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ABSTRACT. We consider nonautonomous N-dimensional generalized Lotka-Volterra
competition systems. Under certain conditions we show that such systems are weakly
permanent or permanent and for two solutions # and v of such systems, the difference
u—v tends to zero at the infinity. Our results give generalizations of previous ones.

1. Introduction and statements of the main results

In this paper we consider the system of differential equations

u = u; |a;(t) — Zb!j(l)ﬁ‘(ui;uj) ; i=1,...,N,N>2, (GLV)
=

where the functions a;(¢), 1 <i < N, and b;(¢), 1 <i,j < N, are assumed to be
continuous and bounded on [c,), ¢ > 0. For a bounded function ¢(f) on
[c,00), we put ga :=sup,s.g(?), gr :=1inf;>. g(¢). We assume that

bi,-(t)ZO, t>c, 1 Sl,]SN, (11)
a,L>0, biiL>Oa 1<i<N. (12)
Furthermore let the functions f;(x,y), 1 <i,j <N, be continuously differ-
entiable on [0, oo)z, and we impose the following conditions on fj:
fi(x,») >0, (x,y)eR}, 1 <ij<N;
Difi(x,y) =20, (x,y)eRI, 1<ij<N;
Dafy(x,y) >0, (x,7)eR, 1<i,j<N; (1.3)

£i(0,0) =0, 1<ij<N;
lim fi(x,x) =00, 1<i<N,
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where R, = (0, 00) and D;, i =1, 2, denotes the differentiation with respect to
the ith variable.

ReMaRK 1. In (GLV), we note that for i,j=1,...,N, the variables x
and y of f;j correspond to u; and u;, respectively.

Throughout the paper we make use of the well-known fact (see Lemma 1,
(1], [3]-17], [9]-[11]) that if u = (uy,...,uy) is a local solution of (GLV) with
u(ty) € RY, then u can be extended to the interval [f,o0) and u(f) e RY for
t € [ty, 0). Therefore in the sequel we may assume that all solutions of (GLV)
exist near oo and are positive there.

System (GLV) is a generalization of the following nonautonomous
N-dimensional Lotka-Volterra competition system that S. Ahmad and A. C.
Lazer [1] considered:

ul = u; [ai(l)—Zbij(I)uj], i=1,...,N,N>2. (LV)
j=1

To state the work of S. Ahmad and A. C. Lazer [1] we introduce the
symbols: For a continuous and bounded function g on [¢, ), we set

j”mwm,

n

Alg, 11, ] = P—

where ¢ < t; < t,. We define the upper average M[g] and the lower average
mlg], respectively, by

Mlg] = }Lnolc sup{dlg, t1, ] |t — 1 = s},

mlg) = lim inf{Alg, 11, 6] | 12— 1 > s}.

For system (LV), S. Ahmad and A. C. Lazer [1] supposed conditions (1.1),
(1.2) and the average conditions such that

bijm M [a]

m[ai]>ZT, 1 <i<N. (A)
J#i

Under these conditions they have shown the following: Let u = (uy,...,uy)
and v = (vy,...,vy) be solutions of (LV) on [ty, ), to = c. Then

(I) 0<liminf, . () <limsup,_ . u;(t) < o0 for 1 <i<N;
(I1)  lim,— o (u;(2) —v:(2)) =0 for 1 <i < N.
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ReMarRk 2. (LV) and (GLV) are called permanent if there are positive
constants f3, J, independent of the initial conditions, such that
p< li¥ninf u;(t) < limsup u; (1) < 4, I<i<N
—© t— o0
for any solution of (LV) and (GLV) (see [7]-[11]). In this paper, following [7],
we introduce the definition: (LV) and (GLV) are called weakly permanent if (1)
hold for any solution of the equation.

K. Gopalsamy [4, 5] and C. Alvarez and A. Tineo [6] have shown (I) and
(II) for solutions of (LV) under the conditions

by a;
ap >3 MEM <<, (GAT)

J#i b
that are stronger conditions than (A).
Our main aim is to show that (I) and (II) are still valid for solutions of
(GLV). To state the results we introduce the notation and the symbols: For
i=1,...,N, we put

fi(x) = fii(x, x), xeR,.

