 Tn® + 4n) tr BABA
n® + Tn* 4 8n)(tr BA’B + tr B>A?)

n* +3n) tr B> tr A% + (n® + 3n* 4 4n) tr BA* tr B

+(n
+ (n?
+ (n® + 3n% 4 4n) tr Btr BA® + (n® 4 n)(tr B)® tr 4>
+ (n +3n* +4n)(tr BABtr A +tr B>A tr A)

+ (n? +n) tr B3 (tr A)* + (2n® + 4n® + 2n)(tr BA)?

+ (2n* +2n) tr BAtr Btr A+ (2n* 4+ 2n) tr Btr BA tr A

+n(tr B)*(tr 4)*



222 Masashi Hyopo et al.
= (n* + 40’ + Tn® + 4n) tr(422)?
+ (20 + 6n* 4 8n) tr AZ°AZ tr X
+ (2n® + 14n* + 16n) tr 4234
+ (2n* + 6n* 4 8n) tr A3 tr AX
+ (4n® +dn) tr AZ* tr AX tr X
+ (2n° + 4n® + 2n)(tr A32)?
+ (n? 4 n) tr(A4X) (tr 2)?
+ (2 4 3n) tr(42) tr 2% + n(tr AX)?(tr 2)?
+ (R 4+ n)(tr AX)? tr 2.
The proof of (ix) can be similarly derived. O

LeMMA A3. Let y ~ N,(0,2) and Q =y'By. Then, the following asser-
tions hold:

() ElQ]=tr B,
(i) E[Q% =2 tr(BX) + (tr BX)”.
For the proofs, see Mathai et al. [7].

LemMa A4, Let 7~ Ny(0,2). Under the assumptions Al and A2, it
holds that

.13’z _
(i) [~ —a|=0,(p"""),
P
!
(i) —a|=0,(p7'?).
Proor. At first, we show (i). It is sufficient to show that
7'z ?
PE||=———a1| |=0(1)
p
Using Lemma A.3, we have
7'z 2a, 1
E|l|——a =—(=0(p
» ] » (=0(r7))

This proves (i).
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Secondly, we show (ii). Tt is sufficient to show that

> 2
pE i az| | = O(1).
Using Lemma A.3, we obtain
7’2z | 2a _
E —a 12—4(: o(p~"))
P
This proves (ii). O

LemMMA A.5. Let z be a random vector distributed as N,(0,X). Under the
assumptions Al1-3, it holds that
6'Sé

(1) 22=o,m,
i) £E—0,),
ity 2522 = 0,0,
() 230 =0,),
(v) 250,
(i) 2o,
i) E5E= 0,0
(vii) z/%_?z:op(l).

Proor. Using Lemma A.2, we obtain

1
FE[él»Sé} - A],

li 2
vt 2oy

pll

which proves (i). Using Lemmas A.2 and A.3, we obtain

1
—E[7'S7] = a3,
V4

] <A a2k = o).

'S 2(n? +2 2
vﬂzﬂ (" + 2n)
pn
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Thus, (i) follows. By Lemma A.2, we get

, -
[5 S2o — 4,

8’58258 (p! 1 1
E[ Py | <7>ald3 * (pl‘y+np“y>d4’

0'X8%58]  2p¥adA? .
Var[ Py | T n31 >+o(p™)
=0(p™"),

where 4; = 8’26 /p'=7,i =2,3,4. Consequently, (iii)—(v). Using Lemma A.2,
we obtain

!/
E{z SZZ} —
V4
'Sy 2 2 2
Var[zs z}:—af ﬁ(1 —)
V4 n V4 n
- 0(pil’)a
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/28237 2p¥ata? _
Var[ pr } - nsl 4+0(p ")
=0(p™)
Thus, (vi)—(viii) follow. O

LemMMA A.6. Let z be a random vector distributed as N,(0,X). Under the
assumptions Al1-3, it holds that

1 g 0 o

p—‘ 6's*o — 5 o) =0,(p~""),

1 *— l / —1+4y

; 'S =0,(p~ ),

1 *—1 *—1 52 / —1+y
lll F S 28 6— a2626 = OP(p ),
& 1

1 ,

|z S*—IZS* 1 0 -0 (p—l+/).

p P %

ProOOF. At first, we show (i). Using Lemma A.l,
-1
. . 1/2 : 1/2
A B 56 \ 'SV (h+£5) s
T 5 S 5 — = = — 5~ - . (8)
p7 Béy pa? plr

From (5), under the assumptions Al and A2, it holds that

& = a? + 0,(p ), (—) - () (@r— ) + O,(p),
)4 P

n\ s _

<p>ﬁ @+ 0,(p=0+12),

()= (s

We remark that «=a, —a} =0 when X =ol, where ¢ is some positive
constant. Hence,

55 —1+y
) :{OP(p ), X #al, (10)

ﬁza% 0,(p7YH, ZX=ol
On the other hand,

&'S'2 (I, +25) S s \ '\ s
( ) <Y (Ip Jr?S) o 5:5 a.a.s. (11)
1

p‘V
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Here, the notation “a.a.s” means asymptotically almost surely. Using Theorem
2 in El Karoui [2], we obtain

N
?’1(<Ip+ﬂ%1S> ) HO;()<OO a.a.s. (12)

when 2 =o¢l. And we obtain

-1
a 1
'4 I, +—S ———— <1< w aa.s. 13
1 ((1’ ﬂal > ) 1+ﬂa1 YIP(S) ( )

when X # ol. Here, ¥;(A) denotes the i-th largest eigenvalue of a matrix 4.
Combining (11)—(13) and (i) of Lemma A.5, we obtain

551/2( +£ S) "% (o), zal
pl_ B Op(l), 2 =ol.

