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Introduction

Given a Riemann surface W, let U be the collection of open sets of W
whose relative boundary consists of a finite number of closed analytic curves.
For V € U principal operators L,y and (P)L,y were introduced by L. Sario
(see [1]) and both share the property:

Dy(Lvf, Lvg) = gav F(dLy g)*.

In this paper normal operator with this property will be called distingu-
ished. We consider a system L={Ly}v., of distinguished normal operators
Ly defined with respect to 7. The system L is said to be consistent if the
following condition is fulfilled:

Ly, (Lv, f)=Lv,f

for any 7,D ¥V, and any continuous function f on 077.

Consider the Kerékjarto-Stoilow compactification W* of W and denote
the boundary by (W)= W*— W. Partition S(W) into two disjoint sets «
and y where « is non-empty closed. The purpose of this paper is to investig-
ate the following boundary value problems:

Suppose that the closure of W, € ¥ in W* contains a and that £ is con-
tinuously differentiable in W, and has Dw (f)<oo. Then is there uniquely a
function H; satisfying the following conditions?

(I)  Hy is harmonic in W and has Dy(Hf)< co,
(II) Hy=Ly(H;) for any V € U such that the intersection of S(#) with

the closure of V is contained in 7,
II) lim Hy(z) =lim f(z) for almost all curves ¢ where each ¢ is a locally

ZE€ET ZET

rectifiable curve in W, starting from a point of ¥ and tending to «.

Roughly speaking, a solution H; is to have L-behavior on y and assume
given boundary values f on «.

We know by M. Ohtsuka [7], [9] that for the system Ly={Lov}ver We
have the existence and uniqueness of H;. We shall show that if the set « is
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relatively open and closed on B(W), then for any system L we have the same
result as above. When « is not necessarily isolated, we shall study the ex-
istence and uniqueness of H; under some additional conditions (Theorems 3,
4, 6).

The author wishes to express his deepest gratitude to Professor M.
Ohtsuka for his suggesting the problem and for his valuable comments. The
author wishes to express his sincere gratitude also to Professor M. Yoshida
for his guidance and kind encouragement in preparing this paper.

§1. Preliminaries

1.1 Notation and terminology

Given an open Riemann surface W, we denote by U the collection of open
sets ¥V of W such that ¥ and its exterior have the same nonempty relative
boundary whlch consists of a finite number of paiwise disjoint simple closed
analytic curves. For each Ve U, we denote by 0V and 7 the relative
boundary and the closure of 7 respectively. We orient 0V positively with
respect to . We assume that a function defined on a subset of W is always
real valied. Let V bein ¥ and let u be a continuously differentiable function
in V. The integral

rwr= [, {(3) (32 oxas

is known as the Dirichlet integral of u over V. If u, v are continuously
differentiable in 7 and Dy(u), Dy(v) are both finite, then we define the mixed
Dirichlet integral over 7 by

ou 0v ou 0v
Dot 0= ] (35 20+ By 0y)dxdr
We consider the Kerékjarto-Stoilow compactification #* of W, in which
each ideal boundary component becomes a point. We denote by B(W) the set
of all boundary components of W, i.e., 3(W)=W*— W. For each V€ U, the
set (V') will mean the intersection of 2(W) with the closure of V' in W*. We
observe that the set #(7) is relatively open and closed on B(W). We say,
briefly, that a relatively open and closed subset of B(W) is isolated on B(W).
If « is a non-empty closed set on B(W), then there exists a sequence of

2,60V such that 2,..>2, \/2,=W and \/B(2,)=8(W)—a. We shall call
n=1 n=1

such a sequence {£2,} an approximation of W toward a. Let functions f, g
be defined and continuously differentiable in V,e U with 8(Vy)Da. If

lim Sag f(dg)* exists for any approximation {2,} toward «, then we write

n

S fid g)* =lim Sag f(dg)*. The value S f(dg)* is independent of the choice
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of approximation {2,}.

Let o be any subset of 3(#) and let f be a function defined in a V€ U
with B(V,)Da. Furthermore, suppose ¢ is a curve in W, starting from a
point of 7 and tending to a point in «, that is, r is a continuous mapping of

0=<:<1 into W such that limr(z) exists in #* and is contained in «. Then
t—1

there exists z, such that 0<"z,<1 and the image of ,<_¢<1 by ¢ is included
in V,. If lim f(z(2)) exists, it will be denoted by f£(r).
t—1

Given two non-empty subsets «;, a; of S(W), we denote by I, ., the
family of locally rectifiable curves in W connecting points in «; to points in a..
Also we denote by I"., the family of locally rectifiable curves in W, each
starting from a point of # and tending to a point in «;.

1.2 Normal operators

Let Ve V. The class of functions on 87 having a continuously differenti-
able extension to a neighborhood of @7 will be denoted by C*(@7). Let L be
an operator such that it acts on C'(97) and that Lf is continuously differenti-
able on 7 and is harmonic in 7. The operator L is called a normal operator
defined with respect to V, if it satisfies the following conditions:

ey Lf=f on 04V,

@ Licifi+eczf2) = ciLfi+caLfs,
3 L1=1,

4) Lf=0 if f=0,

(5) gﬂ(v)(de)* =0.

Normal operators are defined and investigated in Chapter III of L.
Ahlfors and L. Sario [1]. Conditions (2), (3) and (4) yield the validity of
maximum principle, that is, m < f<M on 0V implies m<Lf<M on V.
Therefore, if f, converges uniformly to f on 97, then Lf, converges uniformly
to Lf on 7. When we construct a harmonic function with prescribed boundary
behavior, we use the following existence theorem, as was used in L. Ahlfors
and L. Sario [1]:

Existence theorem. Let Ve U such that W—V s compact and let L be
a normal operator defined with respect to V. Given a harmonic function s on
V, a necessary and sufficient condition that there exists a harmonic function P

. W which satisfies p—s=L(p—s) in V is that gﬁ , (dsy*=0. The function p
)
18 uniquely determined up to an additive constant.