By assumption (1.3), fi, i=1,...,N, have the inverse functions fi’l Ry —
R;. For R>0 and J >0, we define two constants C*(J,R) and C.(d, R),
respectively, by

C*(57 R) = maX{Dkﬁj(xv y) ‘ 1< 17] < Nak = 1525 (X, y) € [57 R]z}a
C.(0,R) = min{ Dy f(x,y) |1 <i,j < N, (x,y) € |6, R]*}.

The number C,(0, R) will be employed only when D,f;(0,0) >0, 1 <i,j<N.
Let R>0 and 0 > 0. For system (GLV) we introduce the conditions
C.(6,2R) o by ’

mla;] > I<i<N (GA)

provided that C.(d,2R) > 0. As seen from below (GA) can be regarded as a
generalization of (A).

REMARK 3. If fi(x,y) =y, 1 <i,j <N, we have C*(0,R) = C.(0,R) =1
for R>0 and 6 >0. Since C*(3,R)/C.(0,R) =1, conditions (GA) reduce to
conditions (A).

THEOREM 1. Let conditions (1.1), (1.2) and (1.3) hold, and D, f;(0,0) > 0,
1 <i,j<N. Suppose that (GA) hold for 6 =0 and for some R satisfying

R > max{f, ' ((ai/bi),) |1 <i< N},
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that is,

1<i<N. (1.4)

mla] > g (0,2R) x— bijy M ]

*(Osz) £ bﬂL ’
Then (1) and (I1) hold for solutions u= (uy,...,uy) and v=(vi,...,vy) of
(GLV) on [ty, o), 1y = c.

When D, f;(0,0) may vanish for some 7, j e {1,..., N}, we give a variant
of Theorem 1:

THEOREM 2. Let conditions (1.1), (1.2) and (1.3) hold and let ty > c.
Suppose that (GA) hold for some 6 >0 and R satisfying

R > max{f,"'((ai/bi),) |1 <i< N},

that is,
C*(6,2R) b,-jMM[aj] .
mla;| > , 1<i<N,
@] C.(0,2R) g il
and
ait) = 30 S (R, R)by(1) .
lim inf "0 > 1@;1;{}\/{/57(&@% I<i<N (15

hold.  Then (1) and (I1) hold for solutions u = (uy,...,uy) and v = (vy,...,0y)
of (GLV) on [ty, ), ty = c.

REMARK 4.  Conditions in Theorem 2 imply that (GLV) is permanent (see
Proposition 4).

We give examples of systems (GLV) for which above conditions hold.

ExampLE 1.1. We consider the following system for two species
, : u . u?
uy =u|(cost+7)— (sint+7)- ?—Fl up—(sint+1)- 7+u2
uy = up {(cos t4+9)—(sint+1) (ua+ 1)u; — (sint+9) - <%+ 1>uz},
where fii(x,») = (»/2+ Dy, fia(x,y) = (x*/2+), fu(x,y) = (x+1)y and

So(x,y) = (y/3+1)y.

First we note that D,f;(0,0) >0, i,j=1,2, hold. Since (), i=1,2,
are periodic functions, we have Mla;] = m[a;] =7, M[ax] = m[az] = 9.
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Since (a1/b11),, < 8/6, (a2/bx»),, < 10/8, we have

<1 (8 / 8 /11
fl“(g>:—l+ T42-c=—1+4/5 <1,

210\ —1+/T+(4/3)-(10/8) —3+24
ﬁl(?)‘ 2/3 T2 <

1.

Therefore we can put R=1. Then, since

C*(0,2R) =3,  C.(0,2R) =1,

we have
C*(0,2R)b12MM[a2] . 3.2-9 i 1
M = —c 0. R 18 a0
C*(O,ZR)bleM[al] 3.2.7
- =9-—"—"— =2 )
ma] = —c ey 0 16 270

Hence conditions (GA) hold.