(14)

So, (i) follows from (8), (10) and (14).
Secondly, we show (ii). By the similar evaluation method of (8),

1 § 56 ’S‘/2( + S) S'/2z
- z/S*flzitz/z — — 1 ) (15)
p Pa, I3 a12 p7

Using (11), (12) and (ii) of Lemmas A.S5, we obtain

/Sl/2< —|— S) 51/2z_ 0p(1>’ X #ol, (16)
pl/ “10,(1), T=ol

So, (ii) follows from (10), (15) and (16).
Thirdly, we show (iii). Using Lemma A.1,

g2
P W al2
Pl 20:5 AN i\
p ﬁ ﬁ a pa
~ -1
<282 -
(2 yzs(n+2s) so
ﬁ ‘11 Pa
2 N N
+ °f4—i os(n,+- 28] (L +-2s)| ssb. (17
Ba; Ba Ba
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In addition, using (9), we get

30> _{op(p—lﬂ), I #al, a8)
pa; Lo, Z=ol,
and
4% { 0,(p~2%), X #al, (19)
Jiatis 0,(p~2), X =ol.
Moreover, using (iii)—(v) in Lemma A.S5, (12) and (13), we obtain
Ly
5 -
oS, +- =S| szé
P Pay
6'S26 [6'2S(L, + a/(Bar)S) 2SZo
2 2y 2 2y
(1), 2+#odl,
=< P 21
{0,,(1), X =oal, 1)
. - -l
0S|, +=—S]| (L +—S]| S
- (p pa, > <p pa,
P(l)a 2 # O-Iv
{ 0,(1), X=odl (22)
So, (iii) follows from (17)—(22).

Finally, we show (iv). Using the similar evaluation method of (17), we

obtain
<2
1 <z’S*12S*1z— Ajz ’Zz)
p Ba;
~ -1
1—y $2 5282 ~
L —2“‘5 20V as(n 4 s sxz
P Pa ptat Ba
R -1
’ o
ZS I,;‘FTS SZ
pa,
A -1 R -1
s(n+-2s) z(+-25s] szb.  (23)
pa pa




228 Masashi Hyopbo et al.
In addition, using (vi)—(viii) in Lemma A.5, (12) and (13), we obtain

}Dz’SZz = 0,(1), (24)

pr

R -1
7S(L+-—S| 52z
Ba

'Sz \/z'ZS(I,, +a/(Ba)S) 282z
P

[ 0,(1), 2#0l,
Lo, xla %)
-l Nt
——s(+=5) (5 +-—s5] sz

’ Ba Ba

_[0,(1), X +#oal,

{01,(1)7 2=ol (26)
So, (iv) follows from (23)—(26). ]

We are ready to prove Lemmas 2 and 3.

ProoF oF LEMMA 2. Using Lemma A.6, under the assumptions Al-3,

1 o\~
U—-|—|U|=0,p ), 27
e (m) (p~7) (27)
1 5\
— V=== | V|=0,p""), 28
P (;zm) (p ) (28)
where
U 1 (N1 — Na)p? Z4z2 v Np" 227z
1”:**410*77, ]7:A1+
P 2 2NN, P P NiN, p
!/ /!
PRLAR ¢ )
p -7 pI*V
Using (27) and (28), we obtain
v (192
Z5 4= 0= 0y (1), 29)
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where &= pU=1/2(T/p'=")/(V/p'~7")"/2. Using Lemma A.4, under the as-
sumptions Al-3, we obtain

plﬁ plf}
where
_ Y y
pllji,_—; 0—<N12N1]X]22)p 15 T—E}—m-&-]\zf\l]’;\baz-
Hence
€ = &l = 0,(p77*)(= 0p(1)). (30)
Combining (29) and (30), we obtain Lemma 2. O

ProoF OF LEMMA 3. For Vee (0,00) and Yve (0,1 —y),

P |®(U/VV) — D(&)| > &) = Jy + s,

where
o= PRIUNVTY =& > e} n{e? |B(U/VV) — d(&)| > €}),
Jy=P{|UNV =&l < N {e” | D(UNVTV) — B(&)| > e}).

Here, ¢ is some positive constant which satisfies || > ¢. From Lemma 2,
J1 — 0 under the assumptions A1-3. Now, we evaluate the order of J, when
&y < 0. It can be expressed as

e dx

o) e = [T L
e’ |o(U/VYV) — D& :e"’J
min(U/V7V,&) V27

< —ep\'e,(max(U/stO)>2/2| U/W - 60|

The right-hand-side of the last inequality converges to 0 under the assump-
tions Al-3. Thus, J, — 0 under the assumptions Al-3. So, we proved
| D(U/VV) — D(&)| = 0,(e7?"). Similarly, we can prove J, — 0 when & > 0.

]
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