1.3 Euxtremal length
Let I” be a family of locally rectifiable curves ¢ in W. The extremal
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length A(I") of I" is defined as

LI, 0)?
A(0)

(™M) = sup
p

where A(p) =SSW o*dxdy, LT, p) = infg poldz| and p|dz| ranges over all

Borel measurable linear densities which are non-negative and for which
0< A(p)< o0

We say that a statement concerning curves r e I” is true for almost all
curves in I” if the subfamily I” of I' consisting of curves r for which the
statement is false has (/)= oo.

The following lemma will be used in the present paper, as was used effec-
tively by A. Marden and B. Rodin [57, [6].

Fuglede’s lemma [47]. Let {0,|dz|} be a sequence of Lebesgue measurable
linear densities such that A(p,) tends to zero as n— oo. Then there s a sub-

sequence {0, |dz|} which satisfies lim Sp,,k | dz| =0 for almost all locally rectifi-
koo

able curves t in W.

We shall have occasions to use the following properties of extremal
length:

(E1) If for any v €I there exists a v € I’ contained in t, then A(I")=
).

(E2)

;(“Q}“) ST

(B3) If T, increases (i.e., I'na> T, for all n), then lim(I")=2\J ).
n—>eo n=1

(E4) Let f be a continuously differentiable function in W with Dw( f)< oo.
Then f(r) exists and is finite for almost all € I gw).

(E5) Let VeUandfeC(@OV) Denoteby HY the Dirichlet solution with
respect to V with the boundary values f on 0V and 0 on 3(V). Then HY(z)=0
Sfor almost all v € I gy,  Conversely, a harmonic function F in V which satisfies
F=fon 0V, Dy(F)<oo and F(r)=0 for almost all € I 5, 18 equal to HY.

As to all of these results except for (E8) we refer to M. Ohtsuka [77], [87,
[9]. As to (E3), see N. Suita [117] or W. Ziemer [12].

Lemma 1. Let f be a Dirichlet function® on W. Then f is a Dirichlet
potential” if and only if f(c)=0 for almost all T € I gw.

Proor. First, suppose that f is a Dirichlet potential. It follows from
Theorem 7.5 and Lemma 7.8 in C. Constantinescu and A. Cornea [37] that

1) For these notions, see C. Constantinescu and A. Cornea [3].
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there exists a sequence {f,} of continuously differentiable functions with
compact supports such that limDw(f,—f)=0 and limf,(z)=f(z) for any

n-—>00

z € W— A where A4 is a polar set in /7. We see that the subfamily 7I'; of
I gowy which consists of curves r € I'gw, starting from points of 4 has A(7™1)
=oo and that there is a subfamily I"; of I'gw, such that the functions f,, f
are absolutely continuous on ¢ for all v € I'gwy,—7"; and all n (see B. Fuglede
[4]). We write '}y, =1 gw)—11—1,. Applying Fuglede’s lemma with
{0.1dz|}={lgrad (f,—f)i|dz|}, we find a subsequence {0, |dz|} such that

limg lgrad(fn,—f)||dz| =0 for almost all c€ "%, It follows from f, (r)=0
koo JT

and lim £,,(s(0))=/(-(0)) that 0=lim S | grad (f,, — f)] |dz]| = lkiﬁS | df,
—df|= lkljg |{ f (D)= fu (c(O)} — { f(©)—F(z(0)}=| f(x)] for almost all 7 € I},

Observing A(I" gewy— I §w>)=oc, we have thus f(r)=0 for almost all t € I gy).

To prove the converse, suppose that a Dirichlet function f has f(r)=0
for almost all 7 € I"gw,. We consider the Royden decomposition (see [37]) of
f i f=u+fo where u is harmonic in # with Dy(u)< o and f, is a Dirichlet
potential. Since fo(r)=0 for almost all r € I"4w), our assumption implies that
u(r)=0 for almost all r € I"yw). It follows from Corollary 1 in M. Ohtsuka
[9] that u=01in W. Therefore, f is equal to the Dirichlet potential f,.

§2. Distinguished normal operators

2.1 Definition
Definition. A normal operator L defined with respect to 7 is said to be
distinguished, if it satisfies the following additional condition:

(6) Dy(Lf)<os and Sﬁ(v)(Lf)(dLg)*zo for all f, ge C\@V).

Let L be a normal operator defined with respect to ¥ and let £, g€ C'(@V).
Now, take any approximation {£2,} toward 3(¥) such that £,>0V and V> 02,.
Since Lf=f on 8V, using Green’s formula, we obtain

Do,r(Lf, Le)= | (Lf)(dLgr+(  flaLer

Hence lim Sag (Lf)(dLg)* exists and is equal to Dyv(Lf, Lg)— gav f(dLg)*,

namely, Sﬁ(v)(Lf NdLgy*=Dy(Lf, Lg)— Sav f(dLg)*. It follows that the nor-

mal operator L is distinguished if and only if

* Du(if, Le)= | flargr

for all £, ge C'(@V).
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Principal operators Loy and (P)L,y defined in Chapter III of L. Ahlfors and L.
Sario [ 1] are typical examples of distinguished normal operators defined with
respect to V. Other examples will be given in 2.3. We shall give a normal
operator which is not distinguished:

Let W be an open Riemann surface and takea ¥V ¢ U=U(W) which is not
relatively compact. Assume thata distinguished normal operator L defined
with respect to ¥ is given. Choose a relatively compact regular region £ in
W such that 2 >0V. We consider £ as a given open Riemann surface. Ob-
viously, 2"V € V(2), which we denote by ¥’. Then C0V)=C'@V’). We
let L'f be the restricted function to #” of Lf for each fe C'(@V’). The oper-
ator L': f € C'(9V')— L'f is a normal operator defined with respect to 7 but
not distinguished.