ExaMpPLE 1.2. We consider the following system for two species
’ . 23] 1 .
up =uy|(cost+7)—(sint+7)- 74—1 uy — m(s1nt+l) U Uy

1
us = up [(cos t+9) —{g(sin 1+ 1)}5uiu11 —(sint+9)- (?—i— 1>u2],
2

where  fii(x,») = (»/2+ D)y, fi2(x,y) =xp, fulx,y)=3xp/(x+1) and
So(x,y)=(y/3+1)y.

First we note that D,f1,(0,0) = 0. From Example 1.1, we put R =1 and
0=9/20. Then we have

a1(t) — fia(R,R)b1a(t) = (cos t+7)—1-1 ~11—O(sin t+1) > cos t+%

29 29 29 . 29
=T=82 m-(smt—i—7)—ﬁ-bn(l)

1 1 1
ay(t) — f21(R, R)byi (1) = (cos t +9) —m~3 -1 -g(sin t+1) > cos t+77

15

2

Y

3 3. 3
_1.1()2 Z-(s1nt+9)—1'b22(t)'
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Then, since f2(0,0) < f11(d,0) =441/800 < 29/40, (1.5) hold. Moreover,
since

C*(6,2R) =3,  C.(6,2R) =9/20,

we have
C*(5,2R)b12MM[a2]_ 3(1/5)9_11
Ml = — G R ©208 20
C02Rbau M) , 3-(1/3)-7 173
Ml = — G R, ©206 27 >

Hence conditions (GA) hold.

The rest of this paper is organized as follows. In Section 2 we give
important propositions that are employed in proving Theorems 1 and 2. The
proofs of Theorems 1 and 2 are given in Sections 3 and 4, separately.

2. Preliminary propositions

To prove Theorems 1 and 2, we prove important propositions that are
generalizations of [1, Lemmas 3.1 and 3.2].

ProposiTiION 1. Let u= (uy,...,uy) and v= (vy,...,vy) be solutions of
(GLV).
(1) Let Dyf;5(0,0) >0, 1 <i,j<N. Suppose that there exist constants
A,B>0and T=T,, =ty such that for j=1,...,N and t > T,

A< Llj(l), Uj(l) <B. (21)

Suppose moreover that for system (GLV) there exist positive constants
O1,...,0y such that for j=1,... N,

lim inf [ajbjj(t) - g((g’jg) > auby(1)| > 0. (2.2)

t— —ot
i#]

Then there exist some constants T > T, C = Cy 3 >0andy =1y, >0
such that for t > T,

Z lui(2) — v;(1)] < (Z lui(T) — vi(f”)|> Ce 10-T), (2.3)

i=1 i=1

(i) Suppose that there exist constants A,B>0 and T =T,, >ty sat-
isfying (2.1) for j=1,....N and t > T. Suppose moreover that for
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system (GLV) there exist positive constants oy, ...,ouy such that for
j=1,...,N,

. C*(A4,2B)

h?_l»!;glf Otjbjj([) —m;ja,‘bij([) > 0. (24)

Then the same conclusion as in (i) holds.
When (GA) hold, we can reduce condition (2.2) to a simpler one.

PROPOSITION 2. Suppose that conditions (GA) hold for some 6 >0 and

R>0. Then there exist some positive constants oi,...,oy Such that for
j=1,...,N,
C*(0,2R)
%bjiL — 72 by > 0. (2.5)
C.(0,2R) oy

Note that (2.5) with 6 = 0 implies (2.2) with B= R, and (2.5) with 6 >0
implies (2.4) with 4 =0 and B=R. So (GA) automatically imply (2.2) or
(2.4) according as 0 =0 or J > 0.

REMARK 5. By Proposition 1, in order to prove Theorem 1, it is sufficient
to prove

0 < liminf u;(f) < limsup u;(f) < R, l<i<N, (2.6)

—o0 t— 00

where u = (uy,...,uy) is a solution of (GLV) defined near oo and R is the
constant indicated in Theorem 1. Similarly, to prove Theorem 2, it is sufficient
to prove

¢ < lim inf u;(t) < limsup u;(t) < R, 1<i<N. (2.7)
— 00

— o0
In Sections 3 and 4 we shall prove (2.6) and (2.7) (Propositions 3 and 4).
2.1. Proofs of Propositions 1 and 2. We shall prove (ii) of Proposition 1;
(i) of Proposition 1 can be proved similarly.

