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Abstract. We consider harmonic Bergman functions, i.e., functions which are har-

monic and p-th integrable. In the present paper, we shall show that when 1 < p < y,

every harmonic Bergman function on a smooth domain is represented as a series using

the harmonic Bergman kernel. This representation is called an atomic decomposition.

1. Introduction

Let W be a domain in the n-dimensional Euclidean space Rn. For

1a p < y, we denote by bp ¼ bpðWÞ the harmonic Bergman space on W,

i.e., the set of all real-valued harmonic functions f on W such that k f kp :¼
ð
Ð
W
j f jpdxÞ1=p < y, where dx denotes the usual n-dimensional Lebesgue mea-

sure on W. As is well-known, bp is a closed subspace of Lp ¼ LpðWÞ and

hence, bp is a Banach space (for example see [1]). Especially, when p ¼ 2,

b2 is a Hilbert space, which has the reproducing kernel, i.e., there exists a

unique symmetric function Rð� ; �Þ on W�W such that for any f A b2 and any

x A W,

f ðxÞ ¼
ð
W

Rðx; yÞ f ðyÞdy: ð1Þ

The function Rð� ; �Þ is called the harmonic Bergman kernel of W. When W is

the open unit ball B, an explicit form is known:

Rðx; yÞ ¼ RBðx; yÞ ¼
ðn� 4Þjxj4jyj4 þ ð8x � y� 2n� 4Þjxj2jyj2 þ n

njBjð1� 2x � yþ jxj2jyj2Þ1þn=2
;

where x � y denotes the Euclidean inner product in Rn and jBj is the Lebesgue

measure of B.

There are many papers concerning the harmonic Bergman space on the

unit ball, where the above explicit form plays important roles. For example,
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in the paper [3] an atomic decomposition theorem is obtained. The purpose

of this paper is to generalize this result for more general domains, smooth

bounded domains. A bounded domain W is said to be smooth if for every

boundary point h A qW there exist a neighborhood V of h in Rn and a

Cy-di¤eomorphism f : V ! f ðVÞHRn such that f ðhÞ ¼ 0 and f ðWVVÞ ¼
fðy1; . . . ; ynÞ A Rn; yn > 0gV f ðVÞ. Our main result is the following.

Theorem 1. Let 1 < p < y and let W be a smooth bounded domain.

Then we can choose a sequence flig in W satisfying the following property: For

any f A bpðWÞ, there exists a sequence faig A l p such that

f ðxÞ ¼
Xy
i¼1

aiRðx; liÞrðliÞð1�1=pÞn; ð2Þ

where rðxÞ denotes the distance between x and qW.

The equation (2) is called an atomic decomposition of f . The above

theorem shows the existence of a sequence fligHW permitting the atomic

decomposition for every f A bp. In the last section, we also discuss a su‰cient

condition for a given sequence flig in W to permit the atomic decomposition.

Theorem 2. Let 1 < p < y and W be a smooth bounded domain. Then

there exists a constant d1 > 0 such that if a sequence flig in W satisfies

6
i

Bðli; d1rðliÞÞ ¼ W;

then every f A bp can be represented as

f ¼
Xy
i¼1

aiRð�; liÞrðliÞnð1�1=pÞ

in bp with some sequence faig A l p, where Bðx; rÞ is the open ball of radius r,

centered at x.

In what follows, W is always assumed to be a smooth bounded domain

in Rn.

Throughout this paper, C will denote a positive constant whose value is

not necessarily the same at each occurrence; it may vary even within a line.

2. Preliminaries

Equation (1) is called the reproducing formula for p ¼ 2. Unfortunately,

for general p A ½1;yÞ, the reproducing formula is not always ensured a general
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domain. However, when W is a bounded smooth domain, the reproducing

formula holds for 1a p < y ([4]), i.e., for any f A bp

f ðxÞ ¼
ð
W

Rðx; yÞ f ðyÞdy:

This equality follows from the estimates for the harmonic Bergman kernel.

Also in this paper, the estimates of the harmonic Bergman kernel obtained

by H. Kang and H. Koo [4] play an important role. In this section, we

recall some results in [4] and show some basic lemmas. For an n-tuple a :¼
ða1; . . . ; anÞ of nonnegative integers, called a multi-index, we denote jaj :¼
a1 þ � � � þ an and Da

x :¼
�

q
qx1

�a1 . . . � q
qxn

�an .
Lemma 1 (Theorem 1.1 in [4]). Let a, b be multi-indices.

(1) There exists a constant C > 0 such that

jDa
xD

b
yRðx; yÞja

C

dðx; yÞnþjajþjbj

for every x; y A W, where dðx; yÞ ¼ rðxÞ þ rðyÞ þ jx� yj.
(2) There exists a constant C > 0 such that

Rðx; xÞb C

rðxÞn

for every x A W.