Remark. In general, the operator H" : f e C'(0V)— H} does not satisfy
conditions (3), (5) in 1.2 and hence H" is not normal. However, it has the
following property:

g» HY(dFY* =0
BV)

where F is any harmonic function in ¥V with Dy(F)<oo. In particular, the
operator HY satisfies condition (6) in 2.1. It is clear that if />0, f € C'(@V),
then Lf_>H} for any normal operator L defined with respect to 7.

The characterizations of Ly, and (P)L;y in K. Oikawa [107], together with
the above property of H", imply the following lemma:

Lemma 2. Let VeU. Assume that a distinguished normal operator Ly
defined with respect to V satisfies the additional condition that, for any
feC V), Ss(dLVf Y*=0 for every dividing cycle 8 of W which are contained

in V and does not separate components of 0V. For any f € C'(0V), we set u,=
HY, uy,=(DLyyf, us=@)Lyf, u,=Lyf and us=Lyf. Then Dy(u;—u;)=
Dy(u;)—Dy(u;) =0 for any 1 =i<j=<5.

Proor. If i<j, we see that SB , u(du;*=0. It follows that Dy(u;, u;)
™)

§o oy 1l = § pauyy = |
Dv(ui-— Uj)'-:Dv(u,')—Dv(le>.

u]'(du]')*:Dv(u]') and that Og
BV )Y+aV

2.2 Consistent system of distinguished normal operators

Definition. For each V¢ U, let a distinguished normal operator L, de-
fined with respect to 7 be given. The system L= {Ly}y.» is said to be con-
sistent, if for any ¥V, and ¥V, such that V', D>V,
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(**) Ly Ly, f)=Lv,.f
in 7, for all f e C'(@1).
It is a consequence of the definition that Sﬁ(dva Y*=0 for every divid-

ing cycle of W which is contained in 7 and does not separate components of
oV. Hence, in general, the system {(I)Liv}vey cannot be consistent. The
systems Lo={Lo}ver and L;={(Q)Liv}ve» are typical examples of consistent
systems. The following fact is well known (for example, see L. Ahlfors and
L. Sario [17], IV, 1D):

If W s of class Oxp(=0u,p), then Loy =(Q)Lyy for any V€ U. Conversely,
W€ Okp, vf Lov=(Q)Lyv for some V € U such that W—V is compact.

It follows from Lemma 1 that a surface W is of class Ogp tf and only if
all the L coincide.

2.3 Examples of consistent systems

Example 1. Let W be an open Riemann surface. Partition the ideal
boundary B(W) into two disjoint closed subsets 7, and 7;. That is, 7, and r;
are isolated sets on 8(#)and B(W)=r,\Ur:. For each f e C'(0V), there exists
a unique function LJ*”: f(=L, f) which is continuously differentiable on 7| is
harmonic in 7 and satisfies the following conditions:

i Lvf=f on 0V,

(ii) Lvf=LwALvf)forany V' € U such that V"C ¥V and B(V")=r,N\B(V),

(iil) Lvf=(@Q)LwLvf) for any V' €U such that V"CV and B(V)=
1iNBI).

The operator Lj>" is a distinguished normal operator defined with res-

pect to 7 and the the system {L;]>":},., is consistent. If y,=¢ (resp. r1=¢),
then the system {L;J>"i},¢, is equal to L; (resp.L).

Example 2. Let # be an open Riemann surface. Partition S(#) into two
disjoint sets y, and 7, where 7, is closed. Choose a sequence of isolated sets
79 on (W) such that 77 Dr{"*? and A7y =7, Write 70’ =B(W)—7{ and

n=1

L =Ly " (see Example 1). For each f € C'(07), we have
DLy f = Lif) = Dy(LFf )= Dy(Ly"f) =0

for m>n. Since D, (L¥f)<D,(H})< oo for all n, L{’f tends to a continu-
ously differentiable function on 7 which is harmonic in ¥. We denote the
limit function by L)>"f. The operator L)" is a distinguished normal oper-
ator defined with respect to 7 and the system {L;>":},, is consistent. This
is a generalization of Example 1.

Example 8. Suppose that W is the interior of a compact bordered Rie-
mann surface . Divide the border ¢ 7 into two disjoint sets E, and E; in
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such a way that, for each contour C on 0 W, E;N\C (resp. E;N\C) consists of a
finite number of open (resp. closed) subarcs on C. (E,\C or E;N\C may be
empty.) For Ve U, we denote by ¥ the closure of ¥ in W. For each
f € CY(0V), there exists a unique function L{E:f(=L,f) on ¥ which is con-
tinuously differentiable on 7 and harmonic in 7 and satisfies the following
conditions:

i) Lvf=f on 0V,

(ii) the normal derivative of Lyf vanishes on E;N v,

(iii) for each connected component ¢ of E;N F, the function Lyf is con-

stant on ¢ and has S (dLvf)*=0.

Then LE-E: is distinguished and {L{"%1}, ., is consistent.

Example 4. Let an open Riemann surface % be a rectangle with vertical
sides 4, A" and horizontal sides B, B’. Identify A4, B with 4A’, B’ respectively
so that the resulting manifold becomes a compact Riemann surface S of genus
1. For each f e C'(97), consider the Dirichlet solution Hf~"~"> with respect
to the relatively compact open set S—(#—7) in S. We denote by Lyf the
restriction to 7 of the function H5~"~">. Then the system {L,},, is a con-
sistent system of distinguished normal operators.

2.4 L-behavior

Let L={L,},., be a consistent system and let y be a relatively open set
on B(W). Assume that a function u is defined in the intersection of W with
a neighborhood 2% of y in W*.

