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Criteria for singularities of smooth maps from the plane into the
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Abstract. We give useful criteria for lips, beaks and swallowtail singularities of a

smooth map from the plane into the plane. As an application of the criteria, we

discuss the singularities for a Cauchy problem of single conservation law.

1. Introduction

Singularities of map germs have long been studied, especially up to the

equivalence under coordinate changes in both source and target (A-equiv-

alence). According to [2], ‘‘classification’’ for map germs with A-equivalence

means finding lists of germs, and showing that all germs satisfying certain

conditions are equivalent to a germ on the list. Classification is well under-

stood, with many good references in the literature. ‘‘Recognition’’ means

finding criteria which will describe which germ on the list a given germ is

equivalent to (see [2]). The classification problem and recognition problem for

map germs from the plane into the plane up to A-equivalence was studied by

J. H. Rieger [9]. He classified map germs ðR2; 0Þ ! ðR2; 0Þ with corank one

and Ae-codimension a6. Table 1 shows the list of the Ae-codimension a3

local singularities obtained in [9]. Some of these singularities are also called

as follows: 42;þ (lips), 42;� (beaks), 5 (swallowtail ). These singularities are

depicted in Figure 1. Rieger also discussed the recognition of these map germs

after normalizing the coordinate system as ðu; vÞ N ðu; f2ðu; vÞÞ. However, for

applications, criteria of recognition without using normalization are not only

more convenient but also indispensable in some cases.

In this paper, we give criteria for the lips, the beaks and the swallowtails of

a map germ ðR2; 0Þ ! ðR2; 0Þ without using the normalizations (Theorem 3).

Since they only use the information of the Taylor coe‰cients of the germ,

Theorem 3 can be applied directly for the recognition of the lips, the beaks and

the swallowtail on explicitly parameterized maps. Using the criteria, we study
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singularities of a conservation law about a time variable. We study singu-

larities of geometric solutions of the equation and show the singularities that

appear for the first time are generically the lips (Section 3).

The case of wave front surfaces in 3-space, criteria for the cuspidal edge

and the swallowtail were given by M. Kokubu et al. [7]. By using them, we

studied local and global behaviors of flat fronts in hyperbolic 3-space. Using

them, K. Saji et al. [11] introduced the singular curvature on the cuspidal edge

and investigated its properties.

Criteria for other singularities of fronts and their applications were given

in [1, 5, 12]. Recently, several applications of these criteria were considered in

various situations [3, 5, 6, 8, 10]. Throughout this paper, we work in the

Cl-category.

2. Preliminaries and statements of criteria

Let U HR2 be an open set and f : ðU ; pÞ ! ðR2; 0Þ a map germ. We

call q a U a singular point of f if rankðdf Þq a 1. We denote by Sð f ÞHU the

set of singular points of f . Two map germs fi : ðR2; 0Þ ! ðR2; 0Þ ði ¼ 1; 2Þ are
A-equivalent if there exist di¤eomorphism map germs Fi : ðR2; 0Þ ! ðR2; 0Þ
ði ¼ 1; 2Þ such that f1 �F1 ¼ F2 � f2 holds. For a positive integer k, a map

Fig. 1. Lips, beaks and swallowtail

Table 1. Classification of ðR2; 0Þ ! ðR2; 0Þ

Name Normal form Ae-codimension

Immersion ðu; vÞ 0

Fold ðu; v2Þ 0

Cusp ðu; v3 þ uvÞ 0

4k;e ðu; v3 e ukvÞ, k ¼ 2; 3 k � 1

5 ðu; uvþ v4Þ 1

6e ðu; uvþ v5 e v7Þ 2

115 ðu; uv2 þ v4 þ v5Þ 2

230 Kentaro Saji



germ f : ðU ; pÞ ! ðR2; 0Þ is k-determined if any g : ðU ; pÞ ! ðR2; 0Þ satisfying

the condition that the k-jet j kgðpÞ of g is equal to j kf ðpÞ, is A-equivalent to f .

The following fact is well-known.

Fact 1. ([9, Lemma 3.2.2 and 3.1.3]) The lips and the beaks ðx; yÞ N
ðx; y3 e xyÞ are three-determined. The swallowtail ðx; yÞ N ðx; xyþ y4Þ is four-
determined.

Let f : ðU ; pÞ ! ðR2; 0Þ be a map germ. A singular point q is of corank

one if rankðdf Þq ¼ 1. If p is a corank one singular point of f , then there exists

a neighborhood V of p and a never vanishing vector field h a XðVÞ such that

dfqðhÞ ¼ 0 holds for any q a Sð f ÞBV . We call h the null vector field. We

define a function which plays a crucial role in our criteria. Let ðu1; u2Þ be

coordinates of U . Define the discriminant function l of f by

lðu1; u2Þ ¼ det
qf

qu1
;
qf

qu2

� �
ðu1; u2Þ: (1)

Then Sð f Þ ¼ l�1ð0Þ holds. We call p a Sð f Þ a non-degenerate singular point if

dlð pÞ A 0 and a degenerate singular point if dlðpÞ ¼ 0. Note that a non-

degenerate singular point is of corank one. The terminologies ‘‘discriminant

function’’, ‘‘null vector field’’ and ‘‘non-degeneracy’’ are defined in [7] in order

to state criteria for fronts in the 3-space. Our definitions of these three

terminologies are similar. These notions also play a key role to identify

singularities for our case. This seems to be related to the correspondence

between singularities of front and its projection to the limiting tangent plane.

This correspondence is discussed in [12].

We review the criteria for the fold and the cusp, due to Whitney [13] (see

also [12]).

Fact 2. ([13, Proposition 2.1]) For a map germ f : ðU ; pÞ ! ðR2; 0Þ, f

at p is A-equivalent to the fold if and only if hlðpÞ A 0.

Furthermore, f at p is A-equivalent to the cusp if and only if p is non-

degenerate, hlðpÞ ¼ 0 and hhlð pÞ A 0.

Here, hl means the directional derivative Dhl. The main result of this

paper is the following.

Theorem 3. For a map germ f : ðU ; pÞ ! ðR2; 0Þ, the following hold.

(1) f is A-equivalent to the lips if and only if p is of corank one,

dlðpÞ ¼ 0 and l has a Morse type critical point of index 0 or 2 at p,

namely, det Hess lðpÞ > 0.

(2) f is A-equivalent to the beaks if and only if p is of corank one,

dlðpÞ ¼ 0, l has a Morse type critical point of index 1 at p ði.e.,
det Hess lð pÞ < 0.Þ and hhlð pÞ A 0.
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(3) f is A-equivalent to the swallowtail if and only if dlðpÞ A 0,

hlðpÞ ¼ hhlðpÞ ¼ 0 and hhhlðpÞ A 0.

Here, for a function l : ðU ; u1; u2Þ ! R, Hess l is the matrix defined by

Hess l ¼ ðq2l=qui qujÞi;j¼1;2. Remark that in Theorem 3 (1), hhlð pÞ A 0 is

automatically satisfied because of the symmetricity of Hess l and the inequality

det Hess lðpÞ > 0.

Example 4. Let us put

flðu; vÞ ¼ ðu; v3 þ u2vÞ; fbðu; vÞ ¼ ðu; v3 � u2vÞ and fsðu; vÞ ¼ ðu; v4 þ uvÞ:

Since these are nothing but the defining formula for the lips, the beaks and the

swallowtail, these maps satisfy the conditions in Theorem 3. The discriminant

functions for these maps are

ll ¼ 3v2 þ u2; lb ¼ 3v2 � u2 and ls ¼ 4v3 þ u;

respectively. Thus ll and lb have a Morse type critical point at the origin.

Furthermore, the null vector field can be chosen as h ¼ ð0; 1Þ for all maps. It

holds that hhlb A 0, and that dls A 0, hls ¼ hhls ¼ 0 and hhhls A 0 at the

origin. Thus we see that each of the conditions in Theorem 3 is satisfied for

each map. These observations together with the following Lemma 1 confirm

the only if part of Theorem 3.

Example 5. Let g : I ! R2 be a plane curve with g0ðtÞ A 0 for any t a I .

The tangential ruling map Rg of g is the map Rg : ðt; uÞ N gðtÞ þ ug0ðtÞ. The

discriminant function and the null vector field of Rg are l ¼ uk and

h ¼ ð�1; 1Þ, respectively, where k is the curvature of g. Thus we have

Hess lðt; 0Þ ¼ 0 k0

k0 0

� �
and hhlðt; 0Þ ¼ �2k0:

Using Theorem 3, Rg at ðt0; 0Þ is A-equivalent to the beaks if and only if

kðt0Þ ¼ 0 and k0ðt0Þ A 0 holds (See figure 2).

Fig. 2. The beaks on the tangential ruling map of ðt; t3Þ at ðt; uÞ ¼ ð0; 0Þ.
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To prove Theorem 3, we need the following lemma.

Lemma 1. For a map germ f : ðU ; pÞ ! ðR2; 0Þ, the conditions in Theorem

3 are independent of the choice of coordinates of the source and target. To be

precise, the rank of ðdf Þp, the non-degeneracy of p, and the sign of det Hess lðpÞ,
are independent of the choice of both coordinates on the source and target.

Suppose further that p is non-degenerate, and let lðu1; u2Þ and ~llðv1; v2Þ are area

density functions of f , and h and ~hh are null vector fields of f , then the following

hold:
� hlð pÞ ¼ 0 if and only if ~hh~llð pÞ ¼ 0.
� If hlðpÞ ¼ ~hh~llðpÞ ¼ 0, then hhlðpÞ A 0 if and only if ~hh~hh~llð pÞ A 0.
� If hlðpÞ ¼ hhlðpÞ ¼ ~hh~llðpÞ ¼ ~hh~hh~llðpÞ ¼ 0, then hhhlðpÞ A 0 if and only

if ~hh~hh~hh~llðpÞ A 0.

Proof. Needless to say, rankðdf Þp is independent of the choice of the

coordinate systems. If we change the coordinates, then the function l is

multiplied by a non-zero function. Since the vanishing of dl and the sign of

det Hess l do not change under this multiplication, the first part of the lemma

is proved. We now prove the second part. We can write ~hh ¼ a1xþ a2h,

where a1; a2 are functions near p, satisfies a1 ¼ 0 on Sð f Þ, and x is a vector

field transverse to h at p, and assume that ~ll is a multiplication of l by a non-

zero function. Under this setting, since fl ¼ 0g ¼ fa1 ¼ 0g holds, one can

prove that the non-degeneracy yields the desired equivalences. r

Now we prove Theorem 3; the method of proof is due to Rieger [9].

Proof of ð1Þ and ð2Þ. Since p is of corank one, f can be represented as

f ðu; vÞ ¼ ðu; vf2ðu; vÞÞ; p ¼ ð0; 0Þ

by Lemma 1. Since lðpÞ ¼ 0 and dlðpÞ ¼ 0, we have f2 ¼ ð f2Þu ¼ ð f2Þv ¼ 0

at p, where ð f2Þu ¼ qf2=qu and ð f2Þv ¼ qf2=qv. Therefore, f can be written as

ðu; vðau2 þ 2buvþ cv2Þ þ ðhigher order termÞÞ; a; b; c a R:

Here, the ‘‘higher order term’’ consists of the terms whose degrees are greater

than 3. Since det Hess lð pÞ A 0, it holds that a, b or c does not vanish at p.

Moreover, since h ¼ ð0; 1Þ and hhlðpÞ A 0, it holds that c A 0. Now, by the

coordinate change

U ¼ u; V ¼ vþ 2b

3c
u;

f can be written as

ðu; vðau2 þ bv2Þ þ gu3 þ ðhigher order termÞÞ; a; b; g a R:
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Here, the ‘‘higher order term’’ consists of the terms whose degrees are greater

than 3. We remark that the sign of ab coincides with the sign of Hess lðpÞ.
Hence, by some scaling change and a coordinate change on the target, f can be

written as

ðu; vðu2 e v2Þ þ ðhigher order termÞÞ: (2)

Since the map germ ðu; vðu2 e v2ÞÞ is three-determined, the map germ (2) is A-

equivalent to the lipsðþÞ or the beaksð�Þ. r

Proof of ð3Þ. Since f is of corank one, f can be written as

f ðu; vÞ ¼ ðu; vhðu; vÞÞ. Then the null vector field is ð0; 1Þ. Write

vhðu; vÞ ¼ a11uvþ a02v
2 þ a21u

2vþ a12uv
2 þ a03v

3 þ a31u
3v

þ a22u
2v2 þ a13uv

3 þ a04v
4 þ ðhigher order termÞ:

Here, the ‘‘higher order term’’ consists of the terms whose degrees are greater

than 4. The non-degeneracy of f yields that a11 A 0. If a02 A 0, by Fact 2,

f is A-equivalent to the fold. Moreover, if a02 ¼ 0 and a03 A 0 then by Fact

2, f is A-equivalent to the cusp. Hence we can assume a02 ¼ a03 ¼ 0. Since

hhhlðpÞ A 0, we have a04 A 0. By the coordinate change

~uu ¼ u;

~vv ¼ a11vþ a21uvþ a12v
2 þ a31u

2vþ a22uv
2 þ a13v

3;

f is written as

f ð~uu;~vvÞ ¼ ð~uu; ~uu~vvþ ~vv4 þ ðhigher order termÞÞ:

Since ð~uu; ~uu~vvþ ~vv4Þ is four-determined, it is A-equivalent to ðu; uvþ v4Þ. r

3. Singularities of characteristic surfaces of a single conservation law

In this section, we consider the following Cauchy problem of a single

conservation law:

qy

qt
ðt; xÞ þ

X
i¼1;2

dfi

dy
ðyðt; xÞÞ qy

qxi
ðt; xÞ ¼ 0;

yð0; xÞ ¼ jðxÞ; x ¼ ðx1; x2Þ;

8>><
>>:

(C)

where, f1; f2 and j are functions. We consider the characteristic surfaces of

(C) following the framework of [4].

Let p : PT �ðR� R2 � RÞ ! R� R2 � R be the projective cotangent bundle.

Identify PT �ðR� R2 � RÞ ¼ ðR� R2 � RÞ � PðR� R2 � RÞ and denote the
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local coordinates of this space by ðt; x; y; ½t : x : h�Þ. We consider the canonical

contact form,

a ¼ ½tdtþ x1dx1 þ x2dx2 þ hdy�:

Then the equation (C) is written in the following form:

Eð1; f 01; f 02; 0Þ ¼
n
ðt; x; y; ½t : x : h�Þ a PT �ðR� R2 � RÞ

���tþ X
i¼1;2

f 0i ðyÞxi ¼ 0
o
;

where f 0i ¼ dfi=dy. If (C) has a classical solution y, then the non-zero normal

vector n ¼ ðyt; yx1 ; yx2 ;�1Þ of smooth hypersurface ðt; x; yðt; xÞÞHR� R2 � R

exists, where, yx1 ¼ qy=qx1 for example.

Hence we have a Legendrian immersion : R� R2 ! PT �ðR� R2 � RÞ:

~yyðt; xÞ : ðt; xÞ N ðt; x; yðt; xÞ; ½n�Þ a Eð1; f 01; f 02; 0ÞHPT �ðR� R2 � RÞ:

According to this, we define a geometric solution of (C) as a Legendrian

immersion L : ðU ; u1; u2Þ ! Eð1; f 01; f 02; 0ÞHPT �ðR� R2 � RÞ of a domain

U HR2 such that p � L is an embedding. We apply the method of charac-

teristic equation. The characteristic equation associated with (C) through

ð0; x0Þ is

dxi

dt
ðtÞ ¼ dfi

dy
ðyðt; xðtÞÞÞ; xð0Þ ¼ x0

dy

dt
ðt; xðtÞÞ ¼ 0; yð0; xð0ÞÞ ¼ jðx0Þ:

The solution of the characteristic equation can be expressed by

xiðu; tÞ ¼ ui þ t
dfi

dy
ðjðuÞÞ; yð0; xðu; 0ÞÞ ¼ yð0; uÞ ¼ jðuÞ; u ¼ ðu1; u2Þ a U :

ð3Þ

If a map

gt : u N ðx1ðu; tÞ; x2ðu; tÞÞ ð4Þ

is non-singular, y ¼ jððgtÞ�1ðx1; x2ÞÞ is the classical solution of (C) (See [4,

Section 5]). Remark that if t ¼ 0, gt is non-singular. Thus, in order to

investigate the singularity of (C), we study the singularities of a family of maps

gt. The discriminant function of gtðuÞ is

det
1þ tc11 tc12
tc21 1þ tc22

� �
; cij ¼

d 2fi

dy2
ðjðuÞÞ qj

qu j

ðuÞ:

Needless to say, this matrix is never equal to the zero-matrix. This implies

that ðt; uÞ is a singular point of (3), if and only if �t�1 is an eigen value of the
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matrix C ¼ ðcijÞi;j¼1;2. The eigen equation for an eigen value m of C can be

computed as

0 ¼ det C � m
1 0

0 1

� �� �

¼ det

d 2f1

dy2
ðjðuÞÞ qj

qu1
ðuÞ � m

d 2f1

dy2
ðjðuÞÞ qj

qu2
ðuÞ

d 2f2

dy2
ðjðuÞÞ qj

qu1
ðuÞ d 2f2

dy2
ðjðuÞÞ qj

qu2
ðuÞ � m

0
BBB@

1
CCCA

¼ m m� d 2f1

dy2
ðjðuÞÞ qj

qu1
ðuÞ � d 2f2

dy2
ðjðuÞÞ qj

qu2
ðuÞ

� �

¼ mðm� traceCÞ:

Hence ðt; uÞ is a singular point of (3), if and only if

t ¼ �1=trace C:

We call C the shape operator of (C). Now we consider the first singular point

of (4) with respect to t from the initial time t ¼ 0.

For a minimal value of tðuÞ ¼ �1=trace C, if det Hess tðuÞ > 0 holds, then

by Theorem 3, the singular point at u is A-equivalent to the lips. Izumiya and

Kossioris [4] have developed an unfolding theory and classified the generic

singularities of multi-valued solutions in general dimensions. According to it,

the first singular point of (4) is generically the lips, where they did not give a

condition for the singular point to be equivalent to the lips. Using our

criterion for the lips, we detect the singular point and write down an explicit

condition for the singular point to be equivalent to the lips. As a corollary of it,

we give a simple proof that the first singular point of (4) is generically the lips.

Since the single conservation law (C) is determined by functions ð f1; f2Þ
and the initial value j, we may regard that the space of single conservation

laws is the space

fð f1; f2; jÞg ¼ ClðR;RÞ2 � ClðR2;RÞ

with the Whitney Cl-topology.

Theorem 6. There exists a residual subset OHClðR;RÞ2 � ClðR2;RÞ
such that for any ð f1; f2; jÞ a O, the map germ ð4Þ defined by ð f1; f2; jÞ at the

first singular point with respect to t > 0 is A-equivalent to the lips.

Here, a subset is residual if it is a countable intersection of open and dense

subsets.
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Proof. Since, for a function w, the behaviors of dw and Hess w are the

same as those of w�1, we may calculate these quantities about trace C. By a

direct calculation, we have

X1ðuÞ :¼ ð1=tÞu1 ¼ f
ð3Þ
1 ðj1Þ

2 þ f
ð3Þ
2 j1 j2 þ f 001 j11 þ f 002 j12;

X2ðuÞ :¼ ð1=tÞu2 ¼ f
ð3Þ
1 j1 j2 þ f

ð3Þ
2 ðj2Þ

2 þ f 001 j12 þ f 002 j22

and

X3ðuÞ :¼ det Hess ð1=tÞ

¼ f
ð4Þ
1 ½ f ð3Þ1 ðj1Þ

2ððj1Þ
2 j22 � 2 j1 j2 j12 þ ðj2Þ

2 j11Þ

þ f 001 j1ððj1Þ
2 j122 � 2 j1 j2 j112 þ ðj2Þ

2 j111Þ

þ f
ð3Þ
2 j1 j2 ððj1Þ

2 j22 � 2 j1 j2 j12 þ ðj2Þ
2 j11Þ

þ f 002 j1 ððj1Þ
2
j222 � 2 j1 j2 j122 þ ðj2Þ

2
j112Þ�

þ f
ð4Þ
2 ½ f ð3Þ1 j1j2ððj1Þ

2 j22 � 2 j1 j2 j12 þ ðj2Þ
2 j11Þ

þ f 001 j2ððj1Þ
2 j122 � 2 j1 j2 j112 þ ðj2Þ

2 j111Þ

þ f
ð3Þ
2 ðj2Þ

2 ððj1Þ
2
j22 � 2 j1 j2 j12 þ ðj2Þ

2
j11Þ

þ f 002 j2 ððj1Þ
2 j222 � 2 j1 j2 j122 þ ðj2Þ

2 j112Þ�

þ ð f ð3Þ1 Þ2½j1j11ð3j1j22 þ 2j2j12Þ � 4ðj1Þ
2ðj12Þ

2 � ðj2Þ
2ðj11Þ

2�

þ ð f ð3Þ2 Þ2½j2j22ð2j1j12 þ 3j2j11Þ � ðj1Þ
2ðj22Þ

2 � 4ðj2Þ
2ðj12Þ

2�

þ f
ð3Þ
1 f

ð3Þ
2 ½�2 ðj1Þ

2 j12 j22 � 4 j1 j2 ðj12Þ
2

þ 8 j1 j2 j11 j22 � 2 ðj2Þ
2 j11 j12�

þ f
ð3Þ
1 ½ f 001 ð3 j1 j11 j122 � 4 j1 j12 j112

� 2 j2 j11 j112 þ j1 j22 j111 þ 2 j2 j12 j111Þ

þ f 002 ð�4j1 j12 j122 þ 3 j1 j11 j222

� 2 j2 j11 j122 þ j1 j22 j112 þ 2 j2 j12 j112Þ�

þ f
ð3Þ
2 ½ f 001 ð2j1 j12 j122 þ j2 j11 j122

� 2 j1 j22 j112 � 4 j2 j12 j112 þ 3 j2 j22 j111Þ

þ f 002 ð2j1 j12 j222 � 2 j1 j22 j122

� 4 j2 j12 j122 þ j2 j11 j222 þ 3 j2 j22 j112Þ�

þ ð f 001 Þ
2 ðj111 j122 � ðj112Þ

2Þ þ ð f 002 Þ
2 ðj112 j222 � ðj122Þ

2Þ

þ f 001 f
00
2 ðj111 j222 � j112 j122Þ;
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where for the sake of simplicity, we set

f 0l :¼
dfl

dy
; f 00l :¼ d 2fl

dy2
; f

ðmÞ
l :¼ dmfl

dym
; ðl ¼ 1; 2; m ¼ 3; 4Þ

ji :¼
qj

qui
; jij :¼

q2j

quiuj
; and jijk :¼ q3j

quiujuk
; ði; j; k ¼ 1; 2Þ:

Next we consider a map

j4ð f1; f2; jÞ : ðy; uÞ N ð j4f1ðyÞ; j4f2ðyÞ; j4jðuÞÞ a J 4ðR;RÞ2 � J 4ðR2;RÞ

and four subsets of jet spaces J 4ðR;RÞ2 � J 4ðR2;RÞ as follows:

X̂X0 :¼ f j4ð f1; f2; jÞðy; uÞ j y� jðuÞ ¼ 0g

X̂X1 :¼ f j4ð f1; f2; jÞðy; uÞ jX1ðuÞ ¼ 0g

X̂X2 :¼ f j4ð f1; f2; jÞðy; uÞ jX2ðuÞ ¼ 0g

X̂X3 :¼ f j4ð f1; f2; jÞðy; uÞ jX3ðuÞ ¼ 0g:

Since the coordinate system of J 4ðR;RÞ2 � J 4ðR2;RÞ is defined by each

coordinate of source and value of derivatives of functions, X̂X0, X̂X1, X̂X2 and X̂X3

are algebraic subsets with respect to the coordinates of J 4ðR;RÞ2 � J 4ðR2;RÞ.
Comparing the coe‰cients of j11 and j22 in X1 and X2, we see that X1 and

X2 do not have a common factor. Moreover, f 001 j1ðj2Þ
2 is the coe‰cient

of j111 f
ð4Þ
1 of X3, but this does not appear in either X1 or X2. Hence

S :¼ B 3
i¼0X̂X i is a closed algebraic subset with codimension 4 in

J 4ðR;RÞ2 � J 4ðR2;RÞ. So this set has a standard stratification. Applying

the Thom jet transversality theorem to j4ð f1; f2; jÞ and S, there exists a residual

subset OHClðR;RÞ2 � ClðR2;RÞ such that for any ð f1; f2; jÞ a O, the map

j4ð f1; f2; jÞ is transverse to S. Since the codimension of S is 4, transversal

condition means having no intersection point. If gt0 at u0 is the beaks, there is

a singularity of gt�" near u0 for a su‰ciently small number ", the beaks never

appear at the minimal value of t which gt is singular. Thus ð f1; f2; jÞ a O

satisfies the desired condition. r
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