HirosHIMA MATH. J.
2 (2012), 143-160

Atomic decomposition of harmonic Bergman functions

Kiyoki TANAKA

(Received June 25, 2010)
(Revised April 19, 2011)

ABSTRACT. We consider harmonic Bergman functions, i.e., functions which are har-
monic and p-th integrable. In the present paper, we shall show that when 1 < p < oo,
every harmonic Bergman function on a smooth domain is represented as a series using
the harmonic Bergman kernel. This representation is called an atomic decomposition.

1. Introduction

Let @ be a domain in the n-dimensional Euclidean space R”. For
1< p < oo, we denote by b? = bP(Q) the harmonic Bergman space on Q,
, the set of all real-valued harmonic functions f on Q such that [|f]], :

(f | f1? dx)l/P < oo, where dx denotes the usual n-dimensional Lebesgue mea-
sure on . As is well-known, b? is a closed subspace of L’ = L?(Q) and
hence, b” is a Banach space (for example see [1]). Especially, when p =2,
b% is a Hilbert space, which has the reproducing kernel, i.e., there exists a
unique symmetric function R(-,-) on  x Q such that for any f € b* and any
x e Q,

ﬂm=Lmeﬂm@. (1)

The function R(-,-) is called the harmonic Bergman kernel of Q. When € is
the open unit ball B, an explicit form is known:

(n—A)x|* |y  + Bx -y —2n— x| y)* +n
nlBI(1 —2x- y + |x*|y[*) "+

R(X, y) = RB(X’y) =

)

where x - y denotes the Euclidean inner product in R” and |B| is the Lebesgue
measure of B.

There are many papers concerning the harmonic Bergman space on the
unit ball, where the above explicit form plays important roles. For example,

2010 Mathematics Subject Classification. Primary; 31B10, Secondary; 32A36.
Key words and phrases. harmonic Bergman space, atomic decomposition.



144 Kiyoki TANAKA

in the paper [3] an atomic decomposition theorem is obtained. The purpose
of this paper is to generalize this result for more general domains, smooth
bounded domains. A bounded domain  is said to be smooth if for every
boundary point 7 € 02 there exist a neighborhood ¥ of # in R" and a
C*-diffeomorphism f: V — f(V) = R” such that f(y) =0 and f(QNV) =
{(y1y---,yu) €R" ¥, >0}N f(V). Our main result is the following.

THEOREM 1. Let 1 < p< oo and let Q be a smooth bounded domain.
Then we can choose a sequence {1;} in Q satisfying the following property: For
any f € b?(Q), there exists a sequence {a;} € I[P such that

F0) = 3 aR(x, 2r(a) 1P, )
i=1

where r(x) denotes the distance between x and 0%.

The equation (2) is called an atomic decomposition of f. The above
theorem shows the existence of a sequence {4;} = Q permitting the atomic
decomposition for every f € b”. In the last section, we also discuss a sufficient
condition for a given sequence {4;} in Q to permit the atomic decomposition.

THEOREM 2. Let 1 < p < o0 and Q be a smooth bounded domain. Then
there exists a constant 6y > 0 such that if a sequence {J;} in Q satisfies

) B(4i,01r(4)) = @,
then every f € b? can be represented as

7= aR(, 2)r(a)" )

in b? with some sequence {a;} € 1?, where B(x,r) is the open ball of radius r,
centered at x.

In what follows, Q is always assumed to be a smooth bounded domain
in R".

Throughout this paper, C will denote a positive constant whose value is
not necessarily the same at each occurrence; it may vary even within a line.

2. Preliminaries

Equation (1) is called the reproducing formula for p = 2. Unfortunately,
for general p € [1, o), the reproducing formula is not always ensured a general
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domain. However, when @ is a bounded smooth domain, the reproducing
formula holds for 1 < p < oo ([4]), i.e., for any f €b?

£(x) = JQR<x, NS ()dy.

This equality follows from the estimates for the harmonic Bergman kernel.
Also in this paper, the estimates of the harmonic Bergman kernel obtained
by H. Kang and H. Koo [4] play an important role. In this section, we
recall some results in [4] and show some basic lemmas. For an n-tuple o :=
(ot1,...,0,) of nonnegative integers, called a multi-index, we denote |u|:=

-

O!l+"'+fxn al’ld DZ = (@L’Cl)m”'(a)%'

0xy

LemMA 1 (Theorem 1.1 in [4]). Let o, f be multi-indices.
(1) There exists a constant C > 0 such that

C

unf S E—————T
IDIDYR(x, y)| < d(x, )" P

Sor every x,y e Q, where d(x,y) =r(x)+r(y)+|x— y|
(2) There exists a constant C > 0 such that

C

R(X, X) = V(X)n

for every x € Q.

Based on Lemma 1, B. R. Choe, Y. J. Lee and K. Na derived the
following lemma for the estimate of the harmonic Bergman kernel.

LemMaA 2 (Lemma 2.3 in [2]). There exist constants 0 < d, < 1 and C >0
such that for every x € Q and y € B(x,d,r(x)),

C' < R(x,y)r(x)" < C.
We generalize Lemma 2 for our later use.

LemMmA 3. There exist constants 0 < 3 < 1 and C > 0 such that for every
x€Q and y,z € B(x,d3r(x)),

C'<R(y,z)r(x)" < C.
Proor. First, we claim that if 0 <J <1 and x € Q then

(1 =90)r(x) <r(y) < (14+0)r(x)
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for any y e B(x,dr(x)). In fact, by taking a boundary point # with r(y) =
ln — y|, we have

r(x) <lp—x|<|n—yl+Ily—x| <r(y)+or(x)

for any ye B(x,0r(x)). Thus, we obtain (1—0)r(x) <r(y) for any ye
B(x,0r(x)). Similarly, taking a boundary point #’ with r(x) = |y’ — x|, we
have

r(y) <ln" =yl < In" = X[+ x =y <r(x) +0r(x) = (1 +0)r(x)

for any y e B(x,dr(x)).

We take a constant d, >0 in Lemma 2 and choose a constant J;
with 0 < d3 < %. Then we obtain 203 < d»(1 —d3). Hence, for any y,ze
B(x,03r(x)), the above assertion shows

|y —z| < 203r(x) < 0r(1 —I3)r(x) < dar(y).

These inequalities imply z € B(y,d2r(y)). By Lemma 2, there exists a constant
C > 0 such that

C'<R(y,2)r(y)" < C.

Since y € B(x,d3r(x)), the above assertion implies that r(x) and r(y) are
comparable. Therefore Lemma 3 is shown. O

LEmMa 4 (Lemma 2.4 in [2]). Let 1< p < oo. Then there exists a
constant C > 0 such that for any x € Q,

Chr()" Y < IR(x, )l < G,
We need the following calculation.

LemMmA 5 (Lemma 4.1 in [4]). Let s and t be nonnegative real numbers.
If s+t>0 and t <1, then there exists a constant C >0 such that

dy C
n+s 1 =< s+t
ad(x, )" r(y)"  r(x)
for every x € Q.
Here, we define an auxiliary integral operator
1
d(x, )"

LEMMA 6. For 1 < p < oo, K is a bounded linear operator from LP(Q) to
Lr(Q).

Kf(x) = L (»)dy.
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ProoF. We have only to check the Schur test (see p. 42 in [7]). Let
1 < p < o and let ¢ be the exponent conjugate to p. Putting (x) = r(x) /7,
we have estimates

J ;h(y)”dy < Cr(x) V1 = Ch(x)”
Q

d(x, y)"
and
1
——h(y)idy < Cr(x)"" = Ch(x)*
|, 7ty < €ty ()
with some constant C > 0, by Lemma 5. Hence, the Schur test ensures that K
is a bounded operator from L”(Q) to L?(Q). O

Using Lemma 6, we have norm estimates of the derivatives of harmonic
Bergman functions.

LEmMMA 7. Let 1 < p < oo and let o be a multi-index. Then there exists a
constant C > 0 such that

vammﬂwwusavm

for every f ebP.

Proor. For any xe @, by (1) of Lemma 1 we have

Ir(x)DEF ()] = rl0)”™

JQ DYR(x, y)f(y)dy

Cr(x)”
< | ——— d
Lﬂ%wﬂwvw>y
1
<c j LI
AL
< CK|/](x).
Then, the lemma follows from Lemma 6. O]

Finally, we remark the following duality.

LemMma 8 (Corollary 4.3 in [4]). Let 1 < p < oo and let q be the exponent
conjugate to p. Then (b?)" = b4, under the pairing

<ﬂwL:ququx

for feb? and g e bi.
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3. Covering lemmas

In this section, we consider some properties of sequences {4;} in Q.

DerFINITION 1. Let 0 <e<d < 1.

(1) A sequence {4} in Q 1is called e-separated if B(4;,er(A;))N
B(Aj,er(4;)) = & for i # j.

(2) A sequence {/;} in Q is called an (g 0d)-lattice if the following two
conditions are satisfied:

(a) {A;} is e-separated; (b) U B(4:,0r(4)) = Q.
The following lemma shows that the number of intersection can be

bounded above.

LEMMA 9. Let 0 <e<d < 1. If a sequence {);} is e-separated, then for
every i €N,

(1-06)%

where for a set A, #A denotes the number of elements in A.

#j € N; B(s, 0r(3)) N BUy,0r(Ay)) # B} < <(1 +0)(20 + (1 +5))) ,

Proor. Let a sequence {/;} be ¢-separated and let i be fixed. If jeN
satisfies B(A;,0r(4;)) N B(4;,0r(4;)) # &, then

|40 = 4] < 0(r(4) +1(2))- 3)

Taking boundary points #; and »; with r(4;) = |; — ;| and r(%;) = |n; — %, we
have

(A7) < I = 4 < Iy = Al + 14 = 2| <r(Ai) +6(r(4:) + r(4)).
Similarly, we obtain
r(4i) <r(4) +0(r(Z) + (%)),
which shows

1-96 1+6
s r) < 1) < s, @)

1-9¢
By (3) and (4), we have

1+06 20
|/1,-—/1j|<5<r(},,-) 1_57(}.))—1_(57(}4),
ie.,

)€ B(ii,%r(ii)) (5)
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Hence

Bl arti) < B 2o 00 + o) ) < B0 20

by (4) and (5). Put
J(0) = {j e N; B(y, er()y)) < B(A,-,Wr(xi)> }

Then, since the sequence {/4;} is ¢-separated, we have

#{j € N; B(24,0r(7:)) N B(2,0r(2))) # &} < #J (i)
< sup{ ’B(ii,wigiﬁl;_é)r(iio ‘ . \B()vj,er(/lj))rl%j € J(i)}

<sup{ (2L e}

((1 +0)(20 + &(1 +5))>"
< 5 .
&1 —9)

O

The following lemma shows the existence of an (g,d)-lattice for some ¢
and J.

LemMma 10. For each 0 < d < 1, there exists a (%,5)-Zattice.

Proor. First, we take a point A; in Q such that r(4;) = max,co r(x).
Second, we take A, such that r(4,) = max{r(x);x € Q\B(41,0r(41))}. Third,
we take A3 such that r(13) = max{r(x);x e Q\(B(41,0r(41)) U B(41,0r(12)))}.
Proceeding this process, we can obtain a (%75)-1attice. In fact, the condition
(a) follows easily from the way of the construction. We check the condition
(b). If we assume | ) B(4;,0r(4;)) # Q, there exists a point xo € 2 such that
xo ¢ | B(4:,0r(4)). Put ro=r(xp). Then r(4)>ry for all i Since the
family {B(;,$r)}, are pairwise disjoint, the volume |Q| must be infinite,
which contradicts the boundness of Q. Thus we have the condition (b) in (2)
of Definition 1. O

DEerFINITION 2. A family {U;} of subsets of © is said to have the uniformly
Sinite intersection (with bound N > 0), if #{ieN;xe U;} < N for any x € Q.

By Lemma 9, we easily obtain the following.

LemMa 11. Let 0<d6<1i. If a sequence {J;} is S-separated, then
{B(4;,30r(4;))} has the uniformly finite intersection with bound 100"
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PrOOF. Let 0 <d <1 and let a sequence {4} be %—separated. Using
Lemma 9 as e=% and 30, we can calculate #{;je N;B(4;,30r(4))N
B(%,30r(%))) # &} O

PROPOSITION 1.  There exists a constant N > 0 such that for 0 <J < %, we
can choose a sequence {/lf} and a disjoint covering {E?} of Q satisfying the
following conditions.

(a) E? is measurable for each i e N;

(b) E? < B(22,0r(20)) for each ieN;

(©)  {B(12,30r(J2))} has the uniformly finite intersection with bound N.

Proor. For 0<d<1, we take {2} in Lemma 10 and we put
E{ = B(J2,0r(4))), E3§ := B(23,0r(23))\B(4},6r(2])) and Ej := B(A3,0r(i3))\

(E/UEY),..., inductively. We can easily check that these {4’} and {E’}
satisfy the above conditions (a) and (b). By Lemma 11, we can easily check
the condition (¢) with N = 100". O

We refer {1’} and {E’} obtained in Proposition 1 as the standard
o-sequence of Q2 and the standard d-covering of 2, respectively.

4. Atomic decomposition

In this section, we prove Theorem 1. We discuss the operator

V) o = 10r(2:) "1 ()},
where 1 < p< o0, 0<d<1 and {4} is a sequence in Q.

LEmMMA 12. Let 1 <p<owand 0 <o < 1. If {B(4;,0r(4))} has the uni-
formly finite intersection with bound N, then for each 0 <& <1 the operator
V; ) :b? — 1P is bounded:

. 2\P
7l =c(3) v

with some constant C > 0 depending only on the dimension n.

ProOF. Let f eb?(Q). Since |f|” is subharmonic, the sub-mean value
property implies

1
WP < 7]
1/ (2)] (0r(2:))" 1B ) B3 0r(00))

for each i, where |B| is the volume of the unit open ball in R". Then we
have

|f(»)|Pdy
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Sl = () X, o

i=1 B(2i,0r(%:))

< (8)1'];] )Py, 0

LemMA 13. Let 1<p<oo and 0<6 <1 If a sequence {1} and a
disjoint covering {E;} of Q satisfy E; = B(4;,0r(A;)) for each i, then there exists
a constant C = C(n,p) > 0 such that

o0

ZJ (A)Pdx < COP||fN2 for all feb’(Q).

i=1

Proor. Let 1 <p<oo, 0<d<1} and feb?(2). For any xeE;, by
Lemma 1,

1/ (x) =Sl = | (R(x, ) = R(4, y)).S (y)dy

Q
< |R(x, y) — R(4i, )| |f (»)|dy
< |x — 4l [VR(X, p)|1f ()|dy

G
< | Q(Sr(li) W |/ (»)ldy

1
< Gy LW |/ (»)|dy
= QK| f](x),

where V denotes the gradient operator on R” and X is given by the mean value
property in calculus. Here we remark that constants C; and C, depend only
on the dimension n. By Lemma 6, we obtain

ij (Ai)|Pdx < CJo” Z L—. (K|f](x))?dx

i=1 i=1
— ¢y jg(Km(x))"dx

< GIIS 1y

which shows the lemma. ]
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In the following, we introduce three operators, which are closely related to
our atomic decomposition.
First, we define the operator Ap ) by

0
A} iy {a) () =D aiR(x, 1) (0r(2:)"" (6)
i=1
for {a;} € 1?, where 0 <0 <1, 1 < p < 0, ¢ is the exponent conjugate to p and
{4} is a sequence in Q. The following lemma shows the well-definedness of
D)
A/’ {4}

LemMMma 14. Let 0 <0 <1, 1 < p < oo and let q be the exponent conjugate
to p. If the operator V° o Uy 2 b1 — 17 is bounded, then for any {a;} €1V the
right hand side of (6) converges absolutely for each x € Q. Moreover the right
hand side of (6) converges in b? as a function of x, and Ap’“i} P = bP s a
bounded linear operator.

Proor. Let {a;} €/?. By the Holder inequality and Lemma 1, we have

0 1/q
> " laiR(x, 2i)0r(2:))"] < Cli{ait (Zd K 5’%))")
i—1

o 1/q
< cn{af}llp@ (Z(MM)”)

i=1

- i, Wi

This implies A° » (1 ({ai}) converges absolutely for each x € Q and uniformly on

every compact subset of Q. Hence Ap (7y({ai}) is a harmonic function in €.
Next, we consider the partial sum

ZakR ik (5r i/))

of the series in (6). For any f € b?, by the Holder inequality and Lemma 1,
we have

‘<gm;f>L| = 'J ZakR )*k 5}’ /“k))n/qf(x)dx

— f:ak(ér(ik))n/qj R(x, A) f(x)dx
=1 Q
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S a0r(20)"*f )
k=1

m 1/p
S(ZIdkl”) [Leamvali?

k=1
m 1/p
C(ZIdkl”) (AP
k=1

IA

which shows by Lemma 8§,

m l/p
lgmll, < € sup |<gm,f>L|sc<Z akV’) . (7)

k=1

/1l

Similarly, for positive integers s > ¢, we have

s 1/p
lgs — gll, < C( > Iakl"> :
k

=t+1

which implies {g,,} is a Cauchy sequence in b”. Hence, there exists
g € b? such that g, — g in b?. We also have the norm estimate |lg|, =

iy |gmll, < Cl{ax}]l; from (7), ie., |49, ({a})]l < Cll{ax}l;,- This
completes the proof.
Next, we define the operator U gy DY

Uzi{iik{E,»}f = {|E,-\f(,1i)(5r(,1i))*n/q}7
where 0 <6 <1, 1 <p< oo and ¢ is the exponent conjugate to p.

LemMmA 15. Let 1< p< oo and 0 <o < 1. Suppose {1;} is a sequence

in Q and the family {E;} satisfies there exists 0 <& <1 such that E; =

(i,,er( ;) for each i. If the operator V?° oy b7 = 17 is bounded, then
p’ i} B :b? — 1?7 is a bounded linear operator

PROOF. Let f € b? and put b; := |E|f(4)(0r(4)) ™. Inequalities |E;| <
|B(Zi,er(2))] < C(5)"(6r(4:))" imply [b;] < Clf(2)|(6r(2:))""?. Then we have

Zlb |”<C2\f P @r(2a)" = ClIVy 1y flI < CIA- O
Finally, we define the operator S, (; (£} by
Sp. i3S (X) =D R(x, 4) f (M) Eil. (8)

i=1
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By a simple calculation, we obtain S, (i1 (g1 = A;f’{“ o Up ITARTAE Thus we
have the following:

LEMMA 16. Let 1 < p < oo and 0 <3 < 1. Suppose {A;} is a sequence in
Q and the family {E;} satisfies there exists 0 < ¢ < 1 such that E; = B(A;,er(4;))
Jor each i. If {B(4;,0r(%))} has the uniformly finite intersection, then for any
[ eb?, the right hand side of (8) converges in b? as functions of x. Moreover
Sy, (3 (E} 2 b — b is a bounded linear operator.

Moreover, we have the following lemma for S, (1 (£, which plays an
essential role for atomic decompositions.

LemMA 17. Let 1 < p < 0. Let {/1;;} and {E?} be a standard 5-sequence
of 2 and a standard é-covering of Q, respectively. Then there exists a constant
0 <d4 <1 such that for any 0 <0 < da, the operator S o (0} (E) :b? — bP s
bijective.

Proor. We have only to prove || =S, s, Ea}H < 1 for sufficiently small
0>0. Let g be the exponent conjugate to P and take feb? and ge bl
arbitrarily. Then we have

A =8,y o0 = | S| Z|E5|f 2)g(x)dx

_ ZJ F(x)g(x)dx — Z [E1f(3))g(2])
i=1

i=1 JE}

= Z (f(x)g(x) = f(2])g(47))dx

By Lemmas 12 and 13 and the Holder inequality, we have estimates

. 1/p
< (Z | If(X)”dX>

i=1 i

5[ 10t - a2

i

i=1

0 ‘ 1/q
x (Z NEE g(ﬂ;’wdx)

< Gl S, llgll,
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1/p

< Z(j ) —f'(?~?)|”dX> )£

© 1/p
< (Z |, —f(?»?)l"dX> 172 0l
< G|/, llglly-

Hence,

KT =S, oy o) 0] < (G + €A gl

which implies ||7 — S, 01 E,)}|| < (C1 + G3)o. Since the constants C) and G,
are independent of J, choosmg 0<ds< & ic , we obtain ||/ =S, s, {Eo}H <1
for any 0 <6 < d4. This completes the proof.

As a consequence, we obtain the following theorem.

THEOREM 3. Let 1 <p < oo and let {A?} be a standard J-sequence
of Q. There exists a constant 0 < Js g% such that for any 0 <J <Js,
A5 . P — bP s sur]ectwe. In fact, there exists a bounded linear operator

bP — 1P such that A° o (39 © T is the identity on bP.

Proor. We take a constant 0 <(34 < Z in Lemma 17 and put ds5 = d4.
Then for 0<J<d4, we can put U"’w} (&) o (S, 1}, {E;})—l, By
Lemmas 15 and 17, T is a bounded hnear operator and A° el is the
identity on b”. Hence, A[‘f ) : [P — bP is surjective. This completes the
proof. o N

ProoF (of Theorem 1). Theorem 3 implies Theorem 1. In fact, we
take a constant s > 0 in Theorem 3. Then A° M : [P — bP is surjective for
0 < <ds. Hence, for any f € b”, we can choose a sequence {a} € I” such
that

f(x) =42 s (a]}) x,27)(0r(2]))"1.

I\Mg\

The atomic decomposition of f in Theorem 1 is given by {a;} := {6"/ Yal} ell.
This completes the proof.
5. Relation of operators

In this section we discuss the operators 4 and V in section 4. We
put A, ;¢ p{k}, Vp () = Vpl,{i[}, whose domains are Z(4, ) =
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lecl? and D(V, yy) :={f€b’;V, s f €l’}, respectively. Here [ :=
{{a:i}; #{ieN;a; # 0} < 0}. For any 1 < p < oo, [, is dense in [7.

LemMma 18. Let 1< p< oo, q be the exponent conjugate to p and
{4i}; =€ Q be a sequence. If the operator A, (;y:1l.(c[?) — b? is bounded,
then there exists a constant 0 > 0 independent of {A;} such that {B(;,0r(A;))};
has the uniformly finite intersection.

ProoF. Let xo be any point in Q. Take a constant 0 <dJ3 <1 in
Lemma 3 and fix a constant 0 <¢ <li—353. Remark that if x e B(y,0r(y)),
then y e B(x,05r(x)). For M >0, we consider a sequence {a} such that

y _{1 if i€ Ag.ou

i 0 if i ¢ Ay 5.1,

where Ay 5. = {i € N;xo € B(2;,0r(4;)),i < M}. Then {aM}el and
{aM}]],, = (#AXM;,M)I/I’. Since A, (;;; is bounded, we have
4p 3 (e D, < CH#Aw o)

with some constant C > (0. On the other hand, by Lemma 3, we have

1/p
G Dl = ([ i RO

1/p
>C (J (#Axo,(,,Mr(xo)—"r(xo)”/q)mx>
B(x9,03r(x0))

= C# Ay 5. (r(x0) " | B(x0,057(x0))])

= C#Axl),(s,M(5§'|B|)l/1’_
Hence, we obtain
#4500 < C(|Bloy) "7,

Since M > 0 is arbitrary, we have

#{i € Nxo € B(2:,0r(2))} < C(@3|BY)" 7,
which shows that {B(Z;,0r(4;))} has the uniformly finite intersection with
bound C(5§|B|)1/(17”). This completes the proof. O

We show the relation between 4, (,, and V), (5.

THEOREM 4. Let 1 < p < oo and let q be the exponent comjugate to p.
Then the relation A; ) = Vy iy holds.  Moreover, the following conditions are
equivalent:
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o
R

Ap 3y 217 — bP is bounded.
Vo b4 — 17 is bounded.
There exists a constant 0 <06 <1 such that {B(A;,0r(4;))} has the
uniformly finite intersection.

——
RSARS)

REMARK 1. The boundedness of A,y and that of V), are equivalent
for every 1 < p < c0.

Proor. Let {a;} €l and feb? Then we have

o0

aiR(x, 2)r(2:)" 1f (x)dx

1

Ap pyai}), /oL =

14

I
NgE r
Q

iru,a"/‘fj R(x, 1) f (x)dx

1 Q

air(2)"f (%)

I
Ms

1

8

= > ai(Vy )i 9)

1

1

First, we assume f € Z(V, ;). Then V, 4 fe€l?=(I1")". By (9), we have
Ap ppait), oo = Laik, Vi o

which implies [ € Z(4; s }) and A; . f =V, /. Hence, we obtain

DVy1y) = 2(4, ;). Next, we assume f € @(Ap (). Then Aj .. fe

(IP)"=14. By (9), we have

Hait, A, 0001 = <{Ap py({ai}), oL

e}

Z Va0
for any {a;} €l.. Hence, A; ;\f=V,,/ and fe€Z(V, ;). Therefore,
A, U = V4 (7. Thus the first part is proved The second part follows easily
from Lemmas 12, 14 and 18. This completes the proof. O

6. Generalization of Theorem 1

In section 4, we studied the atomic decomposition for the standard
sequence {/If} < Q. In this section, we consider a sufficient condition for a
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sequence {/;} in Q such that any b” function has the atomic decomposition.
We shall prove a reformulated version of Theorem 2.