Definition. We say that the function u has L-behavior on 7, if there exists
a neighborhood 2f of v such that 2Ff C2F¥ and Lyu=u for all Ve ¥ which
satisfy (V) y and VC 2¥NW.

Conditions (2), (3) in 1.2 imply that if u has L-behavior on y, then ciu +c,
has also L-behavior on y for any real numbers ¢; and c,. It is clear from the
maximum principle that a harmonic function in # has L-behavior on 3(#)
if and only if it is a constant.

It is known that the system {H"}y, has the consistency (**) in 2.2.
Therefore we can define {H"}ycy-behavior in the same way as above. We
shall call this simply 0-behavior.

LemMma 8. Let Vo€ U and let u be a harmonic function on V,. Then u has
L-behavior on 3(V,) if and only if u=Ly u in V, for some Vi€V such that
ViC Vo and f(V)=8(V,). Moreover, in this case, u=Ly u on V,.

Proor. Suppose that z has L-behavior on B(V;). It follows from the
definition of L-behavior that there exists a V; € U such that V,CV,, B(Vy)=
B(Vo)and u=Ly u in V.

To prove the converse, suppose that there exists a ¥, € U with the above
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property. We observe by (**) in 2.2 that u—Ly u=Ly (u—Lyu) on V. It

follows from the maximum principle for Ly that mg.x(u—Lyou)(z):
zZ €0V,

sup(u — Ly u)(z) and main(u——Lvou)(z):inf(u——LVUu)(z). On the other hand,
ZEV, Z €9V, ZEV,

B(V1)=RB(V,) implies that ¥,— V', is compact. If u— Ly u is positive at some
point in ¥, the maximum is taken at some point on 97;. Hence u—Ly u is
constantly equal to a positive value. This is impossible because v —Ly u=0
on 0¥, Consequently u—Ly u=0in V,. Similarly, we see that u—Ly u=0
in V. Therefore u=Ly u in V,. For each V€ U such that V'C ¥V, we obtain
by (**) Lyu=Ly(Ly u)=Ly,u=u in V. Hence the function » has L-behavior

on 3(Vo).

LemMA 4. Let « be a closed set on B(W) and let V € U be such that 3(V) D«
or V=W. Let {2,} be an approximation of W toward . We write 2,V
=V, Suppose that u, is a harmonic function in V, which has L-behavior on
B(V,). Furthermore suppose that u, converges to u uniformly on any compact
set in V. Then the function u wn V has L-behavior on 3(V)—a.

Proor. Let 7’ be any set in ¥ such that B(V)CR(V)—a and V" CV.
For sufficiently large n, the set 7’ is contained in 7,. Since the function u,
has L-behavior on B(V, (D B(V")), we have u,=Ly.u, on 7. Observing that
Ly,u, converges to Ly.u uniformly on 7, we obtain, by letting n— oo, u=Ly.u
on 7. Consequently the function u has L-behavior on 3(V)—a.

§8. L-harmonic measures, L-Green functions and L-null sets

3.1 L-harmonic measures

Let L={Ly}ve» be a consistent system and a set « be a closed subset of
B(W). Let VeU be such that f(V)Da. We shall define the L-harmonic
measure of a with respect to 7. Let w be the function on ¥ which is equal
toOondVandlin V. Let {2,} be an approximation of W toward « such

that 2, >0V and 02,C V. We set 2, V=7V, and 02,=a,. Then \/V,=V
n=1

and 0V,=08,U0V. It follows from the maximum principle for Ly that the
function Ly w decreases. Hence the limit function

wr(z; a, V) =lim Ly uw(z)
exists and is harmonic in V. It is independent of the choice of approxima-
tion {®2,}. It is clear that 0 <<w.(z; a, V)<1l. We see by Lemma 4 that
wr(z; a, V) has L-behavior on f(V)—a. We say that o.(z; a, V) (=0, V)
is the L-harmonic measure of a with respect to V.

LemMa 5. lim Dy (Lvaw—or(a, V))=0.

n—rc0
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Proof. If m>n, Ly w=Ly (Ly, w)in V,. It follows from (*) in 2.1 that
Dy (Lv,w, Ly, w)=Dy (Lv w, Lvn(Lvmw))_—‘S o w(dLvmw)*=S (dLy w)*. Con-

n

dition (5) in 1.2 implies that 0=SN (dLy (Ly w))* = —g ALy (Ly w)*
V) U

—g (dLy wy* and 0=S (dLv”w)*z—S (dLy wy*, this is,
a, VvV " BV ) g )4 m

[, @rva={ (aLyw*.  Consequently Dy (Lvw, Lvw)=| (dLyuy =

m

m

[, w(dLy wy* =Dy (Ly,w). We have thus 0= Dy (Ly,w— Ly, )= Dy,(Ly,)

—l;Vm(LVmw). Hence Dy (Ly w) decreases and limDy (Ly w) exists and is

n—ro0

finite. Given ¢>0, choose n such that Dy (Ly, w— Ly w)<e for all m>n. By
Fatou’s lemma we obtain Dy (Ly,w—wi(a, V)))=limDy (Ly w— Ly w)=e

m—roo

proving lim Dy (Ly w—w.(a,V))=0.

3.2. L-Green functions

Let Ve U. Then the L-Green function of ¥ with pole at £ € V is defined
as the harmonic function in V— {{} with singularity —log|z—¢&| at ¢, which
vanishes continuously on the relative boundary 07 of ¥ and has L-behavior
on B(V). Its uniqueness is evident. Its existence is proved by the same way
as in L. Ahlfors and L. Sario [1], III, 4C. We denote it by gi(z; &, 0V). It
is clear that g.(z; &, #7)>0 in the component of 7 which contains &.

