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ABSTRACT. Let ¥ = (Y}, Y>,...,Y;)’ be a random vector with multinomial distribu-
tion. In this paper we investigate the convergence rate of so-called power divergence
family of statistics {/#(Y), /. € R} introduced by Cressie and Read (1984) to chi-square
distribution. It is proved that for every k >4

Pr(2nl*(Y) < ¢) = G_1(c) + O(n~ k=1,

where G,(c) is the distribution function of chi-square random variable with r degrees
of freedom, u(r) =6/(7r+4) for 3 <r <7, u(r)=5/(6r+2) for r > 8. This refines
Zubov and Ulyanov’s result (2008). The proof uses Kritzel-Nowak’s theorem (1991)
on the number of integer points in a convex body with smooth boundary.

1. Introduction and main result

Let Y = (Y1, Ys,..., Y;)' be a random vector with the multinomial distri-
bution My (n, =), i.e.,

ko k
Pr(Y1:nl,Yzznz,...,Yk:nk): n!Hj:Inj_/»! Zj:lnf:n
0 otherwise,
where n; =0,1,...,n, &= (n,7,...,7), >0, Z};l nj=1. For testing
the simple hypothesis H: z = p (p is a fixed vector) against K :z # p the
power divergence statistics (introduced by Cressie and Read in [2]) can be used:

k 2
2n11:#ZYj <Yf> —1|, XeR,
MA+1) np;

where p = (p1,p2,...,pk), p; >0 (j=1,2,...,k) and Z;;lpjzl.

2000 Mathematics Subject Classification. Primary 62E20, 62H10; Secondary 52A20.
Key words and phrases. Approximation, Kritzel-Nowak theorem, chi-square distribution, power-
divergence statistics.



116 Zhenisbek ASSYLBEKOV

REMARK 1. When 2 =0 or A= —1, this notation should be understood as
a result of passing to the limit.

Throughout this paper we will use the following notation:
x=(x1,...,x),

X% = (X1, ooy X1, X1y 5 %)

For any B< R" and for any /€ {l,...,r} denote
B ={x":xe B}.

DerFINITION 1. A set B = R’ is called an extended convex set, if B has the
following representation for every /e {1,2,...,r}:

B ={x: A4(x*) < x; < 0)(x*),x* € B},
where A;, 0, are continuous functions on B;.

It is known (see Cressie, Read [2]), that under the null hypothesis 2nl*
has the chi-square distribution with r = k — 1 degrees of freedom in the limit.
Moreover the distribution function of 2n/* has the following expansion:

Pr(2nl* < ¢) =Pr(y? <c)+ 2+ O(n™"), (1)
where
l r
J=—— ni(ril)/z .

\/ﬁ; X1+12521+1 X;;-

o0 o0 0( *>

X
J J 15 (RS (v + pm) )|V o, (2)
—0 —0
1

L/—{xjixj—\/ﬁ(”j—ﬂl’_/)vﬂfez}, (3)
Sy — 1

1(x) =x =[x -5,

GOV ) = h(x1, - Xi1, 0i(x%), X1, )

- h(xlﬂ R 7x[717}"l(x*)7x[+1’ A 7xr)7

$(x) = (27)"?|Q| 7 exp (- %x’9_1x> :

Q =diag(pr,....p) — (p1s---,p2) (P15, pr)-
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Here y,(x) is an indicator function, ;(x*) and A;(x*) are continuous functions
from Definition 1 for the set

B* = {x:2nl*(x) < ¢} 4)

]

Xe=—(x1 4+ +x).

with

2n11

4 V/nx;)

/=1

In Lemma 2 and Lemma 7 we shall prove that B* is a convex set with
smooth boundary. Hence B* is an extended convex set (see Definition 1) and
it follows from Yarnold’s result [6] that

J, =012,
This was improved by Zubov and Ulyanov in [7]. They showed that
Jy = O(n71+1/(r+1)).
Our main result is the following
TuroreMm 1. If 2ul” is the power divergence statistic defined above, then
Pr(2nl* < ¢) =Pr(y? < ¢)+Jo+ O(n™Y)
and
Jr = O(n~ 1), (6)

where

6
def | 7744 f0r3£rﬁ7
S for r>8.

2. Properties of B”

2.1. Convexity.

LeMMA 1. Let 2nI*(x) be the function defined by (5); then 2nI*(x) is a
strictly convex function on the domain

0= {x:x;>—Vnpj,x1 + -+ x, </npi}. (8)

Proor. The set Q is convex since it is an open r-dimensional pyramid.
Calculating second partial derivatives of 2nl*(x) we obtain
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o*2nl?) 2 < x; )“ 2 ( Xp 44 x,)i—l _
———=—(1+ +—(1—-—— , i=1,r, (9
596,2 Di Vnpi Pk Vpic ®)
('52(211]’1) 2 ( X1+ + x,.))‘l
R S A ) S , i#J. 10
0x;0x; Dk Pk J (10)

All these derivatives are continuous on Q. Hence, 2nl*(x) is twice differ-
entiable on Q. The lemma will be proved if we show that d*>(2nl*) is a
positive definite quadratic form on Q. For this, by Sylvester criterion, it
is sufficient to prove that the principle minors 4;, /=1,r of the matrix

2 2
A= aﬁgg/) are positive on Q. The proof is by induction on / and is
left to the reader. O

LEMMA 2. Let B* be the set considered in Introduction; then B* is a strictly
convex set.

Proor. Consider any x; € dB”, x;edB* te(0,1). This means that
2nl*(x1) = ¢, 2nl*(x;) =c. From Lemma 1 it follows that 2n/*(x) is a
strictly convex function on Q. Therefore

2nl*(xy + t(x2 — x1)) < 2nI*(x1) + 1(2n1*(x2) — 2nI*(x1))
= (1 — 0)2nl*(x1) + 2nl*(x2) = (1 — t)c + tc = c.

This implies that x; + #(x — x;) € B*. Consequently B* is a strictly convex
set. ]

2.2. Boundedness.

LemMa 3. Let f,(x) — f(x) pointwise and the set A ={x: f(x) < c} be
bounded. Let the functions f,(x) be continuous, convex, strictly decreasing for
X € [0, 0), f,(0) =0, strictly increasing for x e (0,p,] and

Jalom) = o0, fu(B,) = 00,  n—+o0.
Then the sets A, = {x: fu(x) < ¢} are uniformly bounded.

Proor. Assume the converse. Let N be a number such that

min(fy (o), fn(By)) > c

Then for any natural n > N the set 4, is a finite segment [a,, b,] containing 0,
where a, < 0, b, > 0 are solutions of the equation f,(x) =c¢. By our assump-
tion at least one of the sequences {a,} and {b,} is unbounded. Let it be {b,}
(for the case of {a,} the argument is similar). Further we select from {b,} an
infinitely large subsequence {b, }. Then
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[0,b,] = [0,b] = -+ = [0,by ] = - -
and, therefore, for any /> k
S (b)) < c.
Passing to the limit at / — +o0 we obtain
f(bw) <c=b, €A,
but this contradicts with boundedness of A.
LEMMA 4. For any le{l,...,r} the set B} can be represented as

Bl ={yeR':F(y) <c},

(1 +\/y7iifJJ>}' - 1]’

qr = DI+ Dk,

where y = x* and

F(y) = ﬁi(ﬂ% +Vny))

J=1

q= (p17"'aplfl7p/+la"'7pl‘)/a
ye=—n 4 Fye)

ProoF. The proof is found in [7].

119

O

It can easily be seen that 2n/'(x) is a quadratic form, which doesn’t
depend on n (see (5)). Therefore, B! = {2nI'(x) < ¢} is an ellipsoid, which
doesn’t depend on n. However the set B* = {2nl*(x) < ¢} depends on n (see

(4)-
LEMMA 5. The set B*, i # 1, is uniformly bounded w.r.t. n.

Proor. The proof is by induction on dimension r:
(1) For r=1 the lemma follows from Lemma 3.

(2) Let it be true for the dimension (r—1). From Lemma 4 it follows

that projection B of the set B* on subspace

x =0

is an (r — 1)-dimensional set, that has the same form as B*. By
induction assumption Bf is uniformly bounded w.r.t. n. Thus, for all
xe B

|xi|SC17 l'il,l’*l

By the same argument we see that Bj is uniformly bounded w.r.t.
n. Hence for all x e B*

|X,‘| < (. ]
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2.3. Smoothness. In the rest of this paper we will use such concepts from
differential geometry as manifold, smooth manifold, manifold of class C*,
surface, etc. Definitions of these concepts can be found e.g., in [5].

LEmMA 6. Let f : R" — R be a function of class C*, M. = {x : f(x) = c}.
If the gradient of f is nonzero throughout M., then M, is a smooth (n—1)-
dimensional manifold of class C™.

Proor. The proof is found in [5], Ch. 3, §2, Theorem 1. O

REMARK 2. The lemma is true if f is defined on a set Q € R" such that
0> M..

LemMA 7. The surface
OB* = {x : 2nl*(x) = ¢} (11)
is an (r — 1)-dimensional surface of class C*.
ProOF. The domain of the function 2nl*(x) is the set Q defined by (8).
Q increases infinitely with the growth of n. Since the set B* is bounded (see
Lemma 5) there exists the number N such that Q contains the surface dB* for

all n > N. The function 2nI*(x) is indefinitely differentiable as a superposition
of indefinitely differentiable functions. By direct computations we see that

6(2n1):2\/ﬁ<1+ x,—) _2\{5(1_)61+...+x,.>v’ =T (12
ox; / Vip; # Vb

Let us show that the gradient of 2nI*(x) is nonzero throughout B*. Assume
the converse. Then there exists x* € 6B* such that

) o(2nI* —
grad2nl*(x°)] = 0 = (2nI7) (x%) =0, j=1,r
0x;
0 0 0
A e W
Vp; Vnpie
We can write these last r equations in the matrix form:
1 1 1 e 1
Vipi + Vi Vipi Vi x?
1 L1 1 0
Vnpi Vipy - /npi Vip X2 —0
1 1 S 1 x?
N Vi Vo e r
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The matrix C is nondegenerate (the proof is left to the reader). Hence x* =

(0,...,0)", and 2nI*(x°) =2nI*(0,...,0) =0 < c. But this contradicts with
the choice of x* € dB*. This contradiction proves that

grad[2nl*(x)] # 0
throughout the surface 0B*. Applying Lemma 6 to the mapping 2nI* proves

the lemma. O

2.4. Parameterization. Consider the function
Uu(p,t) = 2nI*(x(p,1)) — ¢, (13)
where the mapping x(p,t) = (x1(p,1),...,x.(p, 1))’ is defined by the equalities

xi(p,t) =psint...sint,_j,
Xj(p,t) = p cos tj_ H,’:jl sint; for j=2,r—1,
xr(pv t) = p COS l,_1,

on the set

S = {(p,t) :p€el0,400),t €[0,2n],4 € [0,7],] =2,r— 1,

xj(p,t)>\/ﬁp;,jI,_r,ixj(p,t)<\/ﬁpk}. (14)
=

REMARK 3. Notice that the function U defined by (13) depends on n for
A # 1 (denote it by U,) and doesn’t depend on n for A =1 (denote it by U).

Let y(t) = (»1(1), ...

yi(t) =sint¢;...sin ¢y,
y;(t) = cos 1 H,’:} siny; for j=2,r—1, (15)
yr(t) = cos t,_;.

,¥,(1))" be a mapping defined by the equalities

Then x(t) = py(t) and
ly@)l = 1. (16)
LemMA 8. For sufficiently large n we have

oU,

5 >0

on S\{p =0}.
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Proor. Calculating partial derivative of U,(p,t) w.r.t. p we have

U, ~0(2nl?) dx;
op _‘/:1 ox; 0Op

oSO (oY
_2\/_; Z <1+\/ﬁpj)

IPWREEIU (1 P e >>’“"_ )
Vi
Consider the function
f(x) = %(l—i-x) j xeR.
It can easily be seen that in sufficiently small neighborhood of x =0
f(x) =0, f(x)=0<x=0, (18)

Using f(x) we can rewrite (17) in the following way

1 oU, ~ 1 B
2 = Doy GPHE) (—sk Zy, ) (19)

=1

where s;(p) = \/_p >0. Assume that 22 (p t’) = 0. Then by non-negativity

of every term in (19) we obtain

s:(p0 ) 0 0, j :1_ _
{;Ef:(/)j)(tz» ey —o, 7 om U8} =0, 7=

= y(°) =0.
But this contradicts (16). Therefore, °U” >0 for all (p,t)e S and p #0. [

Lemma 8 and implicit function theorem give us the following

Lemma 9. Let U,(p°,t°) = 0, where U, is defined by (13). Then for any
sufficiently small ¢ > 0 there exists a neighborhood V(t°) of t° and a unique
Sfunction p,(t) such that |p,(t) —p°| < & and

Un(pu(0).1) = 0.

for all te V(t°) and the function p,(t) is continuous and infinitely differentiable
on V(t9).
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Put by definition
T =100,27] x [0,7] x [0,7] x --- X [0,7].

(r—2) times
Lemma 10.  The surface 0B* has infinitely differentiable parameterization

xX"(t) = p,()p(t),  teR",
where y(t) is defined by (15).

PrOOF. From Lemma 2 it follows that the set B* = {x: 2nl*(x) < ¢} is
convex. Therefore its boundary 0B* = {x:2nl*(x) = ¢} is a convex surface
containing the origin since 2nI*(0,...,0) =0 < c. Hence for all * € T the
ray that starts at the origin in the direction of the vector y(¢°) intersects 0B*
at the unique point x°. Using the transformation

x=py(t)

we turn to spherical coordinate system. Then the point x° turns to the point
(p°,1%), where p° = ||x%|. By construction x° lies on the surface 6B*, thus

U,(p°,1°) = 2nI*(x°) —c = 0.

Therefore from Lemma 9 it follows that there exists a neighborhood V(%) of #°
and a unique function p,(¢) such that U,(p,(t),t) =0 and p,(¢) is continuous
and infinitely differentiable on V' (°). Put

x"(t) = p, () y(1).
Then

2l (x"(1)) = Uy(p,(2),1) +c=¢,  teV(t9),

and the functions x7'(¢), j = 1,r are continuous and infinitely differentiable on
V(t°).
Since ¢° is taken arbitrarily, the lemma is proved. O

Throughout this paper we denote uniform convergence of f,(x) to f(x) as
n— oo by

()3 f(x), n—o0
LemMa 11. 2nI*(x) =3 2nl'(x), n — oo, on any bounded set. Moreover
VmeN and Yey,...,e,eNg:ej+---+e =m
" (2nl*) " (2nl")
oxy" ... 0x” (¥) 3 oxy' ... 0x/" (x),

on any bounded set.
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PrOOF. The uniform convergence 2nl*(x) = 2nl'(x) follows from Taylor

expansion of 2nl/*(x) w.r.t. n. From (12) it follows that

o(2nl* 2 2 o(2nl! —
(’\n >:;—x1'+_(xl+"'+xl’):w> l':17r_
0x; Pi Dk 0x;
From (9) and (10) it follows that
2 A 2 1
6(2n21)33 326(21121)7 =17,
0X; Di Dk 0X;
?@2nl*y 2 *(2nlh) o
Al :; - = ) I # Js
0X;X; Pk 0x;X;
and Vm >3, Vey,...,e,eNp:e;+--+e =m
0" (2nI*) N o"(2nI")
—_— 0=——"(x).
oxy' ... 0x/" (x) =3 oxy' ... 0x/” (¥) -

Let p,(t) be the function constructed in Lemma 10 for the surface dB*.
Then from Lemma 5 it follows that |p,(#)| < R, where R = sup,{max,cr p,(t)}
< 0.

LEmmA 12. VmeN and Vey,...,e,eNp:e1+---+e =m

o"U, [0, RIxT o"u
Operdt] dts> ..ot T dpedt] oty .. ot

X

Proor. By induction on m and direct calculation we can show that
" U, & o' (2nI*)

= )7P e ;ta

> 2 o Xt (p,1)

e A1€1 A4€2 el
Operoty' 0ty ... 0t = oo
ejeNp

where P;.(p,t) doesn’t depend on n. Now the lemma follows from Lemma
]

11.
LemMa 13.  Let p,(t) and p(t) be the functions constructed in Lemma 10

or the surfaces 0B* (). # 1) and 0B' respectively. Then
fe P y
() = p(1)] < Cn™ 2.

Moreover, Yme N and Vey,...,e,_.1€Ng:e1+--+e_1 =m

a"p, r d"p (0).

a oy W B a ey
1 Oh 1o 0h
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T
Proor. First let us show that p,(f) = p(¢). Assume the converse. Then
there exists a number ¢ >0 and a sequence {#"} such that

Pa(t") = p(t")] Z & (20)

By compactness of 7 we select a converging subsequence {t™} : " — 0.
Thus by continuity of p(¢) we have

p(t™) = p(1).

Now by compactness of [0, R] we select a converging subsequence {pnk’ (™)} :
P, (t™) — p;, and from (20) we have

pr# p(e°). (21)
Further
Un, (P, (tuy,) s tn,) = 0= {U, 3 U}
= Ulpy, (t,),tn,) + o1 =0, oy = o(1)
= {l— o} = UL =0.
Combining this with (21) we get contradiction with the identity
U(p(t),t) =0, VeeT,

which follows from the proof of Lemma 10. Hence

T
Pa(t) 3 p(1).

Now from Taylor expansion of U,(p,t) and boundedness of B* we get
Un(p. 1) = Ulp,)| < Cun™ 2.

From Lemma 8 and its proof it follows that %—[l)](p,t) >0 for p>0 and

%—g(o,t) =0. By direct computation we obtain ‘;27(2/(/), t) >0 throughout

domain. Thus % is strictly increasing function for p >0 and vanishing at

p=0. The set B! is an ellipsoid, thus its radius p(t) > K > 0 and we have
oU
Colp,(2) — p(2)] < E(én(t),t) Pu(t) = p()] = [U(p, (1), 2) — U(p(2),1)]

= |U(pn(t)at) - Un(pn(t)’t” = C1n71/27

where &,(f) = p(f) + 0u(8) [p, (1) — p(8)] B p(t) = K > 0,
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The second part of the lemma follows from Lemma 12 and the formulae
for derivatives of implicit function. O

2.5. Support function properties. Remember that 2n/'(x) is a quadratic form,
which doesn’t depend on n (see (5)). Therefore, B! = {2nl'(x) < ¢} is an
ellipsoid, which doesn’t depend on n. Let H,(u) be a support function of B*
for any 1 # 1 and H(u) be a support function of B!. Throughout we assume
that u takes values from bounded set.

LEMMmA 14, VmeN, Ve eNp,...,e,eNg:ej+---+e =m

)=
oui" ... ou" - oui" .. ou

n — o0.

Proor. Let x,(t) and x(¢) be parameterizations from Lemma 10 for the
sets B* (4 # 1) and B! respectively. In order to simplify the computation we
will prove the statement for r =2. In this case

H,(u,v) = sup {ux;+oxy} = trr[})agc]{upn(t) cos t + vp,(t) sin t}
€[0,2n

(x1,x2) € 0B*
— up, (1 (u,0)) 05 £ (u,) + vp, (1; (u, ) sin £} (u,v),
where ¢'(u,v) is a maximum point of smooth and periodic function
Ju(t,u,v) = up,(t) cos t + vp,(¢) sin ¢
w.r.t. t. From Lemma 13 it follows that
In 5 U
ou = ou’
where
f(t,u,v) = up(t) cos t + vp(¢) sin t.
Let *(u,v) be the maximum point of f(¢,u,v) w.rt. t€[0,2z]. In a similar

fashion as we proved the convergence of radii in Lemma 13 we can show that
th(u,v) 3 t*(u,v). Thus we have

0H, 0 .
E - a (fn(tn (ua U)a u, U))
_ ot, U (s
= D), 0,0) 2 1, 0) + D (150, 0), 0,0
=0
2 q(r*(u, v),u,v) :a—H.
u
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Arguing as above we see that

0H, —>6_H
v v’

Uniform convergence of the derivatives of higher order is proved in the similar
way. ]
2.6. Finiteness and non-vanishing of Gaussian curvature.

LEMMA 15.  Gaussian curvature is finite and nonzero throughout 0B* for
sufficiently large n.

Proor. If u is any point of unit sphere {x: |x|| =1}, and x = .#(u) its
image under the canonical map, then the Gaussian curvature x of dB* (4 # 1)

in x is equal to (A1, - ,)v,,,l)_l where {0, 4y,...,4,_1} are the eigenvalues of
the matrix (;ufu (u)) (see [1], p. 61f). Notice that Gaussian curvature of the
S,

ellipsoid dB' is finite and nonzero. Now the lemma follows from Viéte’s
formulas and from Lemma 14. ]

3. Preliminary transformation of J,
By definition put

1 _
L:{x:xj:—(m-—npj)7mjeZ,j:1,r ,
N

This means that L is an r-dimensional lattice in R" and lattice spacing of L is
\/iﬁ. Let N* be the number of lattice points in B*, i.e., N* = #(LNB*). Let
V'* be the volume of B*.

PROPOSITION 1. Let Jo be the term defined by (2); then
Jy =dn"P(N* —n?V*) + o), (22)
where d = const > 0.

PrOOF. Let x"(t) = p,(t)y(t) be the parameterization of 9B* (A #1)
constructed in Lemma 10 and x(¢) = p(t)y(t) be the parameterization of 6B'
from the same Lemma. The set B* is a strictly convex set (see, Lemma 2).
Thus it is an extended convex set. Let us fix arbitrary x* € Bf. Then from
Definition 1 it follows that

(xl,...7x1,1791(x*),x1+17...,xr) € aBia

(xl, N 7x1,1,/11(x*),x1+1, N ,xr) € aBi.
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Since x”(t) is the parameterization of 0B*, there exist values #;, u; such that

(X1, oy X1, 01(x™), X151, -, X)) = X" (1)),
(X1, oy X1, A (x7), Xig1y - X)) = X ().
Denote
Wi(x) = S1(vnx + pn).
Then

2 (E)[S1 (Vi + pim)p(x) 1)
= W (0))(x" (1)) — Wi () (x" (ar))

= Wi ) B3 + Wil ) (o), +dWi)L ), (23)
A B

where d = ¢(x(t/)) = ¢(x(u;)), since x(t;),x(u;) € 0B' and

OB' = {x:2nl'(x) =c} = {x: ¥'Q 'x = c}.
Further for all ¢ [0,27] x [0,7] x --- x [0, 7]
(" (1) — p(x(0))] = |$(p, () p(1)) — (p(2)(1))]
= ()" = (p(r(2)))" |
= 1p(p(0)" " 1og(d(¥(0)] 19, () = p(1)] 1P (1) + p(1)]
<Cn'? (24)

T
where 77,,(£) = p2(t) + A (t) [p2(t) — p*(t)] = p*(t). The last estimate in (24) fol-
——

€(0,1) )
lows from boundedness of B* (Lemma 5) and the uniform estimate

pa(t) = p(1)] < Cin™'7,

(cf. Lemma 13). Using (24) for estimation of 4 and B, and taking into
account boundedness of Wj(x), we get

A=0n"'?), B=o0m"'"?. (25)
From (23) and (25) it follows that
2 (E)[S1 (Vs + pm) ()]

= 25 (¥)d[S1 (Vxy + )| + O '1?). (26)



Convergence rate of goodness-of-fit statistics 129

Inserting (26) into (2), taking into account boundedness of B* and the fact that
lattice spacing of L;, /= 1,r is equal to n~'/2, we obtain

d r
Jy=——=Y n D2
2= R DRSS

X141 €Lt xreL,

J J gy ()1 (Vi + i) V5 )y o+ O (27)

— 0

Further, arguing as in (Yarnold, [6]), we prove the lemma. O

4. Application of Kritzel-Nowak’s theorem

THEOREM 2 (Kritzel and Nowak). Let # denote a compact convex subset
of R, r>3, which contains the origin as an inner point. Suppose that the
boundary 0% of # is an (r — l)-dimensional surface of class C* with finite
nonzero Gaussian curvature throughout. For n > 0 define A(n) as the number of
points of the lattice Z" in the “blown up” domain \/n%, i.e. A(n) = #(/nBNZL").
Then there exists a number C such that

|A(n) — vol(B)n'/?| < Cn/>~ 1+ (28)
where u(r) is defined by (7) and the number C may depend on 2.
ProOF. The proof is found in [4], Section 3. O

PROPOSITION 2. Let N* be the number of lattice points in B* and V*’ be
the volume of B*; then

NA . nr/2 V). — O(nr/271+,u(r)), (29)

where u(r) is defined by (7) and the constant implied by O in (29) doesn’t depend
on n.

PrOOF. Since 2nI*(0) = 0 < ¢, from Lemmas 2, 7, 15 it follows that B*
satisfies the conditions of Kritzel-Nowak’s theorem. Notice that B* depends
on n for all A # 1. Thus if we apply Kritzel-Nowak’s theorem directly to B*
we obtain

IC(n) : [N* — WPV < C(n)n'/>=1410) (30)

with u(r) defined by (7). Now in order to replace C(n) by an absolute
constant in the estimate (30) we need to check the boundedness of all constants
implied in the symbols O, «, =< in the proof of Kritzel-Nowak’s theorem.
Instead of Lemma 1 in [4] it is sufficient to use Satz 5 from [3]. The bounded-
ness of constants in Satz 5, [3] was shown in [7]. We omit trivial estimates and



130 Zhenisbek ASSYLBEKOV

focus on the part of the proof that requires considerable modification. This

part (see pp. 67-68 in [4]) is concerned with constructing a finite covering
J

{Ai};=1 of

Hy & {ueR 1< |u| <2}
such that

inf inf [H" (a';0)| >0, (31)

1<j<J w'ex;

where vl/) are certain integer vectors that depend only on B' and

m

d
H (a;u) € S H(a + tu)

dz” -0
Using the well-known identity
HY (asv) = T o
erie el el dupt o Ouy
¢eNp
and Lemma 14 we obtain
H™ (a;0) 3 H™(a;v),  n— oo (32)
Combining (31) and (32) we have for some N >0
inf inf inf |[H® (@';09)] > 0. (33)

n=N 1<j<J u'eH;

Using the estimate (33) instead of (31) further in the proof of Kritzel-Nowak’s
theorem we obtain (29). O

5. Proof of the Theorem 1

The statement of the Theorem 1 follows from (1), Proposition 1 and
Proposition 2.
Theorem is proved.

Acknowledgement

The author is grateful to Prof. Hirofumi Wakaki for constant attention to
this work and to Prof. Vladimir Ulyanov for useful comments and careful
readings. The author also would like to thank Vasiliy Zubov, Tomoyuki
Akita and Isamu Nagai for useful discussions.



Convergence rate of goodness-of-fit statistics 131

References

T. Bonnesen, W. Fenchel, Theorie der konvexen Korper. Berlin: Springer. 1934.

N. C. Cressie and T. R. C. Read, Multinomial goodness-of-fit tests, J. R. Statist. Soc. B
(1984) 46, No. 3, 440-464.

E. Hlawka, Uber Integrale auf konvexen Korpern, I. Mh. Math. 54 (1950), 1-36.

E. Kritzel and W. G. Nowak, Lattice points in large convex bodies, Mh. Math. 112
(1991), 61-72.

A. S. Mischenko, A. T. Fomenko, A course of differential geometry and topology. M.:
Izd-vo “Factorial Press”, 2000. (in Russian)

J. K. Yarnold, Asymptotic approximations for the probability that a sum of lattice random
vectors lies in a convex set, The Annals of Mathematical Statistics 1972, Vol. 43, No. 5,
1566—1580.

V. V. Ulyanov, V. N. Zubov, Refinement on the convergence of one family of goodness-of-
fit statistics to chi-squared distribution, Hiroshima Math. J., 39 (2009), 133-161.

Zhenisbek Assylbekov
Depertment of Mathematics
Graduate School of Science

Hiroshima University

Higashi-Hiroshima 739-8526, Japan
E-mail: zhenisbek.assylbekov@gmail. com



