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Introduction

Given a Riemann surface W, let V be the collection of open sets of W
whose relative boundary consists of a finite number of closed analytic curves.
For V e V principal operators Lov and (P)LΪV were introduced by L. Sario
(see [1]) and both share the property:

DvCLvf, Lvg)—\ fCdLvg)*.

In this paper normal operator with this property will be called distingu-
ished. We consider a system L={LV}V€V of distinguished normal operators
Lv defined with respect to V. The system L is said to be consistent if the
following condition is fulfilled:

for any V\Z> Vi and any continuous function/ on dV\.
Consider the Kerekjartό-Stoilow compactification W* of W and denote

the boundary by β(W)= W*— W. Partition β(W) into two disjoint sets a
and γ where a is non-empty closed. The purpose of this paper is to investig-
ate the following boundary value problems:

Suppose that the closure of Wo e V in W* contains a and that / is con-
tinuously differentiate in WQ and has DWo(f)< °° Then is there uniquely a
function Hf satisfying the following conditions?

(I) Hf is harmonic in W and has Dw(Hf)< oo,

(II) Hf = Lv(Hf) for any Ve V such that the intersection of β(ΐP) with
the closure of V is contained in r,

(III) lim Hf(z) = lim/(.2r) for almost all curves r where each r is a locally

rectifiable curve in W, starting from a point of W and tending to a.

Roughly speaking, a solution Hf is to have L-behavior on γ and assume
given boundary values / on α.

We know by M. Ohtsuka [7], [9] that for the system L0={L0V}V€V we
have the existence and uniqueness of Hf. We shall show that if the set a is
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relatively open and closed on β(W\ then for any system L we have the same
result as above. When a is not necessarily isolated, we shall study the ex-
istence and uniqueness oί Hf under some additional conditions (Theorems 3,
4,6).

The author wishes to express his deepest gratitude to Professor M.
Ohtsuka for his suggesting the problem and for his valuable comments. The
author wishes to express his sincere gratitude also to Professor M. Yoshida
for his guidance and kind encouragement in preparing this paper.

§1. Preliminaries

1.1 Notation and terminology
Given an open Riemann surface W, we denote by V the collection of open

sets V of W such that V and its exterior have the same nonempty relative
boundary which consists of a finite number of paiwise disjoint simple closed
analytic curves. For each VeV, we denote by dV and V the relative
boundary and the closure of V respectively. We orient dV positively with
respect to V. We assume that a function defined on a subset of W is always
real valued. Let V be in V and let u be a continuously differentiable function
in V. The integral

Dv(u)=\\ i(-Λ—) +(is— )\dxdy

is known as the Dirichlet integral of u over V. If u, v are continuously
differentiate in V and Dv(u\ Dv(v) are both finite, then we define the mixed
Dirichlet integral over V by

n / \ (*(* ί9u dv . du dv\-, ,
Dv(u9 v)=\\ (-7Γ— -^— + -=— - — )dxdy.

JJv\dx dx dy dyj J

We consider the Kerekjartό-Stoilow compactification JF* of W, in which
each ideal boundary component becomes a point. We denote by /?(W) the set
of all boundary components of W, i.e., β(W)= W*- W. For each VeV, the
set β(V) will mean the intersection of β(W) with the closure of V in W*. We
observe that the set β( V) is relatively open and closed on /?(W\ We say,
briefly, that a relatively open and closed subset of β{W) is isolated on β(W).

If a is a non-empty closed set on β( W\ then there exists a sequence of

Ωn e V such that Ωn+1^>Ωm \jΩn= W and \Jβ(Ωn) = β(W)-a. We shall call
n = \ n = l

such a sequence {Ωn} an approximation of W toward α. Let functions /, g
be defined and continuously differentiate in VocV with β(V0)^)a. If

lim \ f(dg)* exists for any approximation {Ωn} toward α, then we write

* = \vtt\\ f(dg)*. The value \ Kdg)* is independent of the choice
«>°o JdΩ ' Ja
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of approximation {Ωn}.
Let a be any subset of β( W) and let / be a function defined in a Vo e V

with β(Vo)^)a. Furthermore, suppose r is a curve in JF, starting from a
point of W and tending to a point in α, that is, r is a continuous mapping of
0 < ^ < l into JFsuch that limr(ί) exists in W* and is contained in a. Then

there exists t0 such that 0<^ί 0<l and the image of to<,t<l by r is included
in Vo. If lim/(r(ί)) exists, it will be denoted by /(r).

Given two non-empty subsets au a2 of β(W), we denote by Γai>a2 the
family of locally rectifiable curves in W connecting points in ot\ to points in a2.
Also we denote by Γaχ the family of locally rectifiable curves in W, each
starting from a point of W and tending to a point in aλ.

1.2 Normal operators
Let Ve V. The class of functions on dV having a continuously differenti-

able extension to a neighborhood of d V will be denoted by C\d V). Let L be
an operator such that it acts on Cι(dV) and that Lf is continuously differenti-
able on V and is harmonic in V. The operator L is called a normal operator
defined with respect to V, if it satisfies the following conditions:

(1) £ / = / on dV,

(2) £(ci/i + c2/2) = CιLfλ + c2Lf2,

(3) LI = 1,

(4) A/^° ί f /^°>

(5)

Normal operators are defined and investigated in Chapter III of L.
Ahlfors and L. Sario [1J. Conditions (2), (3) and (4) yield the validity of
maximum principle, that is, m<;f<^M on 9Γ implies τn<^Lf<^M on V.
Therefore, if fn converges uniformly to / on d F, then Lfn converges uniformly
to Lf on V. When we construct a harmonic function with prescribed boundary
behavior, we use the following existence theorem, as was used in L. Ahlfors
and Z. Sario \Ύ]:

Existence theorem. Let V e V such that W— V is compact and let L be
a normal operator defined with respect to V. Given a harmonic function s on
F, a necessary and sufficient condition that there exists a harmonic function p

in W which satisfies p — s = L(p — s) in V is that \ (ds)* = 0. The function p
Jβ{V) Γ

is uniquely determined up to an additive constant.

1.3 Extremal length
Let Γ be a family of locally rectifiable curves r in W. The extremal
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length λ(Γ) of Γ is defined as

c c c
where A(p) = \\ p2dxdγ, L(Γ, p) = inf \ p\dz\ and p\dz\ ranges over all
Borel measurable linear densities which are non-negative and for which
0<Λ(p)<oo.

We say that a statement concerning curves r e Γ is true for almost all
curves in Γ if the subfamily Γ' of Γ consisting of curves r for which the
statement is false has λ(Γ') = oo.