Let « be a closed set on B(#). We shall define the L-Green function of
W with respect to . Let {2,} be an approximation of W toward « such
that 2, 5¢. We see by the maximum principle for Ly that g.(z; ¢, 02,) in-
creases with n. Therefore

gL(Z; g, a)= ,11132 gL(Z; g, 652,,)

is either identically equal to+ oo or finite and positive for all z=¢. In the
second case we say that the L-Green function of W with pole at & with respect
to a exists. The above definition does not depend on the choice of approxi-
mation {2,}. If it exists, it is clear that g.(z; ¢, @) is harmonic in W—{¢}
with singularity —log|z—{¢| at & and has L-behavior on 3(W)—«. Moreover,

for any Ve U with 3(V)D «, we have S/j(V)(dgL(z; ¢, )y =—2r.

Lemma 6. If the L-Green function gi(z; C, ) exists, then lim D, (g1

n—0

(25 ¢, 02,)— gulz; €, @)=0.  In particular, Dw_gi(z; ¢, @))<oo where 4 is
any neighborhood of &.

Proor. We write gu(z; ¢, 02,)=g» and gu(z; ¢, a)=g. Let 4, be a disk
with center at {. For m—=n, we have Dy (gn—g.)=Dg__4,(8n)—2Dgo _4,(&m, &)
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—+ D-Qn—do(g”) + ‘D"o(gm - g”) = S—ad gm<dgm)*"‘2 S—aa gn<dgm>k+ Sad gn(dgn>* +

S (gn— g )d(gn— gn))*. Since g, converges to g uniformly on a neighbor-
a4,

hood of 94,, we obtain

Do (g— g0 =1limDa(gn— )= | ader—| sldg)
It follows that lim D, (g— g.)=0.

3.3 L-null sets

Definition. A closed set « on (W) is said to be an L-null set, if there
is a ¥ € U such that 8(7) D« and the L-harmonic measure wr(c, V') vanishes.

If the closed set « is L; (resp.Ly)-null, then « is called “schwach” (resp.
“halbschwach’) in C. Constantinescu [ 2].

Prorosrrion 1. Every Li-null set is an L-null set. Every L-null set is an

Lo-null set.

Proor. Suppose that « is an L;-null set. Choose V€V such that
B(V)Dwa and wr (a, V)=0. Letw and ¥, be the same as in 3.1. Lemma 2
implies that

Dy ((Q)Lyv,w) = Dy (Ly w)+ Dy ((Q)Liv ,w— Ly w).

Letting n — oo, we obtain by Lemma 5
Dy(or,(a, V) = Dy(wrla, V)+Dy(wr (o, V)—oa, V).

It follows from wr (a, V)=0 that wi(a, V)=0. Hence every L;-null set.is

L-null.
Similarly, we see that every L-null set is Ly-null.

The next proposition follows from Theorem III in 3.1 of A. Marden and
B. Rodin [57:

ProrosiTion 2. A closed set « 18 Lo-null i f and only 1f A ,)=co where
I, is the family of curves in W defined in 1.1.

Tueorem 1. Let « be a closed set on S(W). The following four conditions
are equivalent:

(N1) The set « is an L-null set, that is, for some V with f(V)Da, w(a, V)
vanishes;

(N2) For some Ve U with 3(V)D«a, any bounded harmonic function u on
V which has L-behavior on B(V)—« is equal to Lyu on V. That is, u has L-
behavior on B(V);

(N3) Forsome VeV with (V) D«, any harmonic function u on V which
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has Dy(u)< oo and L-behavior on B(V)—ca s equal to Lyu on V;
(N4) For some ¢ € W, the L-Green function gi(2; £, ) does not exist.

Proor. (N1)—(N2). Assume that « is an L-null set. Namely, we can
find a V€ ¥ such that 8(V)Da and wi(a, ¥)=0 on V. Let {V,} be as in
3.1. Let u be any bounded harmonic function on ¥ which has L-behavior on
B(V)—a. We write M:S%’l u(z)|. Then

Lyu—2Mw<u<Lyu+2Mw
on 0¥, Operating Ly to this inequality, we have
Lvn(Lvu - 2Mw) g Lvnu g Lvﬂ(LVu + 2Mw)

in V,. Since u has L-behavior on 8(V)—a, Ly, u=u in V,. This, together
with (**) in 2.2, implies that

Lyvu—2MLy w<u = Lyu+2MLy w
in V,. Letting n— oo, we have
Lyu—2Moi(a, V)<u=<Lyu+2Moia, V)
in V. It follows from w,(«, V)=0 that Lyu=u in V.

(N2)—(N1). The harmonic measure wy(a, V') is a bounded harmonic
function on ¥ which is 0 on 87 and has L-behavior on 3(¥)—a. Hence under
hypothesis (N2) we have o, («, V)=Lyw(a, V)=L,0=0.

(N1)—>(N3). Let Ve U satisfy the condition in (N1). In order to prove
that the set V7 also satisfies the condition in (N3), it is sufficient to show that
a harmonic function z on ¥ such that Dy(u)<oco, =0 on ¥ and u has L-
behavior on B(¥7)—a reduces to zero. To this end we begin with showing
that the function u is decomposed as u=u*+u~ in ¥, where u*, v =0 on
oV,u*, —u==0 on V. Dy(u"), Dy(u)<oo and u*, u~ have L-behavior on
BV )—c.

Let {2,} be an approximation of ¥ toward « such that £;>07 and
V>08,. Writed®2,=a,and 2,N\V=V,. Consider the functions Ly max(u, 0)
and Ly min(u, 0) in V,, which we denote by u, and u, respectively. Since u
has L-behavior on f(V)—a, u=L, u=u; +u, in V,. Obviously, u;, u,=0 on
oV, u;, —u, =0 on ¥V and u;, u, have L-behavior on 3(V,). Furthermore,
Dy (uy), Dy (u;) <Dy (u) < Dy(u)<oo. In fact, we obtain by (*) in 2.1 that
Dy (ul)= Sav max (u, oxdu;)*:S w(du)*. Since (du)*=(duz/on)ds<0

a,N{u>0}
on &, {u<0}, we have Dy, (u)<| u(duiy*=|  Ly,u(duy*=Dy, Ly, u;)
Va

= Dy (u, u,). Consequently Dy, (u,) =Dy, (u). Similarly, we have D (u;)<
DY (u).

Qp
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It follows that {u;(z), u;(z)} is bounded on any compact subset of 7
where n is so large that 7, contains the compact set. Hence we can choose a
subsequence {n,} such that u,, and u,, converge uniformly on any compact
subset of 7. We write u*=1limu;, and v~ =1limu,,. It is easy to see that

koo ko
v=u*4+u" on ¥V, u", u=0 on 0¥, u*, —u~ =0 on ¥ and u*, u~ have L-
bekavior on #(V)—a. Moreover, by Fatou’s lemma, we obtain D,(u*)<
lim Dy(u;, ) < Dy(u)<eco. Similarly, we obtain Dy(u")= Dy(u)<oo. Hence

koo

we have a required decomposition of u.
Since wr(a,V)=0, we see by Lemmab and (*) in 2.1 that 0=
Dy(u, 05(a, V))=lim Dy (u*, Ly w)=lim Dy (Ly u*, Lvnw):limg | w(dLy,ut)

n—oo n—>o0

=limg (dLy u*)*:—limg (dLy u+)*=—g (du*Y*. On the other hand,
a, " v " v

n—oo n—o0

because u* =0 on 9V and u*—=0 on 7, we have (du*)*=(0u*/0n)ds<0 on 0V.
Hence (du*)*=0 on oV. It follows that u*=0 on 7. Similarly, we have
v =0on 7. Consequently u=u"+u"=0on V.

(N3)—(N1). Since the harmonic measure w (e, V) satisfies the condi-
tion in (N8), we have w,(a, V)= Lyor(a, V)=0.

(N1)—>(N4). Assume that the closed set « is L-null. That is, there
exists a V'€ U such that 8(V)Da and o (V, @)=0 on V. Now, suppose that
for some £ € W, the L-Green function g.(z; ¢, o) exists. Choose V"€ U such
that V' CV, V' $¢ and B(V)=LF). Then it follows that 0=w,(a, V)= w(a, V")
—=0. Lemma 6 shows Dy{gu(z; &, a))<oo. Hence property (N3) implies
gi(z; ¢, a)=Ly.gi(z; ¢, «). We obtain by (5) in 1.2 a contradiction as follows:

0= Sﬁ(v')(dLV'g"(Z; ¢, @)= Sﬂ(v/)(dgn(z; g, a))¥=—2x.

Consequently if « is an L-null set, then the L-Green function g.(z; ¢, @)
does not exist for any € W.

(N4)—(N1). Assume that the closed set « is not an L-null set. That
is wr(e, V) does not vanish for any V€ U such that 3(V)Da. Let ¢ be any
point in W. Take a VeV such that V3¢ and 8(FV)Da. Then we observe

that ¢c= S,s(v (doy(a, V) =— gav (dorla, V))*+#0. Choosea V€ U such that
)

VnV'=¢, V"¢ and 3(V)=B(W)—B(V). Let 4 be an open disk with center
at ¢ which is contained in W—VU¥?. We take W—{¢} as W and VUV’ U4
—{¢} as V in the existence theorem in 1.2 and we define L by Ly y. in VUV’
and H? in 4—{¢}. We apply the theorem with s=—log|z—¢]| in 4—{¢},
s= —2nc'owr(a, V) and s=0 in 7’. This function s has the total flux 0.
Hence there exists a harmonic function p in W' —{¢} such that p—s=L(p—s)
in VUV’ ud—{¢}. Namely,
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p=—loglz—C|+H{, in 4—{c},

p==—~%zwﬂa,V)+Lﬂ7 in 7,

p=Lyp in V.

It follows that the function p is a harmonic function in W—{{} with
singularity —log|z—¢| at ¢ such that p has L-behavior on S(W)—« and is
bounded from below. Therefore the function p+a is positive in W—{¢} for
sufficiently large positive number e« and has the above properties. We see
by the maximum principle that p+a = g:(z; ¢, £,) and hence that the L-Green
function gi(z; £, a) with pole at £ exists.

Consequently if the L-Green function g.(z; ¢, @) of W with respect to «
does not exist for some & € W, then the closed set « is L-null.

Remarx. From the the above proof we infer that the four conditions
which are obtained by replacing some by any in (N1)~(N4) are also equiva-
lent to (N1).

TueoreMm 2. If a closed set « is an L-null set, then there is no non-constant
harmonic function u in W such that Dy(u)< oo and u has L-behavior on S(W)
—a.

Proor. Suppose « is an L-null set. Let z be a harmonic function in W
such that Dy(u)< oo and u has L-behavior on 83(W)—«. Then it follows from
(N3) that u has L-behavior on (). Hence u must be a constant.

This theorem includes the relation 0; C0xp as a special case.

§4. Boundary value problems

4.1 The statement of problems

Let W be an open Riemann surface and let L={Ly}ve» be a consistent
system of distinguished normal operators. Assume that « is a non-empty
closed set on (W) and write y=8(W)—a. That is, 7 is a relatively open set
on (W) and f(W)=c«a\Uy (disjoint union). We fix L and « once for all.

Suppose that a function f defined near « satisfies the following condition

(A):

(A) There isa W, e U with 8(W,) Da such that f is continuously differ-
entiable in W, and has Dy f)< .

For such a function f, we investigate the existence and uniqueness of a
function H; which satisfies the following conditions:

(I) Hy is harmonic in W and has Dy(H;)< o,
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(Il)  H; has L-behavior on 7,
(III) Hy(x)=f(r) for almost all ¢ € /", where I", is the family of curves
defined in 1.1.

