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ABSTRACT. For the normalized generalized matrix function 0716 (4) for 3 x 3 positive
semi-definite Hermitian matrices A4, the permanental dominance conjecture per 4 >
(JXG (A) is known to hold. In this paper, we show that this inequality is not sharp, and
give a sharper bound.

1. Introduction

The normalized generalized matrix function is a complex valued function on
n x n square matrices M,(C), defined by

1 n
ld) Z X(O-) H ai(f(i)a
ogeCG i=1

where G is a subgroup of the symmetric group &, and y a character of G. In
particular, it is called immanant if G =S, and y is an irreducible character.
For example, when y(o) = sgn g, the immanant is the determinant, and when
(o) = 1, the immanant d"(4) = 3, ¢ T[] is called the permanent of A,
denoted by per 4.

Note that if its domain is restricted to the (positive semi-definite)
Hermitian matrices, the generalized matrix function takes real values. These
values have been studied for a long time.

d%(A) :=

7(

THEOREM 1 (Hadamard [3] 1893). If A is an n x n positive semi-definite
Hermitian matrix, then
det A <ayy...am.

An | A2

Az | Az
definite Hermitian matrix with Ay and Ay, square matrices, then

THEOREM 2 (Fisher [2] 1907). If ( ) is an n X n positive semi-

Ay | A
det < (det A4;1)(det A2).
Asi | A

2000 Mathematics Subject Classification. 15A15, 20A30.
Key words and phrases. Symmetric Group, Permanent, Generalized Matrix Function.



206 Ryo TABATA

These inequalities were generalized by Schur’s theorem for the generalized
matrix functions.

THEOREM 3 (Schur [11] 1918). If A4 is an n X n positive semi-definite
Hermitian matrix, G a subgroup of S, and y a character of G, then

det 4 <df(A).

Indeed, Theorems 1, 2 are the special cases, the right-hand sides of which
are dl{ld}, dgk*®, respectively. Schur’s theorem says that the determinant is
the smallest normalized generalized matrix function. Analogously, the fol-

lowing theorems for the permanent are known.

THEOREM 4 (Marcus [9] 1964). If A is an n x n positive semi-definite
Hermitian matrix, then

per A = ayy ... au.
A | A

Az | Ax
definite Hermitian matrix with Ay and A,y square matrices, then

THEOREM 5 (Lieb [8] 1966). If < ) is an n X n positive semi-

Ay | Az
per > (per A1) (per A).
Az | Az

From these results, it is natural to expect

CoNIECTURE (Lieb [8] 1966). (Permanental Dominance Conjecture) If A is
an n X n positive semi-definite Hermitian matrix, G a subgroup of S, and y a
character of G, then

per 4 > c?XG(A).

It is known that the permanental dominance conjecture holds for imman-
ants with n < 13 (see [10]), and for all subgroups of €, and all characters when
n<3 (5], [7]).

A stronger result is known for single hook immanants (see [4]), namely

perd=d>__(A)>d>__(A)>--->d> (4)>d
=0 F=D

>z d =(
0

Hence the permanental dominance conjecture for n =3 is already
settled. However, in this paper we will show that the inequality for the
conjecture is not sharp, and represent sharper bounds by the internally dividing
points between the determinant and the permanent. In particular we prove the
following theorem for the alternating group 2Us.

A) =det 4.
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MAIN THEOREM. If A is a 3 X 3 positive semi-definite Hermitian matrix
and w is a non-trivial irreducible character of s, then

d¥(4) <273 per 4 + (1 —2713) det 4.

This is an improvement of the inequality in the conjecture for this special
case.

2. Proof of Main Theorem

Let G be a subgroup of the symmetric group &, and y a character of G.
We define the generalized matrix function by

= ZX(U) Hata(i)~

oge@G i=1

In particular, when G = &, and y is an irreducible character, d G( ) is called
immanant. Moreover, the normalized generalized matrix functlon d G is defined
by

19(4) ::}((:@dZG(A).

For the rest of the paper, we suppose n = 3 unless otherwise stated. It is
known that the permanental dominance conjecture is true for n =3 ([5], [7]).

a b ¢
In this section, we always write 4 as | b d e |. We will display the
c e f

values of the three normalized immanants for A.

per 4 = g(c; (4) = adf + (bce + bee) + (ale|* + d|c|> + f]b]*),

(4) = adf + (bée + bez) — (alel* +d|e|” + f1b["),
a% (4) = 673?1)(/1) = adf _%(bée—f— Ece‘).

REMARK 1. If A is a positive semi-definite Hermitian matrix, then
ale|® + d|c|* + f|b]* = 0.  Moreover when the equality holds, the values of all
the normalized generalized matrix functions coincide.

The following function plays the key role in this paper.

DEerFINITION 1. Define a complex valued function 7 for 3 x 3 semi-definite
Hermitian matrices A with a|e|2 +a7|c|2 +f|b|2 # 0 by

(4) =

bce
ale|* +d|c|* + f|b]*
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PropoSITION 1. Let A be a positive semi-difinite Hermitian matrix. If
ale|* +d|c|* + f|b|* # 0, then

Re T(4) <

W =

PrOOF. It is a restatement of the inequality d(, 1)(4) — det 4 > 0, which is
a special case of Schur’s theorem.

0< 6?(271)(/1) —det 4
= (ad - % (bce + bcé)> — (adf + (bée + bcé) — (ale|* + d|c|* + f1b]*))

= —3 Re(bce) + ale|? + d|c|> + f|b|*.
Divide both sides by ale|* + d|c|* + f|b|* to obtain —3 Re T(4) +1>0. []

REMARK 2. Conversely, we obtain d 1)(A) >det A from Re T(A) <
1/3. The equality holds for the positive semi-definite Hermitian matrix
1 11
1 1 1 |. The eigenvalues of this matrix are 3,0,0. More generally, if A
1 11
has 0 as the eigenvalue with multiplicity 2, then the equality holds.

Similarly, the inequality Re 7(4) > —1/3 is equivalent to per 4 >
67(271)(A), a special case of the permanental dominance conjecture. Conversely,
we obtain per A > d, 1y(A4) from Re T'(4) > —1/3. However, this inequality
is not sharp:

LemMA 1. Let A be a positive semi-difinite Hermitian matrix. If a|e\2+
dic|* + f1b|* # 0, then

1

ReT(A) = —-—.
e T(4) 2 —

This result was already shown implicitly in [6] and explicitly in [1, 12].
We include a proof for the reader’s convenience. We will prove our main
theorem by a similar argument.

PrROOF (Proof of Lemma 1). As the arithmetic mean is larger than or
equal to the geometric mean, we have

ale]* + d|e|* + f1b|* > 31/ adf|bee|*.

Also as det 4 > 0, we have

adf > —2 Re(bce) + ale|* + d|c|* + f]b|*.
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Combining them, we obtain

dle|* + d|c|* + f|b]* = 31/ adf |bce|*

> 3¢/(=2 Re(bee) + ale]” + d|c]” + f1b]*) (Re(bic))>

For simplicity, we write X for ale|* + d|c|* + f|b|* and Z for Re(bée) so
that Re T(4) = Z/X. Then we have

X = 3¢/(-2Z + X)Z2,

X3 > 5473 +27x72,
5473 —271XZ%* + X3 > 0,

VAN VAN
4(Z) —27(Z 1>0.
5<X) 7<X)+zo

The graph of the function Y =54(Z/X)’ —27(Z/X)*+1 looks like the
following.

ZIX

Fig. 1. Y:54(§)3_27(§)2+1

From the graph, we can conclude Re T(4) = Z/X > —1/6.

]
The equality holds for the positive semi-definite Hermitian matrices
2 —1 1 15 -1
_ €L
I 2 1| and [ 2 V2
1 1 2
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The eigenvalues of these matrices are 3,3,0 and (7 + v/7) /2,0, respectively.
The inequality Re 7(4) > —1/6 immediately implies

- 3 1
=3 <= - )
dEFI(A)_ 4pe:rA—i-4 det A4

COROLLARY 1. If A is a 3 x 3 positive semi-definite Hermitian matrix,
then

1
per A + ~ det 4.

1 .
3 perA+§ det 4 < d!'V(4) < 3

6

[SSIN S

These inequalities are sharp, and are improvements of the permanental
dominance conjecture and Hadamard’s theorem.

From here, we study the values of 7(A4) in the complex plane. In
particular, we obtain the sharper inequalities for 3 and dJ° in terms of the
above, where 23 is the alternating group and w;: A3 — C (i =1,2) are the
two non-trivial irreducible characters.

LEmMMA 2. For the complex number x + yi (x,y€R), T(A) =x+ yi for
some positive semi-definite Hermitian matrices if and only if

54x(x2 + y2) = 27(x2 4+ y¥) + 1 >0,
—% <x< %

TmT(A)

1
3v3

W=

- %// ReT'(A)

Fig. 2

ProorF. We have shown —1/6 < x < 1/3 in Proposition 1 and Lemma 1.
Suppose X = ale|* +d|c|* + f|b|*, R = |bce|, S = Re(bce). Calculating as in
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the beginning of the proof of Lemma 1, we have
X > 3(adfR?)'? = 3((Xx —28)R?)"3.
Note that T(A) = x + yi, R/X = (x> + y2)"/* and S/X = x. An easy cal-
culation shows that
54x(x% + y?) = 27(x* + ¥*) + 1 > 0,
hence the “only if” part follows.
Conversely for each x + yi satisfying the inequality, the matrix

1 b b
A=|b 1 b
b b 1

is a positive semi-definite Hermitian matrix with 7(A4) = x + yi, where b =
3(x + yi). O

ProoF (Proof of Main Theorem). Let wq,®;,w, denote the characters of
the three irreducible representations of ;. The following is the character
table of s.

A | (1) | (123) | (132)
wy | 1 1 1
w1 1 2
w | 1 2

where @ = (—1+/3i)/2. We prove the assertion only in the case » = .
The other case is similar. We want to find x with d2*(4) < puper 4+
(1 — ) det A. We observe

33}13 (A) = adf + 2 Re(wbce),
hence 52)113 (A) <puper A+ (1 —pu) det 4 if and only if
adf + 2 Re(wbée) < adf + 2 Re(bée) + (2u — 1) (ale|* + d|c|* + f1b]?).

This inequality can be rewritten as

1

§+ Re((w —1)T(4)) < .
From Lemma 2, finding the boundary point where the slope is —v/3, calcu-
lation shows that

@-VA-¥2) - (VA i

T(4) = Ne

N —



212 Ryo TABATA

maximizes Re((w — 1)T(A4)) with the value 4 =213, When b =1— 20>~
V4w (hence a root of b3 —3b> —3b—1=0), this T(A4) is realized by 4 =
1

O

SIS
S o= o
— S

REMARK 3. For the trivial character wo of Ui, the following equality
always holds:
A% (4) = & per A+ det 4
e )7§per +5 det 4.

COROLLARY 2. There are no finitely many test matrices {A,..., A} such
that for a linear combination

F(A) = o Re(bée) + B Im(bée) + p(ale|® + d|c|* + f]b]%),

F(A) >0 for any positive semi-definite Hermitian matrix A if and only if
F(A4) >0 for all i=1,2,...,r.

Proor. Each F(A4;) >0 determines a half plane in the complex plane.
From Figure 2, the shaded area cannot be written as the intersection of finitely
many half planes. ]
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