The following lemma will be used in the present paper, as was used effec-
tively by A. Marden and B. Rodin [5], [6].

Fuglede's lemma [ 4 ] . Let {pn\dz\} be a sequence of Lebesgue measurable

linear densities such that A(pn) tends to zero as n-+°°. Then there is a sub-

sequence {pnk \dz\} which satisfies lim \pn \dz\ = 0 for almost all locally rectifi-

able curves r in W.

We shall have occasions to use the following properties of extremal
length:

(El) If for any r e Γ there exists a r ' e Γ contained in r, then λ(Γ)^>

(E2) ,} < Σ 1

(E3) If Γn increases {i.e., Γn+ι^)Γnfor all n\ then \imλ(Γn) = λ(\JΓn).

(E4) Let f be a continuously differentiable function in Wwith Dw(f)< °°.
Then f(τ) exists and is finite for almost all τ e Γβ(Wy

(E5) Let VeV and f e C\dV). Denote by Hj the Dirichlet solution with
respect to V with the boundary values f on dV and 0 on β(V). Then Hf(τ) = 0
for almost all τ e Γβivy Conversely, a harmonic function F in V which satisfies
F=f on dV, DV(F)< oo and F(τ) = 0 for almost all τ 6 Γ/9(F) is equal to HJ.

As to all of these results except for (E3) we refer to M. Ohtsuka [7], [8J,
[9]. As to (E3), see N. Suita [11] or W. Ziemer [12].

LEMMA 1. Let f be a Dirichlet function^ on W. Then f is a Dirichlet
potential^ if and only if /(r) = 0 for almost all r 6 Γβ(Wy

PROOF. First, suppose that / is a Dirichlet potential. It follows from
Theorem 7.5 and Lemma 7.8 in C. Constantinescu and A. Cornea [3] that

1) For these notions, see C. Constantinescu and A. Cornea [3].
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there exists a sequence {fn} of continuously differentiate functions with
compact supports such that limDw(fn— / ) = 0 and limfn(z)=f(z) for any

z 6 W— A where A is a polar set in W. We see that the subfamily Γ\ of
Γβiw) which consists of curves r e Γβ{W) starting from points of A has Λ(A)
= co and that there is a subfamily Γ2 of Γβ(W) such that the functions /„, /
are absolutely continuous on r for all r 6 Γβ(W)—Γ2 and all rc (see B. Fuglede
[4]). We write Γ%cw) = ΓβCm—Γ1 — Γ2. Applying Fuglede's lemma with
{pnI dzI} = {Igrad (/*—/)ί I dz|}, we find a subsequence {pnfc\dz\} such that

lim \ I grad (fHk —/) | | dz | = 0 for almost all r e Γ | ( w 0 . It follows from fn(τ)=0

and Hm/Bt(r(0))-/(r(0)) that 0 - lim ^ | grad (/,t - / ) | | ώ | ^ Um

- df\ ^ l im I {/Λfc(Γ)-/Kt(r(0))} - {/(r)-/(r(0))}| = |/(r)| for almost all r e

Observing λ(Γβ(wy—Γ^cvr))= oo, we have thus/(r) = 0 for almost all r e Γ
To prove the converse, suppose that a Dirichlet function / has /(r)=0

for almost all r e Γ ^ ) . We consider the Royden decomposition (see [3]) of
/ : f=u-\-f0 where u is harmonic in W with Dw(u)< oo and / 0 is a Dirichlet
potential. Since/0(r) = 0 for almost all r e Γβ(W), our assumption implies that
M(Γ) = 0 for almost all τe Γβ(Wy It follows from Corollary 1 in M. Ohtsuka

that u = 0 in ίF. Therefore,/ is equal to the Dirichlet potential/0.

§2. Distinguished normal operators

2.1 Definition
Definition. A normal operator L defined with respect to V is said to be

distinguished, if it satisfies the following additional condition:

(6) Dv(Lf )<oo and J ^ (Lf)(dLg)* = 0 for all f,geC\dV).

Let L be a normal operator defined with respect to V and let /, # € C\d V).
Now, take any approximation {Ωn} toward β(V) such that ΩiZ>dV and V^)dΩι.
Since Lf=f on 9F, using Green's formula, we obtain

ZV^(£/, £*)= ( o (LfXdLg)* + \ f(dLg)*.
JσΩn JσV

Hence lim \ (Lf)(dLg)* exists and is equal to Dv(Lf, Lg)—\ f(dLg)*,

namely, ί (LfXdLg)* = Dv(Lf, Lg)-\ f(dLg)*. It follows that the nor-
J β(V) JdV

mal operator L is distinguished if and only if

for all/, geC\dV).
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Principal operators Lov and (P)L1V defined in Chapter III of L. Ahlfors and L.
Sario [V\ are typical examples of distinguished normal operators defined with
respect to V. Other examples will be given in 2.3. We shall give a normal
operator which is not distinguished:

Let W be an open Riemann surface and take a V e V — V( W) which is not
relatively compact. Assume that a distinguished normal operator L defined
with respect to V is given. Choose a relatively compact regular region Ω in
JFsuch that Ω^)dV. We consider Ω as a given open Riemann surface. Ob-
viously, Ωr\Ve V(Ω\ which we denote by V. Then C\dV) = C\dV). We
let L'f be the restricted function to V of Lf for each fa C\dV'\ The oper-
ator V :f e C\d Vf) -• L'f is a normal operator defined with respect to V but
not distinguished.

REMARK. In general, the operator Hv :f a Cι(βV)->HJ does not satisfy
conditions (3), (5) in 1.2 and hence Hv is not normal. However, it has the
following property:

( HJ(dF)* = 0

where F is any harmonic function in V with Dv(F)<oo. In particular, the
operator HJ satisfies condition (6) in 2.1. It is clear that if /J>0, f e C\dV\
then Lf^HJ for any normal operator L defined with respect to V.

The characterizations of Lov and (P)LΪV in K. Oikawa [10], together with
the above property of Hv, imply the following lemma:

LEMMA 2. Let Ve V. Assume that a distinguished normal operator Lv

defined with respect to V satisfies the additional condition that, for any

f e C\dV\ \ (dLvf)* = 0 for every dividing cycle β of W which are contained
j β

in V and does not separate components of d V. For any f e Cι(β V), we set uλ =
HJ, u2 = (I)Lιvf, u3 = (Q)Llvf, uA = Lvf and u5 = L0Vf. Then Dv(ui-Uj) =

any l<^'</<^5.

PROOF. If i<j, we see that \ ιii(duj)* = 0. It follows that Dv(ui, uj)
Jβ{V)

uidujY = \ f{dUjγ = \ Ujiduj)* = Dv(uj) and that 0 <

2.2 Consistent system of distinguished normal operators

Definition. For each V a V, let a distinguished normal operator Lv de-
fined with respect to Vbe given. The system L—{Lv}Vev is said to be con-
sistent, if for any V\ and V2 such that Vx D V2
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(**) LV2(LvJ) = LvJ

in fyfor

It is a consequence of the definition that \ (dLvf)* = 0 for every divid-
ing cycle of W which is contained in V and does not separate components of
dV. Hence, in general, the system {(I)LίV}v€υ cannot be consistent. The
systems Lo—{Lov}v€v and Lx — {{Q)LιV}Vev are typical examples of consistent
systems. The following fact is well known (for example, see L. Ahlfors and
L. SarioDL], IV, ID):

// W is of class OKD( — OHID), then L0V = (Q)LιV for any V e V. Conversely',
W e OKD:) if Lov = (Q)Llv for some V e V such that W— V is compact.

It follows from Lemma 1 that a surface W is of class OKD if and only if
all the L coincide.

2.3 Examples of consistent systems
Example 1. Let W be an open Riemann surface. Partition the ideal

boundary /?(W) into two disjoint closed subsets γ0 and γλ. That is, γ0 and γλ

are isolated sets on /?(W) and β( W) = ro^Jϊι For each / e C\d F), there exists
a unique function L^o>7if( = Lvf) which is continuously differentiate on F, is
harmonic in V and satisfies the following conditions:

(i) Lvf=f on dV,
(ϋ) Lvf=Lov(Lvf) for any V e V such that VQ V and β(V') = ror\β(V),
(in) Lvf=(Q)L1V'(Lvf) for any V e V such that V'CV and /9(Γ) =

The operator Lγ°'Ύι is a distinguished normal operator defined with res-
pect to Γand the the system {Lftt7ι}V€υ is consistent. If γo = φ (resp. ri = ΦX
then the system {Ly°'Ύl}V€v is equal to Lx (resp.Z0)

Example 2. Let W be an open Riemann surface. Partition /?( W) into two
disjoint sets γ0 and TΊ where γι is closed. Choose a sequence of isolated sets

r(!w) on β{ W) such that f»^r<?+» and Λ r ? } = Γi Write rc

o

n}=(3( W)-γ{n') and
n=l

Lc

v

nΊ = L^'7^ (see Example 1). For each / e C\dV\ we have

for m>n. Since Dv(L^f)<;Dv(Hv

f)<oo for all n, tipf tends to a continu-
ously differentiate function on V which is harmonic in V. We denote the
limit function by Lyo>7lf. The operator Lyΰ>Ύι is a distinguished normal oper-
ator defined with respect to Γand the system {Lp'Ύi}V€Ό is consistent. This
is a generalization of Example 1.

Example 3. Suppose that W is the interior of a compact bordered Rie-
mann surface W. Divide the border 9JFinto two disjoint sets Eo and Ex in
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such a way that, for each contour C on dW, Eor\C (resp. EιΓ\C) consists of a
finite number of open (resp. closed) subarcs on C. (E0Γ\C or Eλr\C may be
empty.) For VeV, we denote by V the closure of V in W. For each
/ e C\dV), there exists a unique function LE-o>Eif( = Lvf) on V which is con-
tinuously differentiate on V and harmonic in V and satisfies the following
conditions:

(i) Lvf=f on 9Γ,

(ii) the normal derivative of Lvf vanishes on E0Γ\ V,

(iii) for each connected component c of JEίΛ F, the function Lvf is con-

stant on c and has \ (dLvf)* = 0.
J c

Then L$°'Ei is distinguished and {L^0>Eι}V€υ is consistent.

Example 4. Let an open Riemann surface W be a rectangle with vertical
sides J , ^ and horizontal sides B, B\ Identify A, B with A\ Br respectively
so that the resulting manifold becomes a compact Riemann surface S of genus
1. For e a c h / e C\dV\ consider the Dirichlet solution Hf~cw~v) with respect
to the relatively compact open set S—(W— V) in 5. We denote by Lvf the
restriction to V of the function Hf~cw~v\ Then the system {Lv}vev is a con-
sistent system of distinguished normal operators.

2.4 L-behavior
Let L= {LV}V€V be a consistent system and let γ be a relatively open set

on /?(W). Assume that a function u is defined in the intersection of W with
a neighborhood i?* of r in HF*.

Definition. We say that the function u has L-behavior on 7% if there exists
a neighborhood i?^ of r such that Ω^QΩ^ and Lvu = u for all Γ e t 7 which
satisfy β(V)Cγ and VCΩ$r\ W.

Conditions (2), (3) in 1.2 imply that if u has L-behavior on γ, then ci
has also L-behavior on γ for any real numbers cx and c2. It is clear from the
maximum principle that a harmonic function in W has L-behavior on /?(JF)
if and only if it is a constant.

It is known that the system {Hv}Vev has the consistency (**) in 2.2.
Therefore we can define {Hv}Vev-behsivior in the same way as above. We
shall call this simply 0-behavior.

LEMMA 3. Let Vo e V and let ube a harmonic function on Vo. Then u has
L-behavior on β(V0) if and only if u = LVlu in Vι for some Vie V such that
ViC Vo and β(Vι)=β(V0). Moreover, in this case, U = LVQU on Vo.

PROOF. Suppose that u has L-behavior on β(V0). It follows from the
definition of L-behavior that there exists a Vλ e V such that FiC Po, #(Fi) =
β(V0) and u = LVlu in Vx.

To prove the converse, suppose that there exists a Vλ e V with the above
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property. We observe by (**) in 2.2 that U — LVOU = LVI(U — LVQU) on Vx. It
follows from the maximum principle for Lv that max(w — Lv u)(z) =

(u — Lv u)(z) and mm(u — Lv u)(z) = mΐ(u — Lv u)(z\ On the other hand,
d v

x x _ x

β(Vι)=β(Vo) implies that Vo— V\ is compact. If u — LVςu is positive at some
point in Vo, the maximum is taken at some point on dVΊ. Hence u — LvQu is
constantly equal to a positive value. This is impossible because U — LVQU = 0

on dV0. Consequently u — LVQU<,0 in Vo. Similarly, we see that u — LVQU^>0

in Fo. Therefore u — LV{u in Vo. For each Ve V such that VC Vo, we obtain
by (**) Lvu = LV(LVQU)=:Lvou = u in V. Hence the function u has L-behavior
on/?(F0).

LEMMA 4. Let a he a closed set on β( W) and let Ve V be such that
or V— W. Let {Ωn} he an approximation of W toward a. We write ΩnΓ\V
= Kn> Suppose that un is a harmonic function in Vn which has L-behavior on
β( Vn). Furthermore suppose that un converges to u uniformly on any compact
set in V. Then the function u in V has L-hehavior on β(V) — a.

PROOF. Let V be any set in V such that β(V')Cβ(V)-a and V'CV.
For sufficiently large n, the set V' is contained in Vn. Since the function un

has L-behavior on β(Vn)(^)β(Vr% we have un = Lv,un on Vf, Observing that
Lv,un converges to Lv,u uniformly on V\ we obtain, by letting n->ooyu = Lv,u
on Vf. Consequently the function u has L-behavior on β(V) — a.

§3. L-harmonic measures, L-Green functions and L-null sets

3.1 L-harmonic measures
Let L= {Lv}vev be a consistent system and a set a be a closed subset of

β(W). Let VeV be such that β{V)~^a. We shall define the Z-harmonic
measure of a with respect to V. Let w be the function on V which is equal
to 0 on d V and 1 in V. Let {Ωn} be an approximation of W toward a such

that ΩλZ)dV and dΩγC V. We set Ωnr\ V= Vn and dΩn = an. Then \JVn=V
n = l

and dVn — dΩn\JdV. It follows from the maximum principle for LVn that the
function Lγnw decreases. Hence the limit function

ωL(z; α, V) = \\mLvnw(z)

exists and is harmonic in V. It is independent of the choice of approxima-
tion {Ωn}. It is clear that 0<ωL(z; a9 F ) < 1 . We see by Lemma 4 that
ωL(z; α, V) has L-behavior on β(V) — a. We say that ωL(z; α, V) (=ωL(a9 V))
is the L-harmonic measure of a with respect to V.

LEMMA 5. \\mDγn(LVnw—ωL{a,
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Proof. If m>n, LVmw = Lvn(Lvmw) in Vn. It follows from (*) in 2.1 that

Γ Γ
m n n n J an\jdV m J an

 m

dition (5) in 1.2 implies that 0 = { (dLv (Lv w))* = - ( (dLv (Lv wj)*
)β(Vn)

 n m Jan\jdV n m

(dLv w)* and 0 = \ (dLv w)* = — \ (dLv w)*, this is,
an\jdV

(dLγ w)*= \ (dLv w)*. Consequently DVn(LVnw, Lγ w)=\ (dLv w)* =
an m Jam m n U m Jam

 m

w(dLv w)* = Dγ (Lv w\ We have thus 0^Dv (Lv w — Lv w) = Dv (Lv w)
^ T Γ Til lϊl Tϊt 71 71 Ht 71 71

— Dγ (Lv w\ Hence Dv (Lv w) decreases and lim IV (Lv w) exists and is

finite. Given ε>0, choose n such that DVn(LVnw — Lvmw)<e for all m>n. By
Fatou's lemma we obtain DVn(LVmw — wL(a, V)))^limDVn(LVnw — LVmw)<,ε

OT->oo

proving limDγn(LVnw—ωL(a,V)) = 0.

3.2. L-Green functions
Let VeV. Then the L-Green function of V with pole at ζ e V is defined

as the harmonic function in V— {ζ} with singularity — log | z — ζ \ at ζ, which
vanishes continuously on the relative boundary dV of V and has L-behavior
on β(V). Its uniqueness is evident. Its existence is proved by the same way
as in L. Ahlfors and L. Sario [1], III, 4C. We denote it by gL(z; ζ, dV). It
is clear that gL(z; C, dV)>0 in the component of V which contains ζ.

Let a be a closed set on β( W). We shall define the L-Green function of
W with respect to α. Let {Ωn} be an approximation of W toward a such
that Ωι 9 ζ. We see by the maximum principle for LΩn that gL(z C, dΩn) in-
creases with n. Therefore

gL(z;ζ9 a) = lim gL(z;ζ,dΩH)

is either identically equal to + °o or finite and positive for all zφζ. In the
second case we say that the L-Green function of W with pole at ζ with respect
to a exists. The above definition does not depend on the choice of approxi-
mation {Ωn}. If it exists, it is clear that gL(z C, oc) is harmonic in W— {C}
with singularity —log | z — ζ | at ζ and has L-behavior on β( W) — a. Moreover,

for any VeV with β(V)Z)cc, we have \ (dgL(z; C, α))*= -2τr.

LEMMA 6. // ίfeβ L-Green function gι(z\ ζ, α) exists, then lim DΩn(gL
n—>°°

(z; ζ, dΩn)— gL(z; ζ, α)) = 0. /^ particular, DW-j(gL(z; C5 α))<oo w^ere z/ is
α̂ 2/ neighborhood of ζ.

PROOF. We write gL(z; ζ, dΩn)= gn and ^ ( z ; C, ά)= g. Let z/0 be a disk
with center at ζ. For ττι^^, we have DΏn(gm-gn)^DΩm^Ao(gm)-2D£2n^Q(gm gn)
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a j n

-ΔQ(gn) + DjQ(gm - gn) = \ gnίdgm)*-2 \ gn(dgm)* +

Ί — gn){d(gm— gn))*. Since gn converges to g unif ormly on a neighbor-

hood of dJo, we obtain

dJ 8"(dg)*-]3/l g(dgn)*'

It follows that \\mDΩn(g— gn) = 0.

3.3 L-null sets
Definition. A closed set a on β( W) is said to be an L-null set, if there

is a Ve V such that β(V)^a and the L-harmonic measure ωL(a, V) vanishes.
If the closed set a is Lλ (resp. L0)-null, then a is called "schwach" (resp.

"halbschwach") in C. Constantinescu [2].
PROPOSITION 1. Every L-null set is an L-null set. Every L-null set is an

Lo-null set.

PROOF. Suppose that a is an Li-null set. Choose V e V such that
β(V)^)a and ωLl(a, V)=0. Let w and Vn be the same as in 3.1. Lemma 2
implies that

DVn((Q)L1Vnw) = Dv£Lv

Letting n -* oo? we obtain by Lemma 5

v(ωLι{a, V)-ωL(a, V)).

It follows from ωLl(a, V) = 0 that ωL(a, F)=0. Hence every Li-null set is
L-null.

Similarly, we see that every L-null set is L0-null.

The next proposition follows from Theorem III in 3.1 of A. Marden and
B. Rodin [ 5 ] :

PROPOSITION 2. A closed set a is L0-null if and only if Λ(/V)—°° where
Γa is the family of curves in W defined in 1.1.

THEOREM 1. Let a he a closed set on β( W). The following four conditions
are equivalent:

(NT) The set a is an L-null set, that is, for some V with β(V)~^a, ωL(a, V)
vanishes

(iV2) For some Ve V with β(V)^)a, any bounded harmonic function u on
V which has L-behavior on β(V) — a is equal to Lvu on V. That is, u has L-
behavior on β(V);

(NS) For some V e V with β(V)^)a, any harmonic function u on V which
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has Dv(u)< oo and L-behavior on β(V) — a is equal to Lvu on V\
(JV4) For some ζ e W, the L-Green function gL(z; C, αθ does not exist

PROOF. (N1)-*(N2). Assume that a is an L-null set. Namely, we can
find a VtV such that β(V)^a and ωL(a9 V) = 0 on V. Let {Vn} be as in
3.1. Let u be any bounded harmonic function on V which has L-behavior on
β(V)-a. We write M= sup| u(z)|. Then

zCV

Lγu — 2Mw <^u^Lvu + 2Mw

on dVn. Operating LVn to this inequality, we have

LVn(Lvu - 2Mw) <,Lvnu<, LvJJLγu + 2Mw)

in Vn. Since u has L-behavior on β(V) — a, LVnu = u in Vn. This, together
with (**) in 2.2, implies that

— 2MLγnw ^u^Lγu-\- 2MLγnw

in Vn. Letting n -* oo, we have

Lvu-2MωL(a, V)<Lu<,Lvu-\-2MωL(a, V)

in V. It follows from ωL(a, V)=0 that Lvu = u in V.

(N2)->(N1). The harmonic measure ωL{a, V) is a bounded harmonic
function on V which is 0 on dV and has L-behavior on β(V)—a. Hence under
hypothesis (N2) we have ωL(a9 V)=LvωL(a, F) = Lv0 = 0.

(Nl) -• (N3). Let V e V satisfy the condition in (Nl). In order to prove
that the set V also satisfies the condition in (N3), it is sufficient to show that
a harmonic function u on V such that Dv(u)<°o, u = 0 on dV and u has L-
behavior on β(V) — a reduces to zero. To this end we begin with showing
that the function u is decomposed as u = u+-\-u~ in F, where u+, u~ = 0 on
dF, u+, —u~^>0 on V. Dv(u+), Dv(u~)<oo and u+, u~ have L-behavior on

Let {Ωn} be an approximation of W toward a such that Ωλ^)dV and
V^)dΩι. Write dΩn — an and i2wn F = Fw. Consider the functions iFTCmax(u, 0)
and Lvnmin(u, 0) in Vn, which we denote by u^ and u~ respectively. Since u
has L-behavior on β(V)—a, u = LVnu = u^-hu~ in Vn. Obviously, u+, u~ = 0 on
9F", u^, — u~^0 on P and u+, ι̂ ^ have L-behavior on β(VH). Furthermore,
DVn(u+\ DVn(u-)<DVn(u)<Dv(u)<oo. In fact, we obtain by (*) in 2.1 that

DVn(uΐ)= [ max(u,0)(duϊ)*=[ <duΐ)*. Since (duΐ)*=(βuϊ/dn)ds<β

on anίλ{u<0}, we have DVn(u+

n)<\ u{du+)* = [ LVnu(du^=DVn(LVnu, u+

n)
Jan JdVn

= DVn{u, u+). Consequently DVn(u+)^ DVn(u). Similarly, we have DVn{u~)<;
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It follows that {u%(z\ u~(z)} is bounded on any compact subset of V
where n is so large that Vn contains the compact set. Hence we can choose a
subsequence {nk} such that u*k and u~k converge uniformly on any compact
subset of V. We write u+ = \imu+u and ^ " ^ l i m i ^ . It is easy to see that

u = u+ + u~ on P, u+, u~ = 0 on dV, u+, —u~^>0 on V and u+, u~ have L-
behavior on β(V)—a. Moreover, by Fatou's lemma, we obtain Dv(u+)<i
}im_Dv(u+k)<Dv(u)<oo. Similarly, we obtain Dv(u~)<Dv(u)<oo. Hence

we have a required decomposition of u.
Since ωL(a, F) = 0, we see by Lemma 5 and (*) in 2.1 that 0 =

n n n n n \ w(dLVnu
+)*

= lim\ (dLv u+)*= — lim\ (dLv u
+)* = —\ (du+)*. On the other hand,

) n JdV n JdV
\ (

n _ JdV

because u+ = 0 on dV and u+^>0 on V, we have (du+)*=(du+/dn)ds<,0 on dV.
Hence (du+)* = 0 on dV. It follows that u+ = 0 on V. Similarly, we have
M" = 0on V. Consequently ii = ii+ + iί" = 0oπ V.

(N3)->(N1). Since the harmonic measure ωL(a9 V) satisfies the condi-
tion in (N3), we have ωL(a9 V)=LvωL(a, V)=0.

(N1)->(N4). Assume that the closed set a is JL-null. That is, there
exists a Ve. V such that β(V)Z)ct and (ύL(V, ά)=0 on V. Now, suppose that
for some ζ G W, the L-Green function gL(z ζ, a) exists. Choose V G V such
that V C V, V'$ζ and β(Vf)=β(V). Then it follows that Q = ωL(a9 V)^ωL(a, V)
^ 0 . Lemma 6 shows Dv,(gL(z\ ζ, α))<oo. Hence property (N3) implies
gι(z\ C, <x)=LvgL(z', C, <x). We obtain by (5) in 1.2 a contradiction as follows:

0 = ^v^dLvgL(z; C, a)) = I (dgL(z; C, α))*= -2ττ.

Consequently if α is an L-null set, then the L-Green function gL(z C, α)
does not exist for any ζ£ W.

(N4) -> (Nl). Assume that the closed set a is not an JL-null set. That
is ωL(a, V) does not vanish for any Ve V such that β(V)Z)a. Let ζ be any
point in W. Take a VeV such that V^ζ and β{y)^α. Then we observe

that c = ( (dωL(α, V))* = - [ (dωL(α, V))* φ 0. Choose aV'eV such that

Ϋr\V' = φ9 V'$ζ and β(V) = β(W)~β(V). Let Δ be an open disk with center
at ζ which is contained in W- V\J Ϋ'. We take W- {Q as W and V\j V'\JΔ
— {C} as V in the existence theorem in 1.2 and we define L by LVKJV, in F\7 V
and ^ J in J-{C} We apply the theorem with s = - l o g | * - C l in Δ-{ζ},
s= —2πc~1ωL(α, V) and 5 = 0 in F. This function 5 has the total flux 0.
Hence there exists a harmonic function p in W— {ζ} such that p — s = L(p — s)
in VvjV'\jJ-{ζ}. Namely,
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/>=-log|s-Cl+ff/-s in Δ-{ζ},

p = - — ωL(a, V) + Lvp in V,

p = ZF//> in F.

It follows that the function p is a harmonic function in W— {ζ} with
singularity — log|z —Cl at C such that p has L-behavior on β{W) — a and is
bounded from below. Therefore the function pΛ-a is positive in W—{ζ} for
sufficiently large positive number a and has the above properties. We see
by the maximum principle that /? + α^> gik.z\ ζ, Ωn) and hence that the L-Green
function gL(z C, ex) with pole at C exists.

Consequently if the L-Green function gL(z ζ, α) of ΪΓ with respect to α
does not exist for some ζ e JF, then the closed set a is L-null.

REMARK. From the the above proof we infer that the four conditions
which are obtained by replacing some by any in (N1)~(N4) are also equiva-
lent to (Nl).

THEOREM 2. // a closed set a is an L-null set, then there is no non-constant
harmonic function u in W such that Dw(u)<oa and u has L-behavior on β(W)
— a.

PROOF. Suppose a is an L-null set. Let u be a harmonic function in W
such that Dw(u)< oo and u has L-behavior on β( W) — a. Then it follows from
(N3) that u has L-behavior on β( W). Hence u must be a constant.

This theorem includes the relation 0 G C0#D as a special case.

§4. Boundary value problems

4.1 The statement of problems
Let JFbe an open Riemann surface and let L={Lv}vev be a consistent

system of distinguished normal operators. Assume that a is a non-empty
closed set on β( W) and write γ = β(W) — ex. That is, γ is a relatively open set
on β(W) and β(W) = a\Jγ (disjoint union). We fix L and a once for all.

Suppose that a function / defined near a satisfies the following condition
(A):

(A) There is a Wo e V with β( Wo)^)a such that/ is continuously differ-
entiable in Wo and has DWo(f)< °°.

For such a function /, we investigate the existence and uniqueness of a
function Hf which satisfies the following conditions:

(I) Hf is harmonic in W and has L
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(II) Hf has Z-behavior on γ,
(III) Hf(v)=f(τ) for almost all r e Γa, where Γa is the family of curves

defined in 1.1.

By Theorem 2 we must confine ourselves to the case where the closed set
a is not X-null.

Condition (III) means that the function Hf assumes / on a in a certain
sense. We find in M. Ohtsuka Q£Q that if a boundary component in a is re-
alized as an analytic curve C in the plane and a boundary value function /
can be continuously extended to C, then condition (III) induces that Hf is con-
tinuously extended to C and is equal to / on C.

4.2 Existence theorem
We see by the next example that the problem does not in general have a

solution.
Let an open Riemann surface W be a circular slit disk

{z: \z\<l}-\J{z: |;Γ| = 1-1/Λ, O^argz^π}. Let a closed set a on β(W)
» = 1

be the buondary component of W corresponding to {z: | * | =1}. We take the
system Li for L and take / for a continuously differentiate function on
{z: | * |<3/2} which is 0 on {z: 1*1=1, — π/4 <ί arg * <I π/4} and is 1 on
{z: | * | = 1, 37r/4<Iarg*<^5π/4}. Then there is no function Hf with pro-
perties (I), (II), (III). In fact, if such a function Hf exists, properties (I), (III)
induce Hf = 0 on {z: | * | = 1 , — 7r/4< arg*<0} and Hf = l on {*: | * | = 1 , τr<
arg*<57r/4}. On the other hand, we obtain by (II) that the function Hf is
constant on each slit {*: | * | = 1 —1/τι, 0<,argz<,π}. We can see that the
Dirichlet integral of Hf over the intersection of W with any neighborhood of
* = 1 or * = — 1 in the plane is infinite. This is a contradiction to property
(I).

We shall give two sufficient conditions for the existence of Hf. The one
is obtained by imposing the following stronger condition (B) on a boundary
value function/:

(B) There is a JF0 e V with β( WQ)Z)a such that
(Bi) / is continuously differentiate in WQ and has DW(s(f)< °°?

(B2) for any VeV such that VQ Wo and β{V)Cϊ, the equality

f(dLvg)* = 0 holds for all gt C\dV).

THEOREM 3. Suppose that the closed set a is not L-null. Let f be a func-

tion satisfying condition (B). Then — (27r)"1\ f(z)(dgL(z; ζ, α))* defines a

function Hf(ζ) in W which satisfies conditions (I), (II), (III).

PROOF. Let {Ωn} be an approximation of W toward a such that Ωι~^dW0

and JFoZ>dSu where Wo is the set stated in condition (B). We set an = dΩn
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and Ln = LΩnf.

Suppose m > n. We see by (**) in 2.2 that Lmf= Ln{Lmf) on Ωn. It follows
from (*) in 2.1 that

D^Lmf9LHf)=Dan(Ln(LMf)9Lnf)=\ f(dLn(Lmf))* = \ f(dLmf)*.
Jan Ja

By virtue of condition (B2) for /, we have

Hence Green's formula implies that

Jam~an

This, together with DΩm{Lmf) = \ f(dLmf)*9 implies that DΩn(Lmf, Lnf)

= - \ f{dLmf)*+\ f(dLmf)*=-DΩm^n(L Lmf) + DΩm(Lmf). It follows
Jam-an Jamthat, for m>n,

0^D Ω n {L m f -L n f )<, DΩm(Lmf)~2DΩn(Lmf, Lnf) + DΩ(Lnf)

or

Therefore, letting m->oo, we obtain \im^lDΩm(Lmf)^^DΩn(Lnf) + Dw_

+ \IDW-Ω if)- This shows that {DΩn(Lnf)}n is bounded. Next we let n-+oo

and have \imDΩn(Lnf)<;limDΩn(Lnf). Hence limDΩn(Lnf) exists and is finite.