By Theorem 2 we must confine ourselves to the case where the closed set
« is not L-null. ,

Condition (III) means that the function H; assumes f on « in a certain
sense. We find in M. Ohtsuka [9] that if a boundary component in « is re-
alized as an analytic curve C in the plane and a boundary value function f
can be continuously extended to C, then condition (IH) induces that H; is con-
tinuously extended to C and is equal to f on C.

4.2 Ewxistence theorem

We see by the next example that the problem does not in general have a
solution. '

Let an open Riemann surface W be a circular slit disk

{z: |2 <1} —O{z: |z]=1—1/n, 0<argz<nz}. Let a closed set « on B(W)
n=1

be the buondary component of ¥ corresponding to {z: |z|=1}. We take the
system L, for L and take f for a continuously differentiable function on
{z: |2|<3/2} which is 0 on {z: |z|=1, —r/4<argz=<=z/4} and is 1 on
{z: |z| =1, 3n/4<argz=>5n/4}. Then there is no function H; with pro-
perties (I), (I1I), (III). In fact, if such a function H; exists, properties (I), (III)
induce H;=0 on {z: |z|=1, —n/4<argz<0} and H;=1 on {z: |z| =1, <
argz<bm/4}. On the other hand, we obtain by (II) that the function H; is
constant on each slit {z: |z|=1—1/n, 0<argz<n}. We can see that the
Dirichlet integral of H; over the intersection of W with any neighborhood of
z=1or z=—1 in the plane is infinite. This is a contradiction to property
D.

We shall give two sufficient conditions for the existence of H;. The one
is-obtained by imposing the following stronger condition (B) on a boundary
value function f:

(B) There is a W, e U with 3(W,) D« such that
(By) f is continuously differentiable in W, and has Dy (f)< oo,
(B;) for any Ve U such that ¥C W, and B(V)Cy, the equality

SB  f(dLygy*=0 holds for all g€ C'@P).
V)

Turorem 8. Suppose that the closed set « is not L-null. Let f be a func-
tion satisfying conditton (B). Then —(27r)'1g f(eNdgi(z; &, a))* defines a
Sunction H () in W which satisfies conditions (1), (II), (IID).

Proor. Let {£,} be an approximation of W toward « such that 2, >3 W,
and W,>082,, where W, is the 'set stated in condition (B). We set a,=0%2,
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and L,=Lg f.

Suppose m>n. We see by (**) in 2.2 that L, f=L,(L,f)on 2,. It follows
from (*) in 2.1 that

Do (Lof, Tnf) =Da(LuEnf ) Lnf) = § FALLnf O = f(dLnf)*.

By virtue of condition (B;) for f, we have

FaLnfy = f(dLa, -2 (Luf)*=0.

S B(2p—2,)

Hence Green’s formula implies that

J, . =] F(ALnf)* = Do_o(fs L ).

B8y -2, +a,—a

This, together with Do (L,f)= ga f(dL,f)*, implies that Dg (Lnf, L.f)
_— Sam_% FALnf )+ Sam (AL f)* _ Do —0.(f, Lnf)+ Do (Lnf). It follows
that, for m>n,
0=Do(Lnf—Luf)=Dgo,(Lnf)—2De (Lnf, Luf)+ Do (Luf)
= Do (Luf)— Do, (Lnf)+2De, 2 (f, Luf)
= Do (Lnf)—Do,(Luf)+2VDg (LnfWDe, _a,(f)

or

VDo, (L f)=VDo (Lo f)+ Do, 2,(f )T VDo, 2,(f)-

Therefore, letting m— co, we obtain limvDg (Lnf)<VDe (L.f)+Dw_z(f)

m—oo

+VDw_g (f)- This shows that {Dg (L,f)}. is bounded. Next we let n—co
and have lim Do (L, f)<lim D¢ (L, f). Hence lim D¢ (L, f) exists and is finite.

n—oo

Therefore we have Dy (Lnf—L,f)—0 as n and m(>n) tend to co.
Now, we fix £ € . Since the set « is not L-null, Theorem 1 implies that
the L-Green function gi(z; ¢, a)=lim g.(z; &, «a,) exists. To simplify the

notation we write gr(z; ¢, @)= gand gu(z; ¢, a,)= g, Computing Do (g, L.f)
as Cauchy’s principal value, we have

Lf©=— o | fdgr

Let n, be any integer such that £, 5. If n =n,, then we obtain, by
(By) and by the fact that g,=Le, 2,,(g.) on 2,—2,,,
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Da-an(fs e ={  fldg),

that is,
[ rdgys = fdg)*+Daya(f, &0

On account of Lemma 6 we see that limg f(dgn)* exists and is equal to
S f(dg*+Dw_z,,(f, g. Namely,

limL, Q)= = o= f(de*— o Dv a(f; &

Ang

Letting no— oo, we conclude that —(27r)“§ f(dg* exists and is equal to
limL,f(¢). It is denoted by Hy((). It follows from limDg (Lnf—L,f)=0

n—oo

that L,f converges to H; uniformly on any compact set in W, H; is harmonic
in W and lim Dw(H;—L,f)=0. Hence H; satisfies condition (I). On applying

70

Lemma 4 with u,=L,f, we see that H; also satisfies (II). Finally, we shall
prove that H; satisfies condition (III). Properties (E2), (E4) of extremal length
in 1.3, together with Dy (f), Dw(Hy)< oo, imply that there is '} C I, such
that A(I",—I'¥)=cc and f(r), Hi(r) exist and are finite for all v ¢ I'Y. Extend
the function L, f to W —2, by f and denote it also by L,f. Applying Fuglede’s
lemma with {o,|dz|}= {|grad(L,f—Hy)||dz|}, we find a subsequence

{04, dz|} such that limg |grad(L,, f—Hy)||dz| =0 for almost all c € I'¥. By
koo JT

limg ]grad(Lnkf——Hf)[ldzlglimS ]dL,,kf—dHflgHimg dL,,kf~S dH;|
T k= JT koo JT T

koo

= | {f(f)jingnkf(f(O))} — {H{(©)— H{(z(0))} | = | f(r)— Hy(c)| where (0) is the

intial point in W of the curve r, we have Hy(c)=f(c) for almost all r € I'}. It
follows from A(I",—1I"%¥)=rco that Hx(t)=f(r) for almost all z € I",. The proof
of Theorem 3 is complete.

Here we show examples for which condition (B) is fulfilled:

(Cl) Suppose « is isolated. Any function f satisfying condition (A) does
always satisfy condition (B).

(C2) Suppose L is the system L,. Then the same result as in (Cl) is valid.

(C3) If we can choose W, € U with 8(W,) D« such that f is constant on
each connected component of W, then f satisfies condition (B).

(C4) 1If we can choose W, € U with B(W,)Da such that f satisfies (B,)
and has L or 0-behavior on 8(W,)—«, then condition (B) is fulfilled.

In fact, in the case where « is isolated, we can find W€ U such that
B(Wy=aand W;C W, Then thereisno ¥ € ¥ suchthat VC W;and (V).
Hence condition (B) is fulfilled. In the case L=L,, the result is proved by
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the characterization of Loy in. K. Oikawa [107]. (C3) follows from the fact
that S (dLy g)*=0 for any dividing cycle 5 of W which is contained in 7 and
8

does not separate components of 0V (see 2.2). (C4) follows from (6) in 2.1.
Let us give an other sufficient condition for the existence of a function
satisfying conditions (1), (IT), (III). We begin with the following lemma:

Lemma 7. Assume that an open Riemann surface W is hyperbolic.”)
Denote by v, the harmonic measure of -« with respect to W. If X[ ..,)>0,Y
then (I 4.,)=1/Dw{w,), where I, ., is the family of curves defined in 1.1.

Proor. Let {«,} be a sequence of isolated sets on (W) such that «, 1D,

oo

and N\a,=a. We writer,=3(W)—a,. We define v, as follows: If auUr,

n=1
is not L,-null, then w,(&)= —(271)'18 wAdgr,(z; ¢, a\Ur,))* where w,=1 on
au,

a Vye U with 8(Vy)=«a, and =0 on a ¥, with 8(V)=r, and VonVi=¢. If
a\Ur, is Le-null, then 0,(8)=0. It follows from Theorem III in 3.1 of A.
Marden and B. Rodin [5] that 0<A(I"s,,) < A a,»,)=1/Dw(w,). In particular,
Dw(w,) =1/ 4,,)<oo. Obviously, limw,=w, in W. By standard approxi-

mation method we have Dy(w, — w,) = Dw(w,) — Dw(w,) for m>n. Hence
lim Dy(w, —,)=0 and lim Dy(w,)=Dw(»,). On the other hand, applying (E3)

n— n—o0 .

in 1.3 with I",=TI",, , we obtain lim /I(I"a,,,")zl((ajfa,yn)z/l(l"a,y). Consequ-
. n—o0 n=1
ently, 2(/"a,,)=1/Dw(w.).

Tueorem 4. Suppose « ts not L-null and there exists a sequence {a,} of

1solated sets such that o, Do, 1, /“\acnza and limA(Z'e, ) =2 "a,)>0 where
n=1 oo

n—oo

Tw=B(W)—a,. Assume that f satisfies condition (A) and is bounded. Then
there exists a function which satisfies (1), (II), (III) and is bounded in W.

Proor. Let 0, (resp.w,) be the harmonic measure of «, (resp.«) with
respect to . It is well known that (/' ., )=1/Dw(w,). It follows from
limi(l'a, 5,) =21 «.y) >0 that {Dy(w,)}, is bounded. Obviously, w, converges

n—o

to w, locally uniformly in #. Hence lim Dg(w,—w,)=0 for any compact set

n—ro0

K in W. We see by Lemma 7.4 in C. Constantinescu and A. Cornea [3]
that lim Dy(w,, v) = Dw(w,., v) for any Dirichlet function » on W. Fatou’s

n—ro0

lemma implies that lim Dy(w,)=Dw(w.). By Lemma 7 and our assumption,

n—ro0

we have lim Dy(0,)=1im Vil e, y)=1/MIo,)= Dw(w.)=lim Dw(w,). That is,

n—oo n n—oo

© 2) If W is parabolic, A(I',,,) is cc.
3) If AI',,,)=0, then the equality (I, ,)=1/Dy(w,) does not necessarily hold.



Distinguished Normal Operators on Open Riemann Surfaces 239

lim Dw(w,)= Dw(w,). Hence, lim Dy(w,—w.)=0.

Let |f|=M in W, where WV, is the set defined in condition (A). We may
assume that /' is continuously differentiable on ¥, Extend f to W—W,in
such a way that fe C(W), Dy(f)<oo and |[f|==M in W. Consider the
Dirichlet function s, (resp.s) = min(max(f, —Mw,), Mo,)(resp. min(max(f,
— Mo,), Mw,)). We denote by S, (resp.S) the harmonic part of s, (resp.s) in
the Royden decomposition. Theorem 7.4 in C. Constantinescu and A. Cornea
[3], together with lim Dy(w,—w,)=0, implies lim Dy(s,—s)=0 and hence

n—>oo n—soo

lim Dw(S,— S)=0. Using (E2), (E4), (E5) in 1.3, Lemma 1 and Fuglede’s

n—o

lemma, we have
0n(t) = 0a(t) = 1,
$4(0) = 5(2) = f (),
Su(t) = S(v) = f(7)
for almost all c € I",. Furthermore, s,(r)=0 kfor almost all €7, , