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§ 1. Introduction

P. Waltman [1] considered the following prey-predator system:

(1.1)

ds(ή ( s(t)\ 1 ms(t)
= ys(t) 1 - — - r —-—- x(t) = f(s9 x)dt ' W V K

dx{t) ( ms(t)

dt \s(t) + α,

s(0) = s0 > 0, x(O) = x0 > 0 ,

where x(t) denotes the population of the predator, s(t) the population of the
prey, m the maximum growth rate of the predator, D the death rate of the
predater, aγ the half-saturation constant of the predator, k the yield factor
of the predator feeding on the prey, γ the intrinsic rate of increase for the
prey and K the carrying capacity for the prey population. The parameters
m, aί9 k, D, γ and K are all positive constants.

In this model, the prey grows logistically in the absence of predation
and the predator consume prey according to a saturating functional response.
It is well known that the solutions of (1.1) are positive and bounded and
that the system (1.1) has three typical behaviors: (a) Dominance. When the
value of carrying capacity K of prey is less than λ (λ = a1D/(m — D)\ the
critical point {K, 0) of (1.1) is asymptotically stable, namely in this case as
t -> oo the prey grows to its limited value and predator becomes extinct,
(b) Coexistence. When λ < K < at + 2λ the critical point (A, x*) (x* =
kγ(a1 + λ)(K - λ)/(mK)) of (1.1) is asymptotically stable, (c) Periodicity.
When K > ax + 2λ system (1.1) has a stable periodic orbit in the first quadrant
of the s-x plane (see [3], [4]).

On the other hand, the basic interest of the present paper is in the study
of spatial and spatio-temporal patterns of the population densities when spatial
migration effect of the two species are introduced in the model. If linear
diffusions in space are assumed to represent spatial migration effects, the
model would be a system of reaction-diffusion equations. The behaviors of
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solutions of such systems have been the main subject of a number of re-
searchers, see [5], [6] and [7] in which the local bifurcation theoretic study
and singular perturbation techniques have been used as the main tools. Even
with such studies, it is still difficult to obtain a complete picture of global
parametric dependency of non-uniform stationary patterns.

In this paper, therefore we take another approach. Instead of considering
reaction-diffusion systems, we introduce a simple spatially discrete model with
nonlinear interactions corresponding to (1.1). Our system is the following
two-box prey-predator equation:

(1.2)

dt
Γ = d s ( s 2 -

1 = d x (x 2 -
dt

ds
- ^ = d s(S l - s 2 ) + / ( s 2 , x 2 )

dx,

dt
- x2) + g(s2, x2)

5 l ( 0 ) > 0 , 5 2 (0)>0, x 1 (0)>0, x 2 (0)>0,

where s, and xf (i = 1, 2) are respectively the population of the prey and the
predator in the box i (i = 1, 2), ds and dx respectively the magnitude of
diffusion of the prey and the predator. The terms ds(s1 — s2), dx(x1 — x2),
ds(s2 — 5X) and dx(x2 — xx) represent the migration effect between the 2 boxes
(see [8], [9], [10]).

Our goal is to obtain a complete global bifurcation diagram of all the
non-negative equilibria of the two-box system (1.2), in which parametric depen-
dency of the diagram is explicitly described. The organization of the paper
is as follows. As the preliminary, we first denote the result on (1.1) and
describe the local existence and direction of the asymmetric simple bifurcating
solutions in Section 2. Section 3 is devoted to the analytical investigation
of the global structure of simple bifurcating solutions. By the appropriate
change of variables the problem of finding equilibria of (1.2) is reduced to
solving a equation of rational expression with a real variable which will be
called the 0-equation. This equation enables us to obtain a rigorous global
structure of equilibria. In Section 4 we investigate numerically the stability
of asymmetric bifurcating solutions. A consequence of the numerical study
shows that the multiple asymmetric solutions, namely both the time periodic
solution and the asymmetric equilibria are stable in a wide range of
parameters.
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§2. Local existence of bifurcating solutions from the equilibrium

We begin by stating the preliminary results for the system (1.1). We

first note that the system (1.1) has three equilibrium points Po = (0,0), Px =

(X, 0) and P* = (s*, x*) where s* = λ and x* = kγ(λ + aγ)(K - λ)/(mK) with

A = a1D/(m — D). The equilibrium Po corresponding to absence of two spe-

cies persists to be a saddle point for all K > 0 and the equilibrium (X, 0)

corresponding to the existence only of the prey is stable node for K < λ and

is saddle for K > λ, so that there exists no bifurcating solutions from these

points. If K > λ, the equilibrium P* is in the interior of the first quadrant and

corresponds to co-existence of both species. The linearization of system (1.1)

about P* is

(2.1) U = M*>
at

where r = (r1? r2) and

- C

0

m λ

λ + ax\ K

The characteristic equation of M is

(2.2) ξ2 - Aξ + CB = 0 .

We easily see that the equilibrium P* is stable spiral for K < K* = 2λ + aγ

and unstable one for K > K*. It was already shown in [1] that K = K* is

a nondegenerate Hopf bifurcation point and the stable periodic solution

exists globally for all K > K*. Hereafter we restrict our attention to the

case of K > λ and discuss what kind of solutions bifurcate from the coexistent

equilibrium.

As is obviously seen, x* = (s*, x*, s*, x*) is an equilibrium point of the

two box system (1.2). We shall call it a symmetric equilibrium of (1.2) since

the population of each species distributes equally over two boxes. Now we

examine the linearized stability of equilibrium point. Let us denote J as the

Jacobian matrix of the right hand side of (1.2) around the symmetric solution

x*. We consider the eigenvalue problem.
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(2.3) Jx = ζx,

where x = (t l 5 yi912, y2). By introducing the independent variable y =

(t+, y+, t_, y_) with t ± = tx ± t 2 , y± = yi ± Y2 (2-3) is transformed into

M

0

0 \

MJ

t+

y+

t_

y-

t+

y+

t_

y-

Hence eigenvalues ζ of (2.3) are determined by the characteristic equations

of M and M. Since M is the linearized matrix of (1.1), we see that K = K*

is a Hopf bifurcation point for the system (1.2) and the X-family of periodic

solutions exist independently of dx and ds for K > K*.

The eigenvalues of M are denned by η± roots of

(2.4) η2 + Fη + E = 0 ,

where E = 2dx(2ds - A) + BC and F = 2dx + 2ds - A. Noting that K > K*

(resp. K ^ K*) is equivalent to A > 0 (resp. A g 0), we know that the real

dx

A/2

BC
2A

(0,0)

\
\ \

\

\
\

E < 0

F < 0

B<o

>0

\
\

\
/

/
^ N /

\ /

F < 0

/
/

/
/

/
/

/
/

/
/
f

E>0
F>0

X

ί
1
1
1

1
1
1
1

^.E=0

1
1
1
1
1
1
I

|F=0

A/2 ds

Fig. 2.1a (when A2 > BC) Fig. 2.1b (when A2 < BC)
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part of eigenvalues of M and M are all negative when K < X*. Namely

when K < K* the symmetric equilibrium x* is stable.

Hereafter we assume that K > K* and K is fixed. The signs of E and

F and the eigenvalues η± on the (ds, dx)-plane are shown in Figs. 2.1a 2.1b

and Figs. 2.2a 2.2b.

Let

If Γo Π Γx Φ φ, we put Γ, = {(ds, dx) G 7i |d x < d , d s > ds*} where (df, dx*) is a

point defined by ΓOjx = ΓoΠΓx = {(ds*, dx*)}. On the other hand, if Γ0ΠΓ1 =

φ, we put Γλ = /\.

We can easily see the following: Γo is a simple bifurcation line of the sym-

metric equilibrium. On the Γo one of the eigenvalues η is equal to zero and the

eigenvector corresponding to η = 0 has the antisymmetric form ι ( t l 5 y l 5 t 2 , y2) =
ι(ti>yi> — t l 9 — Yi), since t+ = 0 and y+ = 0 . Therefore every points of Γo

are symmetry-breaking bifurcation points. From the bifurcation theory we

can see easily that Γ± is a simple Hopf bifurcation line and Γo x is a double
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critical point if it is in the interior of the first quadrant. As the consequence,
we conclude the local existence of asymmetric equilibria.

PROPOSITION 2.1. Γ0Φ φ if and only if K > K*9 namely when K > K*,
Γo is the simple bifurcation line, from which the sheet of unstable asymmetric
equilibria bifurcate (see [6], Fig. 2.3 and Fig. 2.4).

By simple calculation we can show the direction of bifurcating solution,
that is shown by Theorem 3.1 in the next section. In the subsequent sections,
we shall focus on the global existence problem of this bifurcating asymmetric
solutions when dx and ds vary in R+.

§3. Global existence of bifurcating solutions

In this section we investigate analytically the global existence of asymmet-
ric equilibria which bifurcate from the symmetric ones in the parameter space
(ds, dx). It is not an easy task to solve the steady state equations of (1.2)
explicitly. The key of our analysis is to reduce the four coupled nonlinear
equations to a single equation of rational expression which is called the
0-equation. This reduction is done in the next subsection and we discuss,
in Section 3.2, the properties of the bifurcated branch of asymmetric equilibria
with respect to ds and dx by analyzing the ^-equation.

A/2

Fig. 2.3
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Fig. 2.4

3.1. Reduction of the steady state equations to ^-equation

Let us begin by showing our key lemma, which claims that finding any

equilibria of (1.2) is equivalent to solving an equation of rational expression

with a real variable.

Consider the steady state problem of the system (1.2):

(3.1)

Fί(su xί9 s2, ds) = d s(s2 - 5 t) + f(su xj = 0

G ^ , xu x2, dx) = dx(x2 - x x) + g(sί9 xt) = 0

F 2 (s l 5 s2, x 2, ds) = d s(sx - s2) + f(s2, x2) = 0

G 2 (xi, s2, x2, dx) = d x(x t - x2) + g(s2, x2) = 0 .

Since the second and the fourth equations of (3.1) are linear in x t and x 2,

we can rewrite them in the following form:

(3.2)

-D-cL

Let H denote the coefficient matrix of (3.2). The necessary and sufficient

condition for existence of nontrivial solutions x = ι ( x 1 ? x 2 ) of (3.2) is given

by det H = 0, namely,

(3.3)

where
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(3.4) h(s() - ί - - Z) (i = 1, 2).

Then x1 and x 2

 n a v e t 0 satisfy the relation:

(3.5) X a

Let us now introduce a new parameter θ e R in the form:

dτ 1 - r 1 dy 1 + r 1

(3.6)
h(S l) h(s2)

where 0 # 0. It turns out that θ = 0 corresponds to the case s1 = s2 = s*
and Xj = x 2

 = x*> namely the symmetric solution. From (3.6), s t and s2 are
expressed as the following form:

(3.7)

where

(3.8)

j = ax(aθ - D)/(βθ - C)

α = 2dx + D

β = m-D-2dx

C = m-D.

Moreover, from the relations Fλ = 0 = F2, xx and x2 are given by the functions
of sx and s2 as

(3.9)
•HM

= X , ( 5 l t 52) ^ - 52)

The above is expressed as functions of θ through (3.7) in the form:

(3.10)
ίxί=X1{s1(θ\s2(θ))

= X2(si(θ),s2(θ)).

Substituting (3.10) into (3.5), we obtain the equation of θ as follows:

(3.11) F(θ) = (θ-l)X2(s1(θ),s2(θ)) + (θ+l)X1(s1(θ),s2(θ)) = 0 (θ € R).

Therefore, we reduce the problem (3.1) to finding zeroes of F(θ) = 0. Con-
versely, it is easy to see that any zero of F(θ) gives a solution of (3.1) through
(3.7) and (3.10).
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The explicit form of F(θ) is given by:

(3.12) F(θ) = 2 ^ θ[θ 1 } {aθ* + bθ2 + £'}
^ {a2θ2-D2)(β2θ2-C2γX '

where

(3.13)
b = α 2 (CV - iββ'C) - β2D2<x' - j

' = 4-C2dsdxmD -

(3 14) l _
1 ' \β' = KC-a1D.

We shall call F(θ) = 0 the θ-equation.

PROPOSITION 3.1. The problem (3.1) is equivalent to finding 0 of the

θ-equation. Furthermore for any solution θ e R of F(θ) = 0, (sί9 xί9 s2, Xi)

given by (3.7)^(3.9) is a solution of (3.1).

Note that the function F(θ) includes the ecological parameters ds, dx and

K, but we don't denote explicitly such dependency here for the sake of

simplicity.

Let us now explain the geometric meaning of the solution θ of F(θ) = 0.

From F(θ) = 0, i.e., (θ - \)x2 + (0 + l)xx = 0, we have the following relation:

(3.15) 0 = ί^i,

which implies that x2 = 0 for θ = — 1, x2 = xx for 0 = 0, and xx = 0 for

0 = 1 . Hence, the absolute value of the parameter 0 may be interpreted as

the intensity of the asymmetry of solutions between the two boxes. We note

that solutions of (3.11) include non-negative solutions and negative solutions

as well, the latter of which has ecologically no meaning.

REMARK 3.1. Because F(θ) is an odd function of 0:

(3.16) F ( - 0 ) = - F ( 0 ) ,

and (3.7) indicates s1( — θ) = s2{θ) and s2( — θ) = s1(θ\ it suffices to consider

the problem (3.11) in the infinite interval 0 ^ 0 .



638 Bilal ILYAS

3.2 Properties of the sheet of bifurcating equilibria

In this subsection, we shall study the global structure of solutions of the

0-equation in the parameter space (ds, dx) e Ri , under the assumption that K

is fixed as K > K*. Hence, we write F(0, ds, dx) in place of F(θ).

DEFINITION 3.1. A function 0+ = 0+(ds, dx): R+ -> R is said to be a non-

negative solution of (3.11) if it satisfies (/) F{θ, ds, dx) = 0 and (ii) st (0, dx) ^ 0

for i = 1, 2, where st (0, dx) (i = 1, 2) are defined by (3.7).

Put θ1(dx) = D/(x and 0*(dx) = C/β. The expression (3.12) shows that

for each fixed dx and ds, 0 = 0x(dx) and 0 = 0*(dx) are the asymptotes

of F(0, ds, dx) = 0 lying in the positive half plane 0 > 0. Let 0+(dx) =

min {0i(dx), 0*(dx)}. Then we have 0*(dx) < 1.

A simple calculation shows that for fixed dx, s^θ, dx) is monotone de-

creasing function of 0 (where 0 φ C/β) and s2(0, dx) is monotone increasing

function of 0 (where 0 φ —C/β). By the following Proposition 3.2 we shall

know that the region of existence of non-negative solutions is 0 ^ 0*(dx). In

this region we have s2 ^ sx and sι ^ λ. Hence from (3.9) we have x1 g; 0

since K ^ K* = 2λ + aί9 and from (3.15) we have x2 = - ( 0 + l)xj(θ - 1) > 0.

Namely for each non-negative solution 0+ of (3.11), equation (3.10) with 0 = 0+

gives the non-negative xx and x2-

PROPOSITION 3.2 (The existence region of non-negative solutions). For

fixed ds and dx, the existence region of non-negative solutions of F(θ, ds, dx) = 0

is given by: 0 < 0+ ^ 0 * ^ ) .

PROOF. From (3.7), sx = 0 if and only if 0 ^ D/oc = θ ^ d j and 0 = C/β =

-0*(d x ) . And 52 = 0 if and only if 0 ^ -D/OL= -0χ(d x) and 0 < -C/β =

0*(dx). Hence when 0x(dx) ^ 0*(dx), sx(0, dx) and s2(θ, dx) are non-negative

in the region - f l ^ d j < 0 < 0χ(dx). When 0x(dx) > 0*(dx), s ^ ^ d j and

s2(0, dx) are non-negative in the region — 0*(dx) < 0 < 0*(dx). Namely when

^ d j , 0*(dx)} s^θ, dx) and s2(0,d x) are all non-negative.

PROPOSITION 3.3 (Uniqueness and monotonicity of asymmetric solutions).

(1) For (ds, dx) e R+ such that 0 < ds < A/2 - CB/(4dx), there exists uniquely

the non-negative solution 0+ = 0+(ds, dx) of (3.11) (for θ > 0). Also, 0+(ds, dx)

is a monotone decreasing function of d s for fixed dx.

(2) When ds > A/2 — CB/(4dx), non-negative solution does not exist.

PROOF. Consider (3.12) and put z(0) = α04 + b0 2 + E'. Then we see that

the roots of F(θ) = 0 except 0, 1 are zeroes of z(0). For ds = 0, the simple

symmetry-breaking bifurcation line E = 0 intersects with dx-axis at BC/2A =

(m - D)(K - λ)/2(K - 2/1 - aj (see Figs. 2.1a, 2.1b). Since K > K* we have
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BC/2A > (m - D)β. Furthermore for the minimum value BC/2A of the dx

on the line E = 0 we have BC/2A > (m - D)/2, so that β < 0 is satisfied for

all dx in the region E ^ 0 and a = oc2β2(Kβ - ax0L) < 0. This shows that z(0)

is convex with respect to 02.

When E' < 0 since z(0) < 0, z(ΘJ > 0 and z(θ^) < 0 (where 0 ^ =

max (θu 0*) and 0* = θ^(dx)\ there is a unique root of z(0) = 0 in the region

(0, 0J . When E' ;> 0, since z(0) ^ 0 and z ^ ) > 0, there is no root in the

region (0, 0^). In fact, if there is a root in (0, 0^), then there are 6 roots for

0 6 R since z(0) ^ 0, z ^ ) > 0 and z(0+sjc) < 0. This contradicts that z(0) is

the 4th order polynomial of 0 e R.

After a simple calculation, we obtain that E' > 0 (resp. E' < 0) is equiva-

lent to E > 0 (resp. E < 0). Since E < 0 (resp. E > 0) implies ds < A/2 -

CB/(4dx) (resp. d s > A/2 - CB/(4dJ), if ds < A/2 - CB/(4dx) then 0+ uniquely

exists and if ds > A/2 — CB/(4dx) then 0+ does not exist.

To prove the monotonicity of asymmetric solutions, we differentiate (3.12)

with respect to ds and 0. Then we see

and

respectively. Hence we have

<30+(dx,ds) dF IδF

dάs ddj dθ<0'

This completes the proof.

PROPOSITION 3.4. For each fixed dx

(3.17) lim 0+(dx, ds) = min {^(d,), 0(d x)} ,
ds-0

where θ(dx) is the solution of F(0, 0, dx) = 0 satisfying 0 > 0 and θ φ 1.

PROOF. From Proposition 3.3 and Definition 3.1, it follows for each

fixed dx that 0+(dx, ds) is a monotone decreasing function of ds and 0+(dx, ds)

is bounded by 0* from above. Hence, there exists the limit 0J of 0+(dx, ds)

as d s ->0. From Proposition 3.2 and the definition of 0x(dx) we have

(3.18) O^ί^dJ

We shall prove (3.17) by contradiction. Assume that
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(3.19) 0* ^ min {^d x ), <9(dx)} .

First we consider the case:

(3.20) Θ1(dx) = min{θι(dx)9θ(dx)}.

From (3.18), (3.19) we have 0J - 0x(dx) < 0. Since 0x(dx) is the positive root

of oc2θ2 - D2 = 0, from 0* - 0x(dx) < 0 we find that θ% is the root of

z(0, dx, 0) = 0 and α2(0?)2 - D2 Φ 0. In addition, substituting (3.13) and (3.14)

into (3.12) we can obtain the following form of z(0):

(3.21) z(0) = (α202 - D2)(β2(x'θ2 + L) - 4KdsdxmD(β2θ2 - C2)/γ ,

where L = C V - iββ'C. Taking the limit d s ->0 in (3.21), we see that θ%

must be a solution of β2oc'θ2 + L = 0, which is just Θ(dx). However this

never occurs because now the case 0!(d x )< Θ(dx) is considered.

Secondly, we consider the case Θ(dx) = min {0i(dx), Θ(dx)}. We show

that both 0ί < Θ(dx) and 0J > <9(dx) can not occur. First, assume that 0J <

6>(dx). Then the similar argument just above leads to a contradiction. When

0ί > <9(dx), for some nonzero ds = dSo > 0 the equation 0+(dx, dSo) = 6>(dx)

holds. Namely 0+(dx, dSo) must be a solution of z(0, dx, dSo) = 0. However

from 0+(dx, dSo) = <9(dx) and (3.21), we get that 0+(dx, dSo) must satisfy the

following equation:

(3.22) 4KdSodxmD(/?202 - C 2 )/y| β = M d χ , d s o ) = 0 .

For every ds > 0 the solution of (3.22) is 0 = 0*(dx) so that 0+(dx, dSo) = 0*(dx).

This contradicts the condition 0+(dx, ds) < 0*(dx).

From the above Propositions we have the following theorem:

THEOREM 3.1. The asymmetric bifurcating solutions that bifurcated from

the simple bifurcation line E = 0 continue to exist to the limit ds -• 0 for each

fixed dx in the region E_ = {(ds, dx) e R2 |0 < ds < A/2 - CB/(4dx)}. The pa-

rameter θ by which the asymmetric bifurcating solutions are expressed is mono-

tone decreasing about ds and when ds -*0 the limiting values are given by (3.17),

(see Fig. 3.1).

§4. Numerical study of global bifurcation diagram

In Section 3, we have obtained all the equilibria including non-negative

and even negative ones by solving the 0-equation and shown the global

existence of asymmetric solutions. The stability of the bifurcating solutions of

our two box model is, of course, an important question from the biological

view point. Unfortunately, the 0-equation tells us nothing about the stability,



Global existence of bifurcating solutions 641

d s '

/

Fig. 3.1

although the local bifurcation theory furnishes us local information on it. Our

question is now whether these unstable bifurcating asymmetric solutions re-

cover their stability when the magnitude of diffusions (ds, dx) vary in R+.

Since it is difficult to prove the global stability of asymmetric equilibria

for our equation (3.1), we investigate it numerically in the parameter space

( d s , d x ) e R i . We vary (ds, dx) in [0, A/2] x [0, 40] c R* in the form that

ds = A/2 — O.Olf and dx = 0.1/ with appropriate nonnegative integers i and

j . For each values of (ds, dx), we first find zeros of z(θ) (given by (3.21)) for

fixed ds and dx and get the asymmetric equilibria (s l 5 x 1 ? s2, x2) of (3.1) using

(3.7) and (3.9). Then we solve the linearized eigenvalue problem about every

asymmetric equilibrium by QR method. All the numerical computation is

carried for K = 1200, k = 0.1, m = loge 2, D = (loge 2)/2, y = 20 loge 2, ax =

100.

Now we describe the numerical results of the linearized eigenvalue prob-

lem about the asymmetric equilibria and the symmetric trivial ones of (1.2).

Fig. 4.1 shows the locations of the eigenvalues of this problem on the complex

plane. According to the distribution of four eigenvalues we see that there

exist the five regions (α)-(e).

region (a): The asymmetric solutions are stable, all eigenvalues have negative

real part.

region (b): Asymmetric solutions are unstable, two eigenvalues have positive

real part.
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dx
sheet of (symmetric) equilibrium

sheet of asymmetric

bifurcated solutions

Hopf bifurcation line J/ f ""
Γ θ 1 ^ H o p f bifurcation line

on the equilibrium

Fig. 4.1 where + represent the complex plane and x denotes the
locations of the eigenvalues on the complex plane.

region (c): Asymmetric solutions are unstable, four eigenvalues have positive

real part,

region (d): Asymmetric solution does not exist, the eigenvalues of symmetric

equilibrium has two positive real part,

region (e) Asymmetric solution does not exist, the eigenvalues of symmetric

equilibrium has four positive real part.

We give here a summary of the results. (1) These asymmetric equilibria

are unstable just after bifurcating from symmetric equilibrium. This is con-

firmed by the local bifurcation theories. (2) For dx » 1, when ds decreases,

Hopf bifurcation appears and the stability of asymmetric bifurcating solutions

changes, and stable asymmetric bifurcating solution appears. If we decrease

ds further, Hopf bifurcation appears again and the stable asymmetric bifurcated
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solution loses its stability and become unstable. (3) In region E ^ 0 there

exists a point d* dependent of K, ds and other parameters, such that the

asymmetric equilibria are all unstable for dx < d*.

A conclusion from Fig. 4.1 is that the bifurcating asymmetric solutions

recover its stability depending on the value of (ds, dx) e R+. In fact, they are

stable in the region (a) and unstable in the other region. An interesting ones

is that a numerical result suggests that in the region (a) the symmetric periodic

solution (which corresponding the Hopf bifurcation at the point K > K*) is

also stable. These two observations show that there is a multiple existence

of stable solutions in the system (1.2). Namely, both the periodic solution

and the asymmetric equilibria are stable in the region (α), (see [2]). In the

other region symmetric periodic solutions appear.

Mathematical structure of such multiple existence is a subject of further

studies.
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