Therefore we have DΩn(Lmf—Lnf)-+0 as n and m(>n) tend to oo.
Now, we fix C e W. Since the set a is not L-null, Theorem 1 implies that

the L-Green function gL(z; ζ, a) = limgL(z; ζ, ctn) exists. To simplify the

notation we write gL(z;ζ9ά)=gand gL(z ζ, an)= gn. Computing DΩn(gn, Lnf)
as Cauchy's principal value, we have

Let n0 be any integer such that ΩnQ Bζ. If n ^ τιθ5 then we obtain, by
(B2) and by the fact that gn^LΩn^ΩnQ{gn) on Ωn-ΩnQ,
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that is,

On account of Lemma 6 we see that lim \ f(dgn)* exists and is equal to
n-*°° Jocn

\
J<Xn

+ DW-Sne(f,g). Namely,

limLnf(ζ) =--±-\ f(dg)*- 1 Dw-aM g).
o Δn Jct &TC

Letting 7&o-*°°> we conclude that —(2^)~1\ f(dg)* exists and is equal to
Ja

limLHf(ζ). It is denoted by Hf(ζ). It follows from UmDΩn(Lmf-Lnf) = 0

that Lnf converges to Hf uniformly on any compact set in W9 Hf is harmonic
in W and lim Dw(Hf — Lnf) = 0. Hence Hf satisfies condition (I). On applying

Lemma 4 with un = Lnf, we see that Hf also satisfies (II). Finally, we shall
prove that Hf satisfies condition (III). Properties (E2), (E4) of extremal length
in 1.3, together with DwJif\ £V(#f)<°° 5 imply that there is Γ*CΓa such
that λ(Γa-Γ*)= oo and /(r), Hf(τ) exist and are finite for all r e Γ*. Extend
the function Lnf to W— Ωn by / and denote it also by Lnf. Applying Fuglede's
lemma with {pn \ dz \} = {| grad (Lnf— Hf) \\dz\}, we find a subsequence

{Pnk\dz\} such that lim ( | g rad (L n J-H f )\\dz\=0 for almost all τ e Γ*. By

lim ^ \gγad(LnJ-Hf)\ I dz\> lim ^ \ dLnJ- f \

k-*°
- \f(τ)-Hf(v)\ where r(0) is the

intial point in W of the curve r, we have Ef{τ)—f{τ) for almost all r e Γ*. It
follows from λ(Γa-Γ*)=oo that Hf(τ)=f(t) for almost all r 6 Γa. The proof
of Theorem 3 is complete.

Here we show examples for which condition (B) is fulfilled:
(Cl) Suppose a is isolated. Any function / satisfying condition (A) does

always satisfy condition (B).
(C2) Suppose L is the system Lo. Then the same result as in (Cl) is valid.
(C3) If we can choose Wo e V with /?(Wo) Z> a such that / is constant on

each connected component of ίF0, then / satisfies condition (B).
(C4) If we can choose Wo e V with β(W0)Z>ct such that / satisfies (Bx)

and has L or 0-behavior on β( Wo)—a, then condition (B) is fulfilled.
In fact, in the case where a is isolated, we can find Wf

Q e V such that
β( W'0)=a and Wo C Wo. Then there is no V e V such that VC WΌ and β( V) Cϊ
Hence condition (B) is fulfilled. In the case L=L0, the result is proved by
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the characterization of LQV in K. Oikawa [10]. (C3) follows from the fact

that \ (dLvg)* = 0 for any dividing cycle β of W which is contained in Fand
j β

does not separate components of dV (see 2.2). (C4) follows from (6) in 2.1.
Let us give an other sufficient condition for the existence of a function

satisfying conditions (I), (II), (III). We begin with the following lemma:

LEMMA 7. Assume that an open Riemann surface W is hyperbolic^
Denote by ωa the harmonic measure of a with respect to W. If λ(Γa,Ύ)>0,3)

then λ(Γa>Ύ) — l/Dw(ωa), where Γa,Ί is the family of curves defined in 1.1.

PROOF. Let {an} be a sequence of isolated sets on β(W) such that an+C)an

and [\<xn = <x. We write γn — β(W) — an. We define ωn as follows: If a\Jγn

is not Lo-null, then ωn(ζ)= — (2π)~ι\ wn(dgLo(z; ζ, a\Jγn))* where wn = l on
JaκjΎn

a Voe V with β(V0)=aH and - 0 on a Vλ with β(V1) = γn and VQr\Vx = φ. If
aVJγn is Lo-null, then ωn(ζ) = 0. It follows from Theorem III in 3.1 of A.
Marden and B. Rodin [5] that 0<λ(Γa>7)<λ(Γa>Ύn)^l/Dw(o)n). In particular,
2)τy(ίθ«)^l//l(JΓα,7)<c>o. Obviously, \\mωn — ωa in W. By standard approxi-

W-»oo

mation method we have Ώψ[ωm — ωn) = Dw(a)m) — Dw(o)n) for m>n. Hence
\iϊnDw(ωn — ωa) = 0 and \imDw(o)n)=Dw(ωa). On the other hand, applying (E3)

in 1.3 with Γn = Γa,Ύn, we obtain \imλ(Γa>Ύn) — λ(\JΓa^J^λ(Γa>7). Consequ-

THEOREM 4. Suppose a is not L-null and there exists a sequence {an} of

isolated sets such that anZ)an+u f\an = a and \imλ(Γan}Ύn)^>λ(Γa,Ύ)>0 where

ϊn = β{Wr)—an. Assume that f satisfies condition (A) and is bounded. Then
there exists a function which satisfies (I), (II), (III) and is bounded in W.

PROOF. Let ωn (resp. ωa) be the harmonic measure of an (resp. a) with
respect to W. It is well known that λ{Γ'α?Λ) = l/'Dw(ωn). It follows from

that {Dw(ωn)}n is bounded. Obviously, ωn converges

to ωa locally uniformly in W. Hence \\mDκ(ωn — ωa) = 0 for any compact set

K in W. We see by Lemma 7.4 in C. Constantinescu and A. Cornea
that lim Dw(ωn, v) = Dw(a>a, v) for any Dirichlet function v on W. Fatou's

lemma implies that \\mDw(ωny^Dw(ωa). By Lemma 7 and our assumption,

we have ΐiτnDw(ωn) = ϊunl/λ(Γan>ΎJ^l/λ(ΓatΎ) = Dw(ωa)<UmDw(ωn). That is,

2) If W is parabolic, λ(Γafΐ) is oo.

3) If λ(Γar)=-0, then the equality λ(Γatΐ)= l/Όw(ωa) does not necessarily hold.
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lim Dw(ωn) = Dw(ωa). Hence, lim Dw(o)n — ωa) — 0.

Let I/I <,M in ίF0 where Wo is the set defined in condition (A). We may
assume that / is continuously differentiate on Wo. Extend / to W— WQ in
such a way that / e C\W\ Dw(f)<oo and \f\<M in TF. Consider the
Dirichlet function sn (resp. 5) = min(max(/, — Mωn\ Mωn)(resp. min(max(/,
— Mωa), Mcύa)). We denote by Sn (resp. 5) the harmonic part of sn (resp, s) in
the Royden decomposition. Theorem 7.4 in C. Constantinescu and A. Cornea
[ΊΓ], together with lim Dw(o)n — &>«) —0, implies lim Dw(sn — s)=0 and hence

UmDw(Sn-S) = 0. Using (E2), (E4), (E5) in 1.3, Lemma 1 and Fuglede's

lemma, we have

fl>Λ(r) = ωa(τ) = 1,

5ll(r) = 5(r)=/(r)

for almost all r e /"α. Furthermore, 5w(r)=0 for almost all r e ΓγB5 and hence

for almost all r e Γ = 0 AΛ

 J t follows from (E5) in 1.3 that for any Vz V
n = \

with β(V)Cΐ, the function 5 is equal to #J. Namely, S has 0-behavior on γ.
Consequently (C4) implies that Theorem 3 is applicable to S and a function
Hs is obtained as in Theorem 3. Because of 5(r)=/(r) for almost all r e Γα,
we see that Hs satisfies conditions (I), (II) and Hs(r)=f(τ) for almost all r e Γa.
Moreover, it is easily proved that our function Hs is bounded in W. We
have thus completely proved Theorem 4.

4.3 Uniqueness theorem
The next example shows that, for some Z, a and some /, the existence

of a function with properties (I), (II), (III) is true but the uniqueness is not
true:

Let an open Riemann surface W be the circular slit annulus

{z: 1/2< | z . | < l } - 0 { * : 1*1 = 1 - 1 Λ , l/n<Laτgz<,2π-l/n}. Let a closed
» = 3

set α on β(W) be two boundary components of W corresponding to {z: \z\
= 1/2} and {z: 1^1=1}. Obviously, the set a is not Li-null. We take the
system Lλ for L and take a boundary value function / to be 0 on {z: l/2<
I z I < 2/3} and 1 on {z: 3/4< | * | < 1}. If we denote by ω the harmonic func-
tion on the annulus {z: l /2^ |2r |^ l } such that ω = 0 on {z: 1*1=1} and = 1
on {z: \z\ =1/2}, then for any real number k the function kω satisfies condi-
tions (I), (II), (III).

To investigate the uniqueness theorem for Hf is equivalent to study the
following problem:
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Is it true that a function φ in W such that

(Γ) ψ is harmonic in W and has Dw(φ)< °°,

(IΓ) φ has JL-behavior on r,

(ΠΓ) φ(τ)=0 for almost all t€ Γa

must reduce to zero?
If a is Lo-null, then (ΠΓ) is meaningless. It follows that any constant

satisfies (Γ), (IΓ)? (ΠΓ). Hence in the sequel we assume that a is not L0-null,
i.e., λ(Γa)<°°'

We find in M. Ohtsuka [7], [Ό] that the uniqueness theorem holds for
the system Lo. We shall prove the following uniqueness theorem:

THEOREM 5. Suppose that the closed set a is not La-null and is isolated on
β( JF).4) Then the uniqueness theorem holds for any system L.

PROOF. Let ψ be any function in W with properties (Γ), (IΓ), (ΠΓ). Since
a is isolated, we can choose an approximation {Ωn} of W toward a such that
β(Ωn) = γ for all n. Consider the sequence of Dirichlet solutions H$* (see (E5)
in 1.3). We can see lim DΩn(H^m — Hfn)=0 by the same reasoning as that

showing lim DΩn(Lmf—Lnf)=0 in the proof of Theorem 3. Hence there is a

harmonic function Hin Wwp to an additive constant such that WmDΩn(H— H$n)

= 0. Extend H$* by φ to W-Ωn and denote it by Φn. Properties (E2), (E4),

(E5) in 1.3, together with (ΠΓ), imply that there is Γ*CΓβ{W) such that

λ(Γβ(W)-Γ*) = oo and Φn(r) = 0 for all r e Γ * and all n. That is, { dΦn =

— <0Λ(r(O)). Applying Fuglede's lemma with {pn\ dz|} = {|grad(0w — H)\ \dz\},
we conclude that there is a subsequence {pUk\dz\} such that, for almost all

rcΓ*, 0 = lim( \gτad(ΦHk--H)\\dz\^>lim{\dΦnk-dH\ = \\im[ dΦnk-{ dH\ =

I - lim 0«fc(r(O)) - ( dH\. Hence lim Φnk(r(PJ)=lim fl£»*(r(0)) exists and is finite.

It follows from λ(Γa)< oo (Proposition 2) that limZΓ/»* exists and is harmonic

in W. We can easily infer that, for the original sequence, limZΓ/* exists.

Set H= limHf* ( = limΦJ. By the above computation, 0 = -H(v(0))~ { dH

for almost all r e Γ*. Otherwise stated, £Γ(r)=O for almost all τeΓβ(Wy

It follows from Lemma 1 that the function H reduces to zero.
On the other hand, since <p has L-behavior on γ, LΩnφ=φ on Ωn. This,

together with Lemma 2, implies that

4) Suppose a is isolated on β(Ψ). Then we easily see that a is L-null if and only if a is £0-null.
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0 ̂  Dw(φ) = DW(H- φ) = lim Dan(Hf -LB%φ)

= lim {Da.(H° ) - Dΰn(Lΰnφ)} =

or Z M » = 0. Hence ^ is a constant. It follows from (ΠΓ) that φ reduces to
0. This completes the proof.

Finally we shall show the following uniqueness theorem:

THEOREM 6. Suppose α satisfies the same conditions as in Theorem 4. Then
any function φ which satisfies conditions (Γ), (IΓ), (ΠΓ) and is bounded in W
must reduce to zero.

PROOF. Replacing by φ the extended function / in the proof of Theorem
4 and otherwise using the same notations, we have \imDw(Sn — 5 ) = 0 and

S(r)=0 for almost all r e Γβ(W)—ΓayjΓΎ. It follows from Lemma 1 that S is
identically zero. Now, fix n. Take an approximation {Ωk} of W toward an.
Then the sequence of Dirichlet solutions H$* tends to Sn pointwise in W and
in terms of Dirichlet norm. It follows from the Remark in 2.1 and DΩic{φ) =

[ φ(dφ)* that Dw(Sn, φ) = \imDΩk{Hφ\ φ)=\ϊm [ HfKdφ)* = lim ( φ(dφ)*

= UmDΩlc(φ)=Dw(φ). Hence Dw(Sn)^>Dw(φ) On letting n->oo9 we obtain

Dw(φ)=§. We see by (ΠΓ) that φ is equal to zero.
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