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ABSTRACT. The induced transformation on a properly chosen interval of a 2-interval
exchange transformation is a 2-interval exchange transformation again. This induction
is explicitly integrated by using the simple continued fraction algorithm. Therefore, we
can say that the simple continued fraction algorithm acts well as a “multiplicative
Rauzy induction” on the family of 2-interval exchange transformations. Now, we have
the following question; On what kind of family of 3-interval exchange transformations
does the negative slope algorithm act well as a multiplicative Rauzy induction? The
purpose of this paper is to give the answer to this question.

1. Introduction

There exists an essential relationship, called the multiplicative Rauzy
induction, between the simple continued fraction algorithm and a certain
family of 2-interval exchange transformations. In order to describe this
relationship more precisely, we start with the following definition.

DEeriNITION 1. For each o ¢ Q with 0 < o < 1, let I, denote the interval
[-a,1) or (—o,1]. The transformation R,:I, — I, is defined to be the
2-interval exchange transformation given by

R(X){x+a if —a<x<l1l-—u
* x—1 fl—a<x<l1

or
x+a if —a<x<1—u
Rot(x): .
x—1 ifl—a<x<1
according as I, = [—a,1) or I, = (—ua,1].
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We consider the 2-interval exchange transformation R, on I, = [—a, 1) and the
subinterval J) = [—o, 1 — aja) of I,, where a; is given by a; = [1|. We note
that o and «a; are related by means of the simple continued fraction algorithm
T as Ta zé— a;. Furthermore, let (R,),1, be the induced transformation of

R, into the interval J(U, that is,
(Ry) oy (x) == Ry™(x)

where k(x) := min{k | R¥(x) e J) k > 1}. Then, we have the following the-
orem.

THEOREM 1. Let oy be the image of o by the simple continued fraction
algorithm T, that is, oy = Ta :i—al. Then, (R,),u is isomorphic to R, on
(=, 1] and an isomorphism ¢ : [—o, 1 — aya) — (—ay, 1] is given by p(x) = —1x,
that is, we have

Ry (9(x)) = ¢((R) o (x))- (1)

The relation (1) in Theorem 1 enables us to say that the simple continued
fraction algorithm acts well as a multiplicative Rauzy induction on the family
of 2-interval exchange transformations given in Definition 1. Here the ter-
minology “multiplicative Rauzy induction” means that we use the Rauzy
inductions ([6]) multiplicatively. By using Theorem 1, we can recognize the
behavior of the recurrent rule of the orbit of the origin {R”(0)|n > 0} (see
Corollary 1 in the section 2). Now we have the following question; Consider
the negative slope algorithm instead of the simple continued fraction algo-
rithm. Then, on what kind of family of 3-interval exchange transformations
does the negative slope algorithm act well as a multiplicative Rauzy induction?
We arrive at the answer to this question in Theorem 3, that is, the negative
slope algorithm acts well as a multiplicative Rauzy induction on the family of
2-interval exchange transformations with 3-partition (see Figure 3 and Theorem 3).

2. The simple continued fraction algorithm and the family of 2-interval
exchange transformations

In this paper, the interval that we consider is only of the type I = [a,b) or
I =(a,b]. The difference between [a,b) and (a,b] is characterized by the sign
function sgn as follows:

sgnla,b) = +1, sgn(a,b] = —1.
Let {Ji,J5,...,Jy} be a partition of the interval I, that is,

N
U =1 and  JNJ;= for i+
k=1

and {J1,J2,...,Jy} has the property sgn I = sgn J; for all ke {1,2,... N}.
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From now on, we give a sketch of the proof of Theorem 1. To prove
Theorem 1, it is enough to check the following structure. Let I,, I}, and I, be
I, =LUDL, I =[—o,1—a), L:=[1-u1)

and let JO, JV and J{V be
JO=gOush g =1 = (@ + Do, 1 —aye), TV = [—a,1 = (a) + 1))
where a; = [1| (see Figure 1). Then we see that

1 1 1 1 1
(I, Ry (M), R2ID), L RO ()} 2)

is a partition of [~a,1). Moreover, we denote by {Jl(l)/, ,Jz(ly} the partition of
[—o, 1 — ajor) where R:‘“(Jl(l)) = Jl(l> and Ri(sz) = Jél) . We know that the

.[1 IQ

\ i\

Fig. 1. The induced transformation (R,),n and the 2-interval exchange transformation R,,.
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signs of these intervals are +1. Let (R,), be the induced transformation of
R, into JU| that is,

(Ro) g (%) == RY™(x)
where k(x) := min{k|R¥(x) e JU) k >1}. Then, we see that
(Ra)yo () = RS O) (Ra)yn (1) = Ry,
so we write
B = RO, B = Ra) (5,

Furthermore, let ¢(x) be the map from JU) to I,, = (—ay, 1] given by ¢(x) =

—1x where oy =1—ay, sgn JV = +1 and sgn I,, = —1. Then, we see that
o) =1 —a, 1], oY) = (—u, 1 -],
o) = (0,1], o)) = (~n, 0],

Therefore we have

Ry, (p(x)) = ¢((Ra)J(l) (x)) for xeJW

where the 2-interval exchange transformation R, is defined on [, with
sgn I,, = —1 (see Figure 1).

Here, we recall the simple continued fraction algorithm 7. For 0 <o < 1,
o ¢ Q, we define a map 7: (0,1) — (0,1) as follows:

where a(x) = |L]. For the integer valued function a(x), we put

ar = a(2) = m = () = a(T" (2) = {TIMJ
Then we know the following properties:
(1) for 0 <a <1, a¢Q, there exists an infinite sequence (aja,...) and
we see that

1 _ Pn+ Pn—1 Tn(OC)
1 Gn + qn1T"(2)

a +
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where (q,, p,) is given by

qdn  qn—1 (@ 1 a 1 a, 1 )
P po1) 1 0 1 0)""\1 o)
(2) let o, := T"a, then we see that

Gnot — pn = (—1)"a0y ... 0.

Now let us define the intervals J@—1), Jl(zn_l), Jf"_l), J@, J{Z") , J2<2") as
follows:

Jen=1) . [—aor .. S0 (n—1), 06O - . Oon—1)
J1(2n71) — [—o(o(l .. dz(n,l)(l — 052n—1)7 ooy .- OQ”_I)
J§2n—l) = [—ocoq e 01y, OO . a2(n—l)(1 - aznfl))

and
J@ = [—ooy ... 0, 00y . Gy )
(2n)
J7 = oo o, 00 o1 (1 — 02,))

J2(2n) = [0(0(1 Ce OCznfl(l - O‘Zn)z ooy - d2n>

(see Figure 2).

J(Zn—l)
—QQy - a2(n—1) —aoy -1y (1 — a2p—1) aoq - ap—1

-
L

J2(2n—1)

J(Zn)

Fig. 2. The intervals J®—1), Jl(znfl) JE ) gen Jl(zn), and Jf").

s Jo s >



456 Kazuko Nakazawa, Koshiro IsHIMURA and Shunji ITo

Let us define the substitution ¢, as follows:

/—’a\
og,:1—1...12
2—1

G4y 004 000, (1) =5182...5,4p,
Oq; ©0q, ©° 0 Gan(z) = 04 © """ 00q,, (1) =81 Sq4paa
Then we have the following theorem.

TueoreM 2. (1) The induced transformation (Ry),., of R, into J" is
isomorphic to R,, on the interval I, with sgn I, = (—1)" and an
isomorphism ¢, is given by

(pn J<n) - IOfn
w w
[N ) S
ool ... Oly—1

(2) For the sequence 5153 ...54,+p,, We see that
REVUW cr, k=12 ,q.+ pu
R <, k=12 qu1+ put.
(3) Put
JO = Re g apg = RO )
then we see that
JOUI =g and 0 = &

Then we have an interesting result as a corollary of Theorem 2 in the
following.

COROLLARY 1. Let 0 < a <1 be an irrational number, then we have
RN 0) el k=1,2
o ()eska — LlyLy ey
where $18y...58... is given by
lim 6, 0040 00, (1) =s15...8¢....
n—oo
In the next section, we will consider the family of 3-interval exchange

transformations on which the negative slope algorithm acts well as a multi-
plicative Rauzy induction.
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3. Definitions of the negative slope algorithm and a family of 3-interval
exchange transformations

We introduce a map S on X := [0, 1)*\{(a, 8) |+ f = 1}, which is called
the negative slope algorithm ([1], [2], [3], [4], [5]), as follows.

DEFINITION 2. By using the integer valued functions
B u .
Qmjlmp if a+p>1

(n(o, ), m(a, p)) =
(e [Pes)) ira+s<t

and
(-1 ifatp>1
g(a’ﬂ){ﬂ ifa+p<l’

let us define the algorithm S, called the negative slope algorithm, by
(s — () oy —m(@ ) i a+p> 1

(et - e mef) ot p<l
and denote (ar,f,) := S(«, f).

S(“?ﬂ) =

For each («,f) e X, we have the sequence of vectors ((e(a,f),n («,f),
mi(a, fB)),...) by setting

ex (o, ) &(S (2, )
”k(avﬁ) = n(Skil(anB)) : (3)
myc(o, f§) m(S* (2, B))

REMARK 1. Let (o, ) = S¥(a, B) denote the image of (a, ) by the k-fold
iteration S* of S.  Then, we say that the iteration of the negative slope algorithm
S at (a,p) €eX stops if there exists ko >0 such that xi, =0, yr, =0, or
Xky + Vi, = 1. In this paper, we treat only the point (o, [5) at which the iteration
of the negative slope algorithm does not stop.

ReMarRk 2 ([1]). We note that ng,my >1 for k>1 and for any such
sequence ((&;,n;,m;));s, there exists («,f)eX such that (&(a,p),ni(a,p),
mi(a, ) = (ei,n;,m;) unless there exists k > 1 such that (e,m;) = (+1,1) for
all i >k or (g,n;) = (+1,1) for all i > k.

We introduce a projective representation of S as follows.
We put

n n—1 1—-mn —n —-n+1 n
Apim = m—1 m l—m |, Acipm:=|-m+1 —m m
-1 -1 1 1 1 -1
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for m,n > 1, then we have

1 0 n—1 0 1 m
Al m=10 1 m-1 |, Al =10 n
1 1 n+m-—1 1 1 n+m-—1

We identify (o, ) € X with ¢'(a,8,1) for ¢ #0, then we identify («,f)
(= S(2,4)) with
CA(ey (o ),m (), mi () (% B 1) for ¢ #0

and its local inverse is given by

A;! .
(e1(o B), 11 (o0, ), (o, B))
On the negative slope algorithm S, the following fundamental fact related to
the periodicity of the sequence (S¥(a,)),~, is known and it will be used in
Corollary 5. -

COROLLARY 2 ([4]). Suppose that the iteration of the negative slope
algorithm S at (a,B) € X does not stop. Then the sequence (S*(a,B));sq is
purely periodic if and only if o and f are in the same quadratic extension of Q
and (o*, %) is in (—o0,0)* where o denotes the algebraic conjugate of .

Let us introduce the substitutions o , ) and o(_y, ) from {1,2,3} to

o0
U {1,2,3}" by
n>0
T(+1,mm) 1 — 31 T(—1,mm) 1—32
232 , 231 (4)
3 (32)"1331)"! 3 (31)"2(32)" .

Then the incidence matrices L, of the substitutions o, ) are given by

L = A

T (s, n,m) e,n,m)"

Suppose that the iteration of the negative slope algorithm S at («,f) € X
does not stop. Let us define a family of 3-interval exchange transformations
R, p as follows.

DrerFINITION 3. Put the intervals I, 3, I3, I, and I; with sgn = +1 by
Lpg:=[-p1+a), L:=[-p1-p), L:=[1-41), LH:=[1,1+0
and define the interval exchange transformation R, s on I,z by

x+(a+p) ifxekh
Rip(x):=¢ x—1 if xeh
x—1 if xel.

(see Figure 3).
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- 01-p 1
L | — \I_
L | |

_ﬁ 0 o

Fig. 3. The interval exchange transformation R, g.

1+«

1+«
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THEOREM 3. Let us introduce the subinterval J®P) < I, g with sgn = +1 by

J.h) :{[—ﬂ+(n—1)(0€+ﬁ—1),(1—/3)—(m—1)(06+ﬁ—1))
[+ (m—=1)(A = (2+p),(1 =)= (n=1)(1—=(x+p)))

The case of sgn= —1 is defined

Then we have the

where ¢, n, m are given by Definition 2.
analogously (see Figure 8 and Figure 13 in the section 4).

following properties.
The induced transformation (R, ). of the interval exchange trans-
formation R, into the interval J*P is isomorphic to R, g and the
isomorphism ¢, g AT w.p, With sgnl, g =e is given by
P p)(X) = B that is, the following relation holds:

(1)

(2)

given by
Ji= [+ m=De+f-1),~(x+-1))
Jry=[—(@+p=1),1=f—m(a+p—1))
J=[l=f—ma+p—1),1-f—(m—1)(a+p-1))
Ji = [-B+n(a+p—1),0)
Jy=[0,00 —m(a+ B —1))
Jy=[-B+m—-1)(a+p—-1),-f+nla+p—-1))

(Roy.p, © 9)(x) = (9 © (R p) o) (%)

if e=-1
if e=+1

More precisely, let J; and J!, i =1,2,3 be the decomposition of J*P

and

Si=[—=(a+p),(1 =) = (n=1)(1 = (2+f)))

Jr=[-(1 =)+ (m+ 1)1 = (x+p)),1 = («+f))

if e=-—1

(5)
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Sy =[=(I=a) +m(l = (a+f)), =(1 —a) + (m+ 1)(1 — (« + f)))

if e=+I1
J{=10,(1 =) —n(l — (x+p))) (6)
Jy = [=(1 =)+ m(l = (2+ f)),0)

Ji=[(1=p) —n(l = (a+p)),(1 =) = (n = 1)(1 = (2 +)))-

Let us denote the substitution o, , » as (4) by

1 — sgl)sgll) = s(ll)sgl)
Oenm = § 2 — s<12>s522) = s(lz)sg2>
3— s<13>s§3) . .s§33>
where
m+n+(m+n-1) if e=-1

h=hL=2 and I =
PR ’ {(nl)+(ml)+(n+ml) if e=+1,
then there exist Jy, Jo and Js, which are given in (5) and (6), such that
(1) {J1,Rupli, Jo, Ry pJa, J3, Rypls, . RE WJ5, . RE ST} is a parti-
tion of I,p;
(II) Ri‘«,,i[fl']i c IS(,’), 1<k<lI;
(II) R} J; =J}.
This theorem says that the negative slope algorithm acts well on the family
of 3-interval exchange transformations given by Definition 3 as a multiplicative
Rauzy induction. Let us define

1 1 ~1
J = Pl ) © V) © Pl ) L)
and ¢, :J" — 1, 5 by
Pu(X) =00, g ) O 0 P (X)-

Then we know that sgnl, 5 of R, 5 is given by sgnl, g =eier... e
Therefore we have the following corollaries.

COROLLARY 3. The induced transformation (R, p),;m of Ry p into J® is
isomorphic to Ry, 3 under the isomorphism g, that is, the following relation
holds:

Ry, (94(X)) = 0((Rop) o () for xeJ®.

COROLLARY 4. Put

klljl’gl(} O (gy,n1,my) + ..0.(8/(7n/<vm/<)(3) = 851852.... (7)



Negative slope alg. & Rauzy ind. of 3-IET 461

Then we see that
R4 (0) e,
for all neN.

By Theorem 3, we have the following corollary.

COROLLARY 5. Suppose the sequence (S*(a,B));~, is purely periodic with
the period | > 1, that is, S'(a, f) = (a, f). Then we see that the sequence sys . ..
given by (7) is a fixed point of the substitution c*, that is,

*
o"(s182...) = 8152 ..
where a* is given by

* _
0 = Oe,ni,my) -+ Oer,m,my)-

4. The proof of the main theorem
In order to prove Theorem 3, we need the following lemma.

LemMmA 1. In the case when o+ f > 1, ie. e=—1, and o, < 1, we have

the following.
(1) The interval I =[—p,1+a) is decomposed into I;, i=1,2,3. We
see that 0 e Iy, o€ b, and |I}| = o, |L| = p, || =1 (see Figure 4).

—p 0 1-8 a1 1+a
= 1 ‘
I3 I, I

Fig. 4. The decomposition of / into [;, i=1,2 3.

(2-1) By using m = LW{IJ’ we can decompose the interval I| into m inter-
vals of length o+ p— 1 and the interval of length o — m(oa+ f — 1)
as in Figure 5, where the length of a O-marked interval is o+ f — 1
and the length of a -marked interval is o —m(a+ f —1).

1+a—m(a+p3-1)

1 1+a

C— | | Lo~ 1~

[ R N Ay AT A

\—/A(l—&-a—(a—s—ﬂ—l)
I,

Fig. 5. The decomposition of I; into O,[J-marked intervals.
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vals of length oc—i—i — 1 and the interval of length f—n(o+f—1)

as in Figure 6, where the length of a /A-marked interval is

p—n(a+p-1).

(2-2) By using n= |; +§ bJ, we can decompose the interval I, into n inter-

1-8+(a+p-1) =«

O~ L~ | A
O O TN
H(l—ﬁwﬂl(oﬁﬁ—l)

Fig. 6. The decomposition of I, into O, A-marked intervals.

(2-3) We can decompose the interval Iy =[—f,1—p) into (im+n—1)
intervals of length o+ ff — 1, the interval of length o — m(oa+ f — 1)
and the interval of length f—n(u+ f — 1) as marked intervals in

Figure 7.

I3
J(@.B)
5 N o
~ L L ] = | \
C O 1 O = 1=

el
—B+m-1(a+p-1) / N
—B+n(a+3-1)

Fig. 7. The decomposition of I3 into O,/ [J-marked intervals.

(2-4)  The interval J*P) =[—p+m—1)(a+p—1),a —m(a+p—1)) is
decomposed by (2-3) as (5). We show the figure of the decom-
positions of [—f, 1+ a) into the marked intervals O, /\ and [ (see

Figure 8).
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J(@:8)
-3 /—0\ 1— ! 1 1+a
rml"‘rml/\n—‘\r\l [ I S N B W NN ==Y I W I B W I W
]3 -[2 Il

Fig. 8. The decomposition of I into O,/,[J-marked intervals.

LemMA 2. Let R, be the interval exchange transformation given by
Definition 3 and assume that a+f > 1, i.e. e = —1. Let J;, J!,i=1,2,3 be the
intervals given by (5) where we know

|Ji|:|Ji/|a l:1a2a3

Moreover, for the sets Rfi ﬂ(Ji), we know the following fact:
(1) J] c 13
Ryp(i)=[a+n—1)(a+p—-1),1)c D
R: j(J1) = [-B+n(a+f—1),0)=J = J*H
(2) Jz c 13
R%p(.lz) = [1, 14+ o— m(cx—l—ﬂ - 1)) c
R} 4(2) = [0, —m(a+f— 1)) = J; = J*P)

(3) JS3ch
Rup(J3)=[1+a—ma+p—1),1+a—(m—1)(a+p—-1) ]
Rﬁ_ﬁ'(k): o—ma+p—1),0a—(m—1)(a+p—-1) =l

Rif‘[,;I(J3):[l+oc—(m—k+l)(oc+ﬁ—1),1+oc—(m—k)(oc+ﬂ—
1))C11
R (J3) o—(m—k+1)(a+p—1),a—(m—k)(a+p—-1)

Rz’” ' ):[lJra—(oHrﬁ—l) l+o)c ]
Rﬁ”ﬁ(h):[ Bra) = I

Rz";;‘( )= -1+a)ch

Rz”“’z( 3) =[w,a+(a+p—-1)ch

[f+U=D(e+p=1),-p+l(a+p-1)) c@

R2mﬂ+21 1(]):
) =le+{(—-D(e+B-1,a+lla+p—-1)ch

R2m+21(

RZn;;an 2(J) o+ n=2)a+p—-1),a+m—1)(a+p—-1)ch
Rfﬂéf)% W) =[-B+m—1)(a+p-1),~p+na+p—1)=Jjc
JDC
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Proor. From the definitoin of J; and I3, it is easy to see that
Ji=[-p+mn—D@+p-1),—(a+p-1)) = L.

Therefore, from the fact that J; — I, we know that R, 4(Ji) =Ji + (2 + f) =
[+ m—1)(x+p—1),1) = . So, we obtain the assertions of (1). The
other assertions of the lemma are obtained by analogous discussions.

We give a lemma which is an anologous of Lemma 1.

LEMMA 3. In the case when oo+ f < 1, ie. e=+1, and o, < 1, we have

the following.
(1) The interval I =[—f,1+a) is decomposed into I;, i=1,2,3 (see
Figure 9) and we see that 0 e Ly, ael;, and |I|| =0, |L| =/,
|| = 1 where the length of a O-marked interval is 1 — («+ ) in

Figure 9.
—p 0 a 1-0 1 1+«
- | L~ — \
13 IQ I
1—(a+p)
Fig. 9. The decomposition of I into [;, i =1,2,3.

(2-1) By using n = {#‘%J, we can decompose the interval I into (n— 1)
intervals of length 1 — (a+ f) and the interval of length 1 — f—
n(l — («+f)) as in Figure 10, where the length of a O-marked
interval is 1 — (a4 f) and the length of a A-marked interval is

1—B—n(1—(a+p)).

I
1 1+
N L~
=T O ! i ]
\
l+a—(n—1)1 - (a+p)) l+a—(1—-(a+p))

Fig. 10. The decomposition of [; into O, A-marked intervals.
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(2-2) By using m= {%J, we can decompose the interval I into
(m—1) intervals of length 1 — (a+ f§) and the interval of length
l—a—m(l—(a+p)) as in Figure 11, where the length of a O-
marked interval is 1 — (u + ) and the length of a [(J-marked interval

is 1 —oa—m(l = (x+p)).

1o
« /\1
[N N TR T N
| rl_ o | U/I‘—'}
1-p a+m(l—(a+p3))

=a+(1-(a+03)

Fig. 11. The decomposition of I, into O,[J-marked intervals.

(2-3)  We can decompose the interval Iy = [—f,1—p) into (n+n—1)
intervals of length 1 — (a+f), the interval of length 1—f—
n(l — (x4 f)) and the interval of length 1 —o —m(l — (a+ f)) as
marked intervals in Figure 12.

J(@.8)
-3 0 e 1-p4
[ N N R RN [y Ly Ly L~ )
CO T O I K//’_‘—'Iu I‘\ N\ < ]
—1-a)+m(l—(a+B)) 1-8)—n(l—-(ax+0))

Fig. 12. The decomposition of I into O, A,[J-marked intervals.

(2-4)"  The interval
TP = [(1 =) 4 m(1 — (a4 ). (1= §) — (= 1)(1 — (2 + §)

is decomposed by (2-3)" as (6). Finally, the figure of the decom-
position of [—f,1 4+ ) into the marked intervals O, A and [ is
Figure 13.
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J(c.B)
-3 ¢ a 1-p 1 1+a
NI NI B vt I Iy e R N
[ I N U) [ T THE=S T IR

~_ @ N I~

13 I2 Il

Fig. 13. The decomposition of I into O,/,[J-marked intervals.

LemMa 4. Let R, be the interval exchange transformation given by
Definition 3 and assume that o+ f§ < 1, i.e. e=+1. Let J;, J/,i=1,2,3 be the
intervals given by (6) where we know

|Jf|:|Ji/|a 1:15253

Then for the sets R(ka 5 (Ji), we know the following fact:

(1)

(2)

Jich

Ry p(J1)=[L,1+a—(n=1)(1—-a—p)) =1
R2,(J1)=[0,(1 =) —n(l —a—p)=J] < J&P
Jrch

Ry p(J2) = [+ m(l —o—p),1) = b

R2 4(J2) = [—(1 =) + m(1 — o= B),0) = J < =P

Ry p(J3) = [+ (m—1)(1 —a—f),a+m(l —a—p)) = b
R p(J3) = [B+(m=2)(1 —a =), =p+ (m=1)(1 o= p)) = Is

R (J3)
Ri’"*l(h =lo—(1—a—p),a) =

B
Rifé*z(Jg, =[l4+o-2(1—a—pf),1+a—(1—-a—p) =]

R%lrzl—l(h) =l—Il—-a—pa—(l-1(A—-a-p) ch
RGP =1t o— (14 D)1 —a— ), 1 +a—I(1—o—f) < ]y

Rgf;ﬁ"*‘*ug) =[l+oa—(m-D1-a-pf),1+a—(n=2)(1—a—p))
c
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R () =[(1 =) = n(l —a—f).(1 =) = (n = 1)(1 =2 = )

Now let us give the proof of Theorem 3. From Lemma 1 and Lemma 2,
we obtain that under the assumption a4+ f > 1, i.e. e = —1,

(Rap) g = DY
where the interval exchange transformation DV : J®f — j®F) is given by
DUV =J, DUV =J5, DUV =L
Let us define ¢, 4 : J®P R by

1

%,ﬁ(x) = m%

then the endpoints of the interval J;, i =1,2,3 of J®*# are given by
{(=p+n-D+p-1),~(2+f-1),1=f—mla+f—-1),
L=f—(m—-1)(+p-1)}
and they are mapped by ¢, 4 to
{=B1,1 =B, 1,1 +ou}

bijectively. Therefore, we know that

0,p(JOP) = (=P 1+ on] = Ly p,

with sgn I,, 5, = —1 and the induced transformation (R,p),., of R,p into
J®P is isomorphic to R, 4 under the isomorphism ¢, ;.

Analogously, from Lemma 3 and Lemma 4, we obtain that under the
assumption o+ f <1, ie. 6= +1,

(R, ) joupy = DUV
where the interval exchange transformation DtV : @A) — j.f) is given by
DUy =J!, DY) =J), DIV =4
where the endpoints of the intervals J;, i =1,2,3 of J*#) are given by

{—(1—0<)+(M+1)(1—(Of+/3))7—(1—0<)+M(1—(°<+/3)),}
L= (a+p),(1=p) = (n=1(1 = (x+5)) '
Let us define ¢, 4 J®h — R by

1
%,/3(3() = m?@
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then we see that the endpoints of the interval J; are mapped by ¢, ; to

{_ﬂ]al_ﬂ]7171+al}

bijectively. Therefore, we know that

g”oz,ﬂ(‘](%m) = [_ﬁlv 1+ OC1) = I“Ivﬂl

with sgn I, 5, = +1 and the induced transformation (R, p),.s of R, into

J*P is isomorphic to R, s under the isomorphism ¢, p
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