Based on Lemma 1, B. R. Choe, Y. J. Lee and K. Na derived the

following lemma for the estimate of the harmonic Bergman kernel.

Lemma 2 (Lemma 2.3 in [2]). There exist constants 0 < d2 < 1 and C > 0

such that for every x A W and y A Bðx; d2rðxÞÞ,

C�1
aRðx; yÞrðxÞn aC:

We generalize Lemma 2 for our later use.

Lemma 3. There exist constants 0 < d3 < 1 and C > 0 such that for every

x A W and y; z A Bðx; d3rðxÞÞ,

C�1
aRðy; zÞrðxÞn aC:

Proof. First, we claim that if 0 < d < 1 and x A W then

ð1� dÞrðxÞ < rðyÞ < ð1þ dÞrðxÞ
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for any y A Bðx; drðxÞÞ. In fact, by taking a boundary point h with rðyÞ ¼
jh� yj, we have

rðxÞa jh� xja jh� yj þ jy� xj < rðyÞ þ drðxÞ

for any y A Bðx; drðxÞÞ. Thus, we obtain ð1� dÞrðxÞ < rðyÞ for any y A
Bðx; drðxÞÞ. Similarly, taking a boundary point h 0 with rðxÞ ¼ jh 0 � xj, we

have

rðyÞa jh 0 � yja jh 0 � xj þ jx� yj < rðxÞ þ drðxÞ ¼ ð1þ dÞrðxÞ

for any y A Bðx; drðxÞÞ.
We take a constant d2 > 0 in Lemma 2 and choose a constant d3

with 0 < d3 <
d2

2þd2
. Then we obtain 2d3 < d2ð1� d3Þ. Hence, for any y; z A

Bðx; d3rðxÞÞ, the above assertion shows

jy� zj < 2d3rðxÞ < d2ð1� d3ÞrðxÞ < d2rðyÞ:

These inequalities imply z A Bðy; d2rðyÞÞ. By Lemma 2, there exists a constant

C > 0 such that

C�1
aRðy; zÞrðyÞn aC:

Since y A Bðx; d3rðxÞÞ, the above assertion implies that rðxÞ and rðyÞ are

comparable. Therefore Lemma 3 is shown. r

Lemma 4 (Lemma 2.4 in [2]). Let 1 < p < y. Then there exists a

constant C > 0 such that for any x A W,

C�1rðxÞnð1=p�1Þ
a kRðx; �Þkp aCrðxÞnð1=p�1Þ:

We need the following calculation.

Lemma 5 (Lemma 4.1 in [4]). Let s and t be nonnegative real numbers.

If sþ t > 0 and t < 1, then there exists a constant C > 0 such thatð
W

dy

dðx; yÞnþs
rðyÞ t

a
C

rðxÞsþt

for every x A W.

Here, we define an auxiliary integral operator

Kf ðxÞ ¼
ð
W

1

dðx; yÞn f ðyÞdy:

Lemma 6. For 1 < p < y, K is a bounded linear operator from LpðWÞ to

LpðWÞ.
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Proof. We have only to check the Schur test (see p. 42 in [7]). Let

1 < p < y and let q be the exponent conjugate to p. Putting hðxÞ ¼ rðxÞ�1=pq,

we have estimates ð
W

1

dðx; yÞn hðyÞ
p
dyaCrðxÞ�1=q ¼ ChðxÞp

and ð
W

1

dðx; yÞn hðyÞ
q
dyaCrðxÞ�1=p ¼ ChðxÞq

with some constant C > 0, by Lemma 5. Hence, the Schur test ensures that K

is a bounded operator from LpðWÞ to LpðWÞ. r

Using Lemma 6, we have norm estimates of the derivatives of harmonic

Bergman functions.

Lemma 7. Let 1 < p < y and let a be a multi-index. Then there exists a

constant C > 0 such thatð
W

jrðxÞjajDa
x f ðxÞj

p
dxaCk f kp

p

for every f A bp.

Proof. For any x A W, by (1) of Lemma 1 we have

jrðxÞjajDa
x f ðxÞj ¼ rðxÞjaj

ð
W

Da
xRðx; yÞ f ðyÞdy

����
����

a

ð
W

CrðxÞjaj

dðx; yÞnþjaj j f ðyÞjdy

aC

ð
W

1

dðx; yÞn j f ðyÞjdy

aCK j f jðxÞ:

Then, the lemma follows from Lemma 6. r

Finally, we remark the following duality.