THEOREM 5. Let 1 < p < oo. Then there exists a constant d¢ > 0 with the
following property: if a sequence {;} in Q satisfies | ) B( A,,&gr( ) = Q, then
there exists a bounded linear operator W : b? — I such that A f{ i © W is the
identity on b?.

ProOF. Let 0 <d<1i. We take a standard J-sequence {2} in @ and
a standard J-covering {E?} of Q. Suppose that a sequence {/;} satisfies
(J B(4;,0r(4;)) = Q. Then, for each i e N, we can choose 4; € {4;; j € N} such
that 22 € B(A],0r(2))).

First, we claim that the family {B(/I or(4]))} has the uniformly finite
intersection. We show B(1/,0r(1))) = B(i!,36r(J ,‘5)). In fact, as in the proof
of Lemma 3, we have

(1= 0)r(A) < r(2) < (1 +0)r(A). (10)

Furthermore, if x e B(4!,r(4})), then

Ix — 2] < |x— A+ |4 = 20 < 20r(A) < r(A2) < 30r(A9).

0
1-0
Thus, we obtain B(4;,dr(4])) cB(/l‘S 35r(ﬂu )). Since {A} is the standard
d-sequence in 2, the family {B(1?, 30r(4; %))} has the uniformly finite intersection
with some bound N. Therefore, {B(/ll',ér(“ 1))} has also the uniformly finite
intersection with the same bound N.

Next, we show that there exists 0 < ¢ < 1 such that E? < B(4/,er(4))) for
each i. Indeed, we put ¢ =J(2+9). Then, by (10), we have

EY < B(2,0r())) = B(2,0(1 +0)r(i))
< B(A,6(1 +0)r(A) +6r(2])) = B(A],er(1))).

Let ¢ be the exponent conjugate to p. Then, since {B(A/,dr(1]))} has the
uniformly finite intersection Lemmas 12 and 14 imply that the operators

q e :b? — [ and A° :[? — bP are bounded. Moreover, since there
exists 0 <e <1 such that E" < B(2;,er(2;)) for each i, Lemmas 15 and 16
imply that the operators U° o Y ED) :b? — 1P and S, iy (pay 1 BP — bP are
bounded. Here, we remark S AN (ES) = Az’{)ﬁ} Up{ AESY By Lemma 13,
for any f e€b? and g e b?, we have

Zj G)IPdx < Co|£?

o
i=1 YE
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and

o0

S loto) = gt ax < Catlgl.

i=1
Therefore, as in the proof of Lemma 17, we obtain from Lemma 12

[<(I — Sp7{/1;},{E;’})fvg>L|

] <i: JEF;' lpdx>l/ <§: J e )|qu>l/q

0 1/p
+Z(j 160 = 1) ) PeHAR

0 1/p 0 1/q
< Ceellf1,llgll, + C (ZJ () —f(lf)l”dx) (Z(sr(iﬁ))”g(ﬂ#) ")
i=1 JE i=1

< Ciellfll,llglly + Coell £, 1V 1391l

n/p
&
< Gl lall, + () 171, Ml

=02 +0)(C1+ G248 11l llgll,.

where the constants C; and C, are independent of J. Since we can choose
6 > 0 such that (2 +0)(Cy + C2(2+6)"”) < 1 whenever 6 < J, we have the
theorem. In fact, putting
I._ 17% )l
- », {i’} {E(j(’} © (S 4{;'{} {EI)5}> 5
we find that T’ is bounded and A;"{/,} oT’ is the identity on b”. Since
{2/;ie N} is a subset of {4;; j € N}, we can construct the desired operator W
from 7'. This completes the proof. O
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