PrROOF OF (ii) OF PROPOSITION 1. Firstly, from (2.4), there exist some
T>T and ¢ >0 such that for j=1,...,N and t> T,

C* A,2B)
ijb]]([ A 2B Z“l ij (28)
l;éj
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-3 s (249)

Here we note that log(u;()/vi(¢)), 1 <i < N, are Lipschitz continuous on every

finite interval I < [tp, o0) and
i) | oo = e ) - e i)
lo —|lo <llo —1lo
H g(vi(zl) \oi(n) F\uie)) (o)
where 1,1, € I. Therefore, since [log(u;(f)/vi(2))|, 1 <i < N, are absolutely

continuous on 7, 6(¢) is differentiable for almost all > #,.
From (GLV), for almost all > T,

N u v
0'(1) = Z o L{—’ - v_l} sgn(u; — v;)

Next let

R t=> 1.

bl

N N
= Z o [ Z by (2)(fij(uiy u;) — fii(vi, vj))] sgn(u; — v;)

.

N N
= Z Z[ o (1) (fiy (i, up) — S5 (i, v7)) sgn(u; — ;)]

—o5b (0)(fj (1)) — /() sgn(u; — vj)

I
ﬁ

o Zo‘l i (O Sy (ui, w;) — fip(vi, vy)) sgn(u; — Ui)],

i#]

where u = u(t), v =v(#). Here, by the mean value theorem, we note that there
exist 0 <wy; <1, 1 <i,j<N, such that for i,j=1,...,N,

f,-j(u,-, uj) — ﬁ'j(v,j, Uj) = (ui — l)l')Dlﬁ'j(W,jjT/lj + Zijl),', wijuj =+ Zijvj)
+ (u; — vj) Do fij(wyu; + zjjvi, wyuy + zv;),  (2.9)

where z; =1—wy;, 1<i,j<N. Thus we have

N
E —ayby; (1) (D1 fis (wyus + 05, wyu; + z07)
Jj=1

+ D fis(wistj + 20y, wiity + zj07) ) (w4 — vy) sgn(u; — vy)
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_ Z oc,-by(t)le,j(WUu,» -+ ZjjUi, Wil -+ Zijl)j)(ul' - Ul') sgn(u,» — U,’)
i#j

_ Z a;bij (1) Do fij(wWistt; + zjjvi, win; + ziv;) (u; — v;) sgn(u; — vi)]
i#j

N
Z «(4,2B)o;bji (1) luj — )] +ZC (A,2B)ouby(1)|u; — U/|]
j=1 i#]

By (2.8), we have

N
0'(1) < —eCu(A,2B) Y |y —vj|  ae t>T.

=1
By (2.1) and the mean value theorem, we note that for i=1,...,N and t > T,
%|ui(t) —v;(1)| < |log (Z:Eg) ’ < %|ui(t) —vi(0)]- (2.10)

Therefore, for almost all 7 > T, we have

0'(r) < —EAC*EC#B)Z% lo

i=1

)=t

a*
where o* = max;<;<n{o;}. Thus, since 0(r) is absolutely continuous on
[to, 0), for t > T,

0(t) < O(T) exp(—W(t—T)). (2.11)
Let us put o, = min;<;<y{o;}. By (2.1), we have
N B (1) B
>l - (0] = 3> ox(4) | = 2ot 2.12)
for t> T and
x* N
0(T) < 223 lu(T) = (7)) (2.13)

N o*B N
D lu(r) = Zlu, T) - Iexp(—M(t— T)).

-1 o
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Hence, putting C = o*B/a,A >0 and y = ¢AC,(A4,2B)/x. > 0, we can obtain
(2.3). O

Next we shall prove Proposition 2.

PROOF OF PROPOSITION 2. First let C = [¢;] be an N x N matrix defined
by the following:

Ve () @=o
Furthermore we put w = (M[a)], ..., Mlay])", where (Mla1],..., Mlay])" de-
notes the transpose of (Mlail,..., Mlay]). Here, from conditions (GA), we
note that for i=1,..., N,
*(0,2R)byjin
. C.(0.2R)b ]ij Mlaj| < mla;] < M{a;].
Therefore we have
Cw <w, (2.14)
which means that for i = 1,..., N, the ith entry of the vector Cw is strictly less

than the ith entry of w. By (2.14), there exists an N x N matrix P = [p;] such
that ¢; < py, 1 <i,j <N, and

Pw < w. (2.15)

Since P is a strictly positive matrix, it follows from the Perron-Frobenius
theorem [2] that there exists a v = (cxl,...,ocN)T and 4> 0 such that o; >0,
1<j<N, and

Py = o (2.16)

We can rewrite (2.16) as
Tl =0TP. (2.17)
From (2.15) and (2.17), we have
JvTw = 0TPw < vTw.
Therefore A < 1. By (2.16), we have
Cho < PTo=Jv<o. (2.18)
Hence the jth of (2.18) implies

C*(0,2R)bjjp

C.(3,2R)bjr < %

i#j

that is (2.5). O
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3. Proof of Theorem 1

From Remark 5, in order to prove Theorem 1, it is sufficient to prove the
following proposition.

PropoSITION 3. Let conditions (1.1), (1.2) and (1.3) hold and let t) > c.
Let R >0 be a number such that

R > max{f,"'((a;/bi),) |1 <i<N}.

Suppose that D, f;(0,0) >0, 1 <i,j <N and conditions (1.4) hold. Then for
any solution u = (uy,...,uy) of (GLV) on [ty, o0),

0< li¥ninf u;(t) < limsup u;(f) < R, I<i<N. (3.1)

—o0

Before proving Proposition 3, we give several lemmas that are employed
in the proof of Proposition 3.

Lemma 1. Let conditions (1.1), (1.2) and (1.3) hold. Let ty > c and let
u=(uy,...,uy) be a solution of (GLV) on [ty,0). Then the following state-
ments (1) and (i) hold:

(i) Fori=1,...,N and t > t,

wi(1) < max{u;(to), f;" ((ai/ba)yy)}-
(i) Let R>0 be a number such that
R > max{f; ' ((a:/bi),,) |1 <i<N}.
Then

limsup (1) < R, I1<i<N. (3.2)
— o0
Proor. (i) First we prove the following claim: )
Claim. [f there exist some T and ie{l,...,N} such that fi(u,(T)) >
(ai/bii) s, then ul(T) < 0.
In fact from the assumption, we have

w{(T) = ui(T) |ai(T) = > by(T) f (i T),w,(T)) — ba(T) fi(ui(T))
J#
< u(T)ai(T) = ba(T) f;(ui(T))] < 0.
By the above claim, we can prove (i).
(i) From (i), it suffices to prove the existence of some 7 > ¢ satisfying
u(T) <R, 1 <i<N. The proof is divided into three cases.
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Case 1. The case where u;(f) < R near oo.
Case 2. The case where u;(f) > R near oo.
Case 3. Cases 1 and 2 do not hold.

In Case 1, there is nothing to prove.

In Case 2, by the proof of (i), we have

/(1) < wi(0)[ai(t) — bi(0) i (ui(0))] < [(@i/bi) g — Fi(R)]ui0)bi1)

for ¢t > ty. Therefore we obtain

wi(t) < [(ai/bit)py — fi(R)Jui(to) Jr bii(s)ds + u;(to).

Iy

Hence, by [(ai/bi), — f(R)] <0 and (1.2), it follows that u;(f) — —oo as
t — oo, but this is a contradiction.

In Case 3, there exists some 7 > fy such that u;(f) = R. By (i), we have
u;i(t) <u;(f) = R for 1> 1, but this is a contradiction. O

Henceforth let R be a number such that
R > max{f, ' ((a;/bi)y) |1 <i < N}.
Then, from Lemma 1, there exists some 7" = T, > fy such that fori=1,..., N,
u;(t) <R, t>T, (3.3)

where 7y > ¢ and u is a solution of (GLV) on [fy, o). Furthermore, by (1.3)
and (2.9), it follows that for i,j=1,...,N,

Ji(ui(0),u; (1)) < C*(0, R)(ui(1) +w(0),  t=T. (3.4)

Then the following lemma holds.

LemMmA 2. Let conditions (1.1), (1.2) and (1.3) hold and let ty > c. Let
u=(uy,...,un) be a solution of (GLV) on [ty,00). Then there exists some
o> 0 such that

N
S u(ty=o,  t>T.
i=1

Proor. We set a, = min;<;<y{a;r} and b* = max,<; j < n{bjm}. More-
over let

V(t) = ZN:u,-(zL t>T.
i=1
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Then, by (GLV) and (3.4), the following claim holds:

Claim. If there exists some t>T such that 0<V({)<a./
(N +1)b*C*(0,R), then V'(t) > 0.

In fact, from the assumption of the above claim, we have

N
V(i)=Y i) [ai(f) = > byld) fiui(d), “j(i))]
i=1

J=1

\

> Zu,-(f) [a* —b*C*(0,R) (Nu,-(f) + Z”J(f)>]

i=1 j=1

> V(i)[a. — (N + 1)b*C*(0, R)V (7)] = 0.

By the above claim, we can obtain V' (¢) > min{V(7T),a./(N + 1)b*C*(0, R)}
=:0 for t > T. O

The proofs of Lemmas 3-5 are based on [1].

LEmMA 3 (see [1, Lemma 2.3]). Let conditions (1.1), (1.2) and (1.3)
hold.  Assume that (3.1) do not hold. Then there exist some ty > ¢, some solu-
tion i = (dy,...,uy) of (GLV) on [ty,0) and a maximal nonempty subset J
of {1,...,N} such that J #{1,...,N} and

inf max{u; ()| jeJ} =0. (3.5)
1>19

Henceforth let # and J denote the solution and the subset of {1,..., N}
given in Lemma 3.

LeEmMA 4 (see [1, Lemma 2.4]). Let conditions (1.1), (1.2) and (1.3) hold.
Assume that (3.1) do not hold. Let £ >0 be a number such that

¢ = min{iy(T)| j e J}.

Then there exist some sequences {s,},—, and {t,},~, such that for n>1,

T <s, <ty (3.6)
th — Sy > 1 (3.7)
max{u;(t)|jeJ,sp <t < t,} =¢/m; (3.8)

and there exists j, € J such that

ij, (sn) = &/n. (3.9)
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Proor. First let

pi(t) = ai(t) = > by (1) fy(wi,wy),  t=1,1 <i<N.

Jj=

—_

By (1.2), (3.3) and (3.4), there exists some number r >0 such that for
i=1,...,N,
pi(t) = —r, t>T. (3.10)

By the definition of the set J and (3.10), we can prove Lemma 4 as in the
proof of [1, Lemma 2.4]. O

Henceforth let j, € J, {s,},—,; and {#,},~, denote the sequences given in
Lemma 4.

LemMA 5 (see [1, Lemma 2.5]). Let conditions (1.1), (1.2) and (1.3) hold.
Assume that (3.1) do not hold Let K be the complement of J: K=
{1,2,...,N} —J. Then there exists some number n >0 such that for n>1
and k e K,

we(se) =n,  w(ty) =1 (3.11)

Henceforth let # > 0 denotes the number given in Lemma 3.
Since J is a finite set, there exist some integer j, € J and some increasing
sequence {,},_, such that

Jng = Jo> qg=1. (3.12)

For simplicity, we put ¢, =s,, and d;, = t,, for ¢ > 1. By (3.7) and (3.8), we
have

dy — ¢y > nyg, qg=1; (3.13)
1 (%

li i = jielJ. .14

angc -y ch u;(t)dt = 0, jelJ (3.14)

Since #;, (c;) > u;,(d,) for ¢ > 1 from (3.8) and (3.9), we have

log(M)SO, g>1. (3.15)

. (cq)
Then the following lemma holds.

LeEMMA 6. Let conditions (1.1), (1.2) and (1.3) hold.  Assume that (3.1) do
not hold and D-f;(0,0) >0, 1 <i,j<N. Then for each k € K there exists
some xi >0 such that
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C.(0,R)
M P — b 3.16
[ak} = C*(O, R) ;{ KILXI, ( )
mla;) <> bjvx. (3.17)
leK

Firstly, by (3.3), we note that for k€ K and ¢ > 1,

PROOF.
1 (%
J w;(t)dt < R.

0<

dy — ¢4 ¢

Therefore, by considering subsequences of {c,},~; and {d,}~, if necessary, we

can assume that for k € K,
. C*(0,R) % _
fim gj G (1)t =: x> 0 (3.18)
g dy — ¢4 ¢
exists.
Similarly, since ag; < ai(t) < apy for t > ¢, by considering subsequences
of {¢y},; and {d,},~, if necessary, we can assume that for k € K,

L (%
lim J ai(t)dt

g—ody —cq ),
Furthermore, since (3.13) implies d, — ¢, — o0 as g — oo, it follows

exists.
that for ke K,
1 (%
J ar ()i < Mlay] (3.19)

lim Y
4= dg — Cq Je,

Since, from (3.3) and Lemma 5, # < #(c,), tik(d;) <R for ke K and
g >1, we have
Lf"(dq)> —0, kek. (3.20)

lim ! lo (
4= dy — ¢ ¢ e (cq)

Since, by (1.3) and (2.9),
Si(@i(1),u;(t)) = C.(0, R)a(1), 1<i,j<N,t>T,

it follows from (GLV) that for ke K and 1> T,

(1 _
> {8 + ;{ C(0, R)byar ity (t).

<

<

7 N ~ .
ZZE ; + ;bkj(l‘)ﬁcj(uk(t):W(Z))

ak(t) = 7
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Therefore, from (3.18)—(3.20), we have

Miax] = lim

. C.(0, R)by [ C*(0,R) Jdv _
+ lim > C*(0,R) (dq—cq iy (1)dt

leK ¢

> b

leK

~ C*(0,R)

for k € K; that is (3.16).
Next, similarly as in the proof of (3.16) by considering subsequences of

{cg}ozy and {d,},2; if necessary, we have

mla;] < lim

d(,
- ch a;, (t)dt. (3.21)

¢

Moreover it follows from (GLV) and (3.4) that for t > T,

X2

M=

a;, (1) = 0 +

by.i(1) fi.1 (. (1), (1))

=
X

~

—_

N
+ > b C (0, R) (i (1) + (1))
=

<

~—

; (1

;. (1)

IA
S

Therefore, by (3.15), we have

1 dy N C*(O,R) dy _ _
_J a;, (H)dt < /ZleM< -y J ;. (1) + w(t)dt

dg— ¢4 ¢ ¢

C*(0,R) (% _ C*(0,R) (% _
< Wy T2 [ a3 b SO iy
a7~ ¢ Je ey 77 C Jg

C*(0,R) (% _
+ij*/qu(—c)J u(t)dt.

leK g4 Jeq

Hence, by j. €J, (3.14) and (3.21), we have
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dy
1< i (1)dt
mla;] < lim Ry J aj. (1)
C*(0,R) (% _
< lim Zb*lM#J u/(t)dt = ij*lMx/;
ImRITK q— ¢ Cq leK
that is (3.17). O

By employing Lemma 6, we prove Proposition 3.

PROOF OF PROPOSITION 3. We assume to the contrary that conditions (1.4)
hold and (3.1) do not hold. Then by the above lemmas, there exist a proper
subset K of {1,...,N}, an integer j.e{l,...,N}\K, and some numbers
xr >0, k € K, satisfying (3.16) and (3.17).

Since, by (3.16),

C.(0, R)bper X - ZC*(O7R)bk1Lxl

C*(0,R) coRr) =Ml

leK

for ke K, we have

C*(0, R\ M[a] _ C*(0,2R)M]ay]

<
Y= TC0, Rbur, — C(0,2R)br,

Therefore it follows from (3.17) that

C*(0,2R) <~ bk M|ay]
mla;] < ;bj;kMxk < C.(0,2R) Z ;

= b

but this is a contradiction to an inequality derived from (1.4):

C* (0, ZR) bj*kMM[ak] > C*(O, 2R) bj*kMM[ak]
C0.2R) &7 bur  — CO02R) 7 Do

mla; ] >

By Propositions 1-3, we can prove Theorem 1.

REMARK 6. Proposition 3 can be proved even if conditions (1.4) are slightly
weakened to the following:

mla;] >

4. Proof of Theorem 2

From Remark 5, in order to prove Theorem 2, it is sufficient to prove the
following proposition.
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PrOPOSITION 4 (see [3, Lemmas 3.1 and 4.1]). Let conditions (1.1), (1.2)
and (1.3) hold and let ty > c. Let R>0 be a number such that

R > max{f, ' ((a;/bi)y) |1 <i<N}.

Suppose that for system (GLV) there exists some number 6 > 0 such that (1.5)
hold.  Then for any solution u= (uy,...,uy) of (GLV) on [t, ),

0 < lim inf u;(1) < limsup u;(t) < R, 1 <i<N. (4.1)
— 00

t— o0

Proor. Step 1. Firstly, similarly as in Section 3, there exists 7= T, > t,
such that (3.3) hold. Furthermore, from (1.5), there exist some numbers o' >
max; < j<n{f;j(0)} and T > T such that for i=1,...,N and t> T,

(li(l) — Zf,j(R, R)b,j(i) = 5lb,‘j([).
J#i

Then we can claim the following:
Claim 1. If there exist some i>T and ie{l,...,N} such that 0 <

fiui(7)) < £i(9), then ul(f) > 0.
In fact, from the assumption of Claim 1, (3.3) and (1.3), we have

ui(f) = u;(f) [a,-(f) = by(0) fi(wi(D), (1)) — b,—l-(i)f,-(u,-(f))]

J#i

> u(f) [ai(f) = > by(?) f3(R, R) = b(0) ;(5)]
J#i

> u,(f)(é'b,,(f) — b,,(f)f,(&)) > 0.

Step 2. By Claim 1, we can claim the following:
Claim 2. For i=1,...,N,

fiui(0) = min{f,(u(T)), fi(6)},  1=T.

From Claim 2, in order to prove Lemma 4, it is sufficient to prove the

following: For i=1,...,N, there exists some #; > T such that
fiwi(@)) = f6).
We assume to the contrary that there exists some number i€ {l,..., N} such

that f(u;(1)) < f;(6) <&’ for t > T. Then it follows from Step 1 that

u(0) = 0 = fO)uba() =0, 1> T



Nonautonomous Lotka-Volterra competition system 207

Therefore, since

u (1) > (6" = fi(6))ui(T)bi(1),

we have
u(t) = (0" — f(0))u(T) jT. bils)ds +u(T), 1= T.

Thus, by noting that 6’ — £,(6) > 0, it follows from (1.2) that u;(r) — oo as
t — oo but this is a contradiction. Hence we can prove Lemma 4 by setting
t = max;<;<n{Li}. O

By Propositions 1-4, we can prove Theorem 2.

REMARK 7. Proposition 4 can be proved even if conditions (1.3) are slightly
weakened to the following:

Sfi(x, ) >0, (x,p) eRi, 1<i,j<N;

Dy fy(x,») =0, (x,y)eR% 1<ij<N;
Dy fy(x,») =0, (x,y)eR?, 1<i,j<N;
(D1fi + Dafii)(x,x) >0, xeRi, 1 <i<N;
£;(0,00=0, 1<ij<N;
}Lrl}cﬁi(x,x):oo, l<i<N.
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