Lemma 8 (Corollary 4.3 in [4]). Let 1 < p < y and let q be the exponent

conjugate to p. Then ðbpÞ� G bq, under the pairing

h f ; giL ¼
ð
W

f ðxÞgðxÞdx

for f A bp and g A bq.
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3. Covering lemmas

In this section, we consider some properties of sequences flig in W.

Definition 1. Let 0 < e < d < 1.

(1) A sequence flig in W is called e-separated if Bðli; erðliÞÞV
Bðlj; erðljÞÞ ¼ q for i0 j.

(2) A sequence flig in W is called an ðe; dÞ-lattice if the following two

conditions are satisfied:

ðaÞ flig is e-separated; ðbÞ 6Bðli; drðliÞÞ ¼ W:

The following lemma shows that the number of intersection can be

bounded above.

Lemma 9. Let 0 < e < d < 1. If a sequence flig is e-separated, then for

every i A N,

af j A N;Bðli; drðliÞÞVBðlj ; drðljÞÞ0qga ð1þ dÞð2dþ eð1þ dÞÞ
ð1� dÞ2e

 !n
;

where for a set A, aA denotes the number of elements in A.

Proof. Let a sequence flig be e-separated and let i be fixed. If j A N

satisfies Bðli; drðliÞÞVBðlj; drðljÞÞ0q, then

jli � ljj < dðrðliÞ þ rðljÞÞ: ð3Þ

Taking boundary points hi and hj with rðliÞ ¼ jhi � lij and rðljÞ ¼ jhj � ljj, we
have

rðljÞa jhi � ljja jhi � lij þ jli � ljj < rðliÞ þ dðrðliÞ þ rðljÞÞ:

Similarly, we obtain

rðliÞ < rðljÞ þ dðrðliÞ þ rðljÞÞ;

which shows

1� d

1þ d
rðliÞ < rðljÞ <

1þ d

1� d
rðliÞ: ð4Þ

By (3) and (4), we have

jli � ljj < d rðliÞ þ
1þ d

1� d
rðliÞ

� �
¼ 2d

1� d
rðliÞ;

i.e.,

lj A B li;
2d

1� d
rðliÞ

� �
: ð5Þ
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Hence

Bðlj; erðljÞÞHB li;
2d

1� d
rðliÞ þ erðljÞ

� �
HB li;

2dþ eð1þ dÞ
1� d

rðliÞ
� �

;

by (4) and (5). Put

JðiÞ :¼ j A N;Bðlj; erðljÞÞHB li;
2dþ eð1þ dÞ

1� d
rðliÞ

� �� �
:

Then, since the sequence flig is e-separated, we have

af j A N;Bðli; drðliÞÞVBðlj; drðljÞÞ0qgaaJðiÞ

a sup B li;
2dþ eð1þ dÞ

1� d
rðliÞ

� �����
���� � jBðlj; erðljÞÞj�1; j A JðiÞ

� �

a sup
ð2dþ eð1þ dÞÞrðliÞ

eð1� dÞrðljÞ

� �n
; j A JðiÞ

� �

<
ð1þ dÞð2dþ eð1þ dÞÞ

eð1� dÞ2

 !n
: r

The following lemma shows the existence of an ðe; dÞ-lattice for some e

and d.

Lemma 10. For each 0 < d < 1, there exists a
�
d
2 ; d
�
-lattice.

Proof. First, we take a point l1 in W such that rðl1Þ ¼ maxx AW rðxÞ.
Second, we take l2 such that rðl2Þ ¼ maxfrðxÞ; x A WnBðl1; drðl1ÞÞg. Third,

we take l3 such that rðl3Þ ¼ maxfrðxÞ; x A WnðBðl1; drðl1ÞÞUBðl2; drðl2ÞÞÞg.
Proceeding this process, we can obtain a

�
d
2 ; d
�
-lattice. In fact, the condition

(a) follows easily from the way of the construction. We check the condition

(b). If we assume 6Bðli; drðliÞÞ0W, there exists a point x0 A W such that

x0 B 6Bðli; drðliÞÞ. Put r0 ¼ rðx0Þ. Then rðliÞb r0 for all i. Since the

family
�
B
�
li;

d
2 r0
�	

i
are pairwise disjoint, the volume jWj must be infinite,

which contradicts the boundness of W. Thus we have the condition (b) in (2)

of Definition 1. r

Definition 2. A family fUig of subsets of W is said to have the uniformly

finite intersection (with bound N > 0), if afi A N; x A UigaN for any x A W.

By Lemma 9, we easily obtain the following.

Lemma 11. Let 0 < d < 1
4 . If a sequence flig is d

2-separated, then

fBðli; 3drðliÞÞg has the uniformly finite intersection with bound 100n.
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Proof. Let 0 < d < 1
4 and let a sequence flig be d

2-separated. Using

Lemma 9 as e ¼ d
2 and 3d, we can calculate af j A N;Bðli; 3drðliÞÞV

Bðlj; 3drðljÞÞ0qg. r

Proposition 1. There exists a constant N > 0 such that for 0 < d < 1
4 , we

can choose a sequence fld
i g and a disjoint covering fE d

i g of W satisfying the

following conditions:

(a) E d
i is measurable for each i A N;

(b) E d
i HBðld

i ; drðl
d
i ÞÞ for each i A N;

(c) fBðld
i ; 3drðl

d
i ÞÞg has the uniformly finite intersection with bound N.

Proof. For 0 < d < 1
4 , we take fld

i g in Lemma 10 and we put

E d
1 :¼ Bðld

1 ; drðl
d
1ÞÞ, E d

2 :¼ Bðld
2 ; drðl

d
2ÞÞnBðl

d
1 ; drðl

d
1ÞÞ and E d

3 :¼ Bðld
3 ; drðl

d
3ÞÞn

ðE d
1 UE d

2 Þ; . . . ; inductively. We can easily check that these fld
i g and fE d

i g
satisfy the above conditions (a) and (b). By Lemma 11, we can easily check

the condition (c) with N ¼ 100n. r

We refer fld
i g and fE d

i g obtained in Proposition 1 as the standard

d-sequence of W and the standard d-covering of W, respectively.

4. Atomic decomposition

In this section, we prove Theorem 1. We discuss the operator

V d
p;flig f :¼ fðdrðliÞÞn=pf ðliÞg;

where 1a p < y, 0 < da 1 and flig is a sequence in W.

Lemma 12. Let 1a p < y and 0 < d < 1. If fBðli; drðliÞÞg has the uni-

formly finite intersection with bound N, then for each 0 < ea 1 the operator

V e
p;flig : b

p ! l p is bounded:

kV e
p;fligkaC

e

d

� �n=p
N 1=p

with some constant C > 0 depending only on the dimension n.

Proof. Let f A bpðWÞ. Since j f jp is subharmonic, the sub-mean value

property implies

j f ðliÞjp a
1

ðdrðliÞÞnjBj

ð
Bðli ; drðliÞÞ

j f ðyÞjpdy

for each i, where jBj is the volume of the unit open ball in Rn. Then we

have
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Xy
i¼1

ðerðliÞÞnj f ðliÞjp a
e

d

� �n
1

jBj
Xy
i¼1

ð
Bðli ; drðliÞÞ

j f ðyÞjpdy

a
e

d

� �n
N

jBj

ð
W

j f ðyÞjpdy: r

Lemma 13. Let 1 < p < y and 0 < d < 1
4 . If a sequence flig and a

disjoint covering fEig of W satisfy Ei HBðli; drðliÞÞ for each i, then there exists

a constant C ¼ Cðn; pÞ > 0 such that

Xy
i¼1

ð
Ei

j f ðxÞ � f ðliÞjpdxaCdpk f kp
p for all f A bpðWÞ:

Proof. Let 1 < p < y, 0 < d < 1
4 and f A bpðWÞ. For any x A Ei, by

Lemma 1,

j f ðxÞ � f ðliÞj ¼
ð
W

ðRðx; yÞ � Rðli; yÞÞ f ðyÞdy
����

����
a

ð
W

jRðx; yÞ � Rðli; yÞj j f ðyÞjdy

a

ð
W

jx� lij j‘Rð~xx; yÞj j f ðyÞjdy

a

ð
W

drðliÞ
C1

dð~xx; yÞnþ1
j f ðyÞjdy

aC2d

ð
W

1

dðx; yÞn j f ðyÞjdy

¼ C2dK j f jðxÞ;

where ‘ denotes the gradient operator on Rn and ~xx is given by the mean value

property in calculus. Here we remark that constants C1 and C2 depend only

on the dimension n. By Lemma 6, we obtain

Xy
i¼1

ð
Ei

j f ðxÞ � f ðliÞjpdxaC
p
2 d

p
Xy
i¼1

ð
Ei

ðK j f jðxÞÞpdx

¼ C
p
2 d

p

ð
W

ðK j f jðxÞÞpdx

aC3d
pk f kp

p ;

which shows the lemma. r
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In the following, we introduce three operators, which are closely related to

our atomic decomposition.

First, we define the operator Ad
p;flig by

Ad
p;fligðfaigÞðxÞ :¼

Xy
i¼1

aiRðx; liÞðdrðliÞÞn=q ð6Þ

for faig A l p, where 0 < da 1, 1 < p < y, q is the exponent conjugate to p and

flig is a sequence in W. The following lemma shows the well-definedness of

Ad
p;flig.

Lemma 14. Let 0 < da 1, 1 < p < y and let q be the exponent conjugate

to p. If the operator V d
q;flig : b

q ! l q is bounded, then for any faig A l p the

right hand side of (6) converges absolutely for each x A W. Moreover the right

hand side of (6) converges in bp as a function of x, and Ad
p;flig : l

p ! bp is a

bounded linear operator.

Proof. Let faig A l p. By the Hölder inequality and Lemma 1, we have

Xy
i¼1

jaiRðx; liÞðdrðliÞÞn=qjaCkfaigkl p
Xy
i¼1

1

dðx; liÞnq
ðdrðliÞÞn

 !1=q

aCkfaigkl p
1

rðxÞn
Xy
i¼1

ðdrðliÞÞn
 !1=q

¼ Ckfaigkl p
kV d

q;flig1kl q
rðxÞn :

This implies Ad
p;fligðfaigÞ converges absolutely for each x A W and uniformly on

every compact subset of W. Hence Ad
p;fligðfaigÞ is a harmonic function in W.

Next, we consider the partial sum

gmðxÞ :¼
Xm
k¼1

akRðx; lkÞðdrðlkÞÞn=q

of the series in (6). For any f A bq, by the Hölder inequality and Lemma 1,

we have

jhgm; f iLj ¼
ð
W

Xm
k¼1

akRðx; lkÞðdrðlkÞÞn=qf ðxÞdx
�����

�����
¼
Xm
k¼1

akðdrðlkÞÞn=q
ð
W

Rðx; lkÞ f ðxÞdx
�����

�����
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¼
Xm
k¼1

akðdrðlkÞÞn=qf ðlkÞ
�����

�����
a

Xm
k¼1

jakjp
 !1=p

kV d
q;flig f kl q

aC
Xm
k¼1

jakjp
 !1=p

k f kq;

which shows by Lemma 8,

kgmkp aC sup
k f kq¼1

jhgm; f iLjaC
Xm
k¼1

jakjp
 !1=p

: ð7Þ

Similarly, for positive integers s > t, we have

kgs � gtkp aC
Xs
k¼tþ1

jakjp
 !1=p

;

which implies fgmg is a Cauchy sequence in bp. Hence, there exists

g A bp such that gm ! g in bp. We also have the norm estimate kgkp ¼
limm!ykgmkp aCkfakgkl p from (7), i.e., kAd

p;fligðfakgÞkaCkfakgkl p . This

completes the proof.

Next, we define the operator U d
p;flig;fEig by

U d
p;flig;fEig f :¼ fjEij f ðliÞðdrðliÞÞ�n=qg;

where 0 < da 1, 1 < p < y and q is the exponent conjugate to p.

Lemma 15. Let 1 < p < y and 0 < da 1. Suppose flig is a sequence

in W and the family fEig satisfies there exists 0 < ea 1 such that Ei H
Bðli; erðliÞÞ for each i. If the operator V d

p;flig : b
p ! l p is bounded, then

U d
p;flig;fEig : b

p ! l p is a bounded linear operator.

Proof. Let f A bp and put bi :¼ jEij f ðliÞðdrðliÞÞ�n=q. Inequalities jEija
jBðli; erðliÞÞjaC e

d

� �nðdrðliÞÞn imply jbijaCj f ðliÞjðdrðliÞÞn=p. Then we have

Xy
i¼1

jbijp aC
Xy
i¼1

j f ðliÞjpðdrðliÞÞn ¼ CkV d
p;flig f k

p
l p aCk f kp

p : r

Finally, we define the operator Sp;flig;fEig by

Sp;flig;fEig f ðxÞ :¼
Xy
i¼1

Rðx; liÞ f ðliÞjEij: ð8Þ
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By a simple calculation, we obtain Sp;flig;fEig ¼ Ad
p;flig �U

d
p;flig;fEig. Thus we

have the following:

Lemma 16. Let 1 < p < y and 0 < da 1. Suppose flig is a sequence in

W and the family fEig satisfies there exists 0 < ea 1 such that Ei HBðli; erðliÞÞ
for each i. If fBðli; drðliÞÞg has the uniformly finite intersection, then for any

f A bp, the right hand side of (8) converges in bp as functions of x. Moreover

Sp;flig;fEig : b
p ! bp is a bounded linear operator.

Moreover, we have the following lemma for Sp;flig;fEig, which plays an

essential role for atomic decompositions.

Lemma 17. Let 1 < p < y. Let fld
i g and fE d

i g be a standard d-sequence

of W and a standard d-covering of W, respectively. Then there exists a constant

0 < d4 < 1 such that for any 0 < d < d4, the operator Sp;fld
i g;fE d

i
g : b

p ! bp is

bijective.

Proof. We have only to prove kI � Sp;fld
i g;fE d

i
gk < 1 for su‰ciently small

d > 0. Let q be the exponent conjugate to p and take f A bp and g A bq,

arbitrarily. Then we have

hðI � Sp;fld
i g;fE d

i
gÞ f ; giL ¼

ð
W

f ðxÞgðxÞdx�
ð
W

Xy
i¼1

jE d
i j f ðl

d
i ÞRðx; l

d
i ÞgðxÞdx

¼
Xy
i¼1

ð
E d
i

f ðxÞgðxÞdx�
Xy
i¼1

jE d
i j f ðl

d
i Þgðl

d
i Þ

¼
Xy
i¼1

ð
E d
i

ð f ðxÞgðxÞ � f ðld
i Þgðl

d
i ÞÞdx

¼
Xy
i¼1

ð
E d
i

ð f ðxÞgðxÞ � f ðxÞgðld
i ÞÞdx

þ
Xy
i¼1

ð
E d
i

ð f ðxÞgðld
i Þ � f ðld

i Þgðl
d
i ÞÞdx:

By Lemmas 12 and 13 and the Hölder inequality, we have estimates

Xy
i¼1

ð
E d
i

f ðxÞðgðxÞ � gðld
i ÞÞdx

�����
�����a

Xy
i¼1

ð
E d
i

j f ðxÞjpdx
 !1=p

�
Xy
i¼1

ð
E d
i

jgðxÞ � gðld
i Þj

q
dx

 !1=q

aC1dk f kpkgkq
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and

Xy
i¼1

ð
E d
i

ð f ðxÞ � f ðld
i ÞÞgðl

d
i Þdx

�����
�����a

Xy
i¼1

ð
E d
i

j f ðxÞ � f ðld
i Þj

p
dx

 !1=p
jgðld

i Þj jE d
i j

1=q

a
Xy
i¼1

ð
E d
i

j f ðxÞ � f ðld
i Þj

p
dx

 !1=p
kV d

q;fld
i g
gkl q

aC2dk f kpkgkq:
Hence,

jhðI � Sp;fld
i g;fE d

i
gÞ f ; giLja ðC1 þ C2Þdk f kpkgkq;

which implies kI � Sp;fld
i g;fE d

i
gka ðC1 þ C2Þd. Since the constants C1 and C2

are independent of d, choosing 0 < d4 a
1

C1þC2
, we obtain kI � Sp;fld

i g;fE d
i
gk < 1

for any 0 < d < d4. This completes the proof. r

As a consequence, we obtain the following theorem.

Theorem 3. Let 1 < p < y and let fld
i g be a standard d-sequence

of W. There exists a constant 0 < d5 a
1
4 such that for any 0 < d < d5,

Ad
p;fld

i g
: l p ! bp is surjective. In fact, there exists a bounded linear operator

T : bp ! l p such that Ad
p;fld

i g
� T is the identity on bp.

Proof. We take a constant 0 < d4 a
1
4 in Lemma 17 and put d5 ¼ d4.

Then for 0 < d < d4, we can put T :¼ U d
p;fld

i g;fE d
i
g � ðSp;fld

i g;fE d
i
gÞ

�1. By

Lemmas 15 and 17, T is a bounded linear operator and Ad
p;fld

i g
� T is the

identity on bp. Hence, Ad
p;fld

i g
: l p ! bp is surjective. This completes the

proof. r

Proof (of Theorem 1). Theorem 3 implies Theorem 1. In fact, we

take a constant d5 > 0 in Theorem 3. Then Ad
p;fld

i g
: l p ! bp is surjective for

0 < d < d5. Hence, for any f A bp, we can choose a sequence fa 0
ig A l p such

that

f ðxÞ ¼ Ad
p;fld

i g
ðfa 0

igÞðxÞ ¼
Xy
i¼1

a 0
iRðx; l

d
i Þðdrðl

d
i ÞÞ

n=q:

The atomic decomposition of f in Theorem 1 is given by faig :¼ fdn=qa 0
ig A l p.

This completes the proof.

5. Relation of operators

In this section, we discuss the operators A and V in section 4. We

put Ap;flig :¼ A1
p;flig, Vp;flig :¼ V 1

p;flig, whose domains are DðAp;fligÞ :¼
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lc H l p and DðVp;fligÞ :¼ f f A bp;Vp;flig f A l pg, respectively. Here lc :¼
ffaig;afi A N; ai 0 0g < yg. For any 1a p < y, lc is dense in l p.

Lemma 18. Let 1 < p < y, q be the exponent conjugate to p and

fligi HW be a sequence. If the operator Ap;flig : lcðH l pÞ ! bp is bounded,

then there exists a constant d > 0 independent of flig such that fBðli; drðliÞÞgi
has the uniformly finite intersection.

Proof. Let x0 be any point in W. Take a constant 0 < d3 < 1 in

Lemma 3 and fix a constant 0 < d <
d3

1þd3
. Remark that if x A Bðy; drðyÞÞ,

then y A Bðx; d3rðxÞÞ. For M > 0, we consider a sequence faM
i g such that

aM
i ¼

1 if i A Lx0; d;M

0 if i B Lx0; d;M ;

�

where Lx0; d;M :¼ fi A N; x0 A Bðli; drðliÞÞ; iaMg. Then faM
i g A lc and

kfaM
i gkl p ¼ ðaLx0; d;MÞ1=p. Since Ap;flig is bounded, we have

kAp;fligðfaM
i gÞkp aCðaLx0; d;MÞ1=p

with some constant C > 0. On the other hand, by Lemma 3, we have

kAp;fligðfaM
i gÞkp ¼

ð
W

jSi ALx0 ; d;M
Rðx; liÞrðliÞn=qjpdx

� �1=p

bC

ð
Bðx0; d3rðx0ÞÞ

ðaLx0; d;Mrðx0Þ�n
rðx0Þn=qÞpdx

 !1=p

¼ CaLx0; d;Mðrðx0Þ�njBðx0; d3rðx0ÞÞjÞ1=p

¼ CaLx0; d;Mðdn3 jBjÞ
1=p:

Hence, we obtain

aLx0; d;M aCðjBjdn3 Þ
1=ð1�pÞ:

Since M > 0 is arbitrary, we have

afi A N; x0 A Bðli; drðliÞÞgaCðdn3 jBjÞ
1=ð1�pÞ;

which shows that fBðli; drðliÞÞg has the uniformly finite intersection with

bound Cðdn3 jBjÞ
1=ð1�pÞ. This completes the proof. r

We show the relation between Ap;flig and Vp;flig.

Theorem 4. Let 1 < p < y and let q be the exponent conjugate to p.

Then the relation A�
p;flig ¼ Vq;flig holds. Moreover, the following conditions are

equivalent:

156 Kiyoki Tanaka



(a) Ap;flig : l
p ! bp is bounded.

(b) Vq;flig : b
q ! l q is bounded.

(c) There exists a constant 0 < d < 1 such that fBðli; drðliÞÞg has the

uniformly finite intersection.

Remark 1. The boundedness of Ap;flig and that of Vp;flig are equivalent

for every 1 < p < y.

Proof. Let faig A lc and f A bq. Then we have

hAp;fligðfaigÞ; f iL ¼
ð
W

Xy
i¼1

aiRðx; liÞrðliÞn=qf ðxÞdx

¼
Xy
i¼1

airðliÞn=q
ð
W

Rðx; liÞ f ðxÞdx

¼
Xy
i¼1

airðliÞn=qf ðliÞ

¼
Xy
i¼1

aiðVq;flig f Þi: ð9Þ

First, we assume f A DðVq;fligÞ. Then Vq;flig f A l q ¼ ðl pÞ�. By (9), we have

hAp;fligðfaigÞ; f iL ¼ hfaig;Vq;flig f il ;

which implies f A DðA�
p;fligÞ and A�

p;flig f ¼ Vq;flig f . Hence, we obtain

DðVq;fligÞHDðA�
p;fligÞ. Next, we assume f A DðA�

p;fligÞ. Then A�
p;flig f A

ðl pÞ� ¼ l q. By (9), we have

hfaig;A�
p;flig f il ¼ hAp;fligðfaigÞ; f iL

¼
Xy
i¼1

aiðVq;flig f Þi

for any faig A lc. Hence, A�
p;flig f ¼ Vq;flig f and f A DðVq;fligÞ. Therefore,

A�
p;flig ¼ Vq;flig. Thus the first part is proved. The second part follows easily

from Lemmas 12, 14 and 18. This completes the proof. r

6. Generalization of Theorem 1

In section 4, we studied the atomic decomposition for the standard

sequence fld
i gHW. In this section, we consider a su‰cient condition for a
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sequence flig in W such that any bp function has the atomic decomposition.

We shall prove a reformulated version of Theorem 2.

Theorem 5. Let 1 < p < y. Then there exists a constant d6 > 0 with the

following property: if a sequence flig in W satisfies 6Bðli; d6rðliÞÞ ¼ W, then

there exists a bounded linear operator W : bp ! l p such that Ad6
p;flig �W is the

identity on bp.

Proof. Let 0 < d < 1
4 . We take a standard d-sequence fld

i g in W and

a standard d-covering fE d
i g of W. Suppose that a sequence flig satisfies

6Bðli; drðliÞÞ ¼ W. Then, for each i A N, we can choose l 0
i A flj; j A Ng such

that ld
i A Bðl 0

i ; drðl
0
i ÞÞ.

First, we claim that the family fBðl 0
i ; drðl

0
i ÞÞg has the uniformly finite

intersection. We show Bðl 0
i ; drðl

0
i ÞÞHBðld

i ; 3drðl
d
i ÞÞ. In fact, as in the proof

of Lemma 3, we have

ð1� dÞrðl 0
i Þ < rðld

i Þ < ð1þ dÞrðl 0
i Þ: ð10Þ

Furthermore, if x A Bðl 0
i ; drðl

0
i ÞÞ, then

jx� ld
i ja jx� l 0

i j þ jl 0
i � ld

i j < 2drðl 0
i Þ <

2d

1� d
rðld

i Þ < 3drðld
i Þ:

Thus, we obtain Bðl 0
i ; drðl

0
i ÞÞHBðld

i ; 3drðl
d
i ÞÞ. Since fld

i g is the standard

d-sequence in W, the family fBðld
i ; 3drðl

d
i ÞÞg has the uniformly finite intersection

with some bound N. Therefore, fBðl 0
i ; drðl

0
i ÞÞg has also the uniformly finite

intersection with the same bound N.

Next, we show that there exists 0 < ea 1 such that E d
i HBðl 0

i ; erðl
0
i ÞÞ for

each i. Indeed, we put e ¼ dð2þ dÞ. Then, by (10), we have

E d
i HBðld

i ; drðl
d
i ÞÞHBðld

i ; dð1þ dÞrðl 0
i ÞÞ

HBðl 0
i ; dð1þ dÞrðl 0

i Þ þ drðl 0
i ÞÞ ¼ Bðl 0

i ; erðl
0
i ÞÞ:

Let q be the exponent conjugate to p. Then, since fBðl 0
i ; drðl

0
i ÞÞg has the

uniformly finite intersection, Lemmas 12 and 14 imply that the operators

V d
q;fl 0

i g
: bq ! l q and Ad

p;fl 0
i g
: l p ! bp are bounded. Moreover, since there

exists 0 < ea 1 such that E d
i HBðl 0

i ; erðl
0
i ÞÞ for each i, Lemmas 15 and 16

imply that the operators U d
p;fl 0

i g;fE d
i
g : b

p ! l p and Sp;fl 0
i g;fE d

i
g : b

p ! bp are

bounded. Here, we remark Sp;fl 0
i g;fE d

i
g ¼ Ad

p;fl 0
i g
�U d

p;fl 0
i g;fE d

i
g. By Lemma 13,

for any f A bp and g A bq, we have

Xy
i¼1

ð
E d
i

j f ðxÞ � f ðl 0
i Þj

p
dxaCepk f kp

p
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and

Xy
i¼1

ð
E d
i

jgðxÞ � gðl 0
i Þj

q
dxaCeqkgkq

q :

Therefore, as in the proof of Lemma 17, we obtain from Lemma 12

jhðI � Sp;fl 0
i g;fE d

i
gÞ f ; giLj

a
Xy
i¼1

ð
E d
i

j f ðxÞjpdx
 !1=p Xy

i¼1

ð
E d
i

jgðxÞ � gðl 0
i Þj

q
dx

 !1=q

þ
Xy
i¼1

ð
E d
i

j f ðxÞ � f ðl 0
i Þj

p
dx

 !1=p
jgðl 0

i Þj jE d
i j

1=q

aC1ek f kpkgkq þ C2

Xy
i¼1

ð
E d
i

j f ðxÞ � f ðl 0
i Þj

p
dx

 !1=p Xy
i¼1

ðerðl 0
i ÞÞ

njgðl 0
i Þj

q

 !1=q

aC1ek f kpkgkq þ C2ek f kpkV e
q;fl 0

i g
gkl q

aC1ek f kpkgkq þ C2e
e

d

� �n=p
k f kpkgkq

¼ dð2þ dÞðC1 þ C2ð2þ dÞn=pÞk f kpkgkq;

where the constants C1 and C2 are independent of d. Since we can choose

d6 > 0 such that dð2þ dÞðC1 þ C2ð2þ dÞn=pÞ < 1 whenever da d6, we have the

theorem. In fact, putting

T 0 :¼ U d6

p;fl 0
i g;fE

d6
i
g
� ðS

p;fl 0
i g;fE

d6
i
gÞ

�1;

we find that T 0 is bounded and Ad6
p;fl 0

i g
� T 0 is the identity on bp. Since

fl 0
i ; i A Ng is a subset of flj; j A Ng, we can construct the desired operator W

from T 0. This completes the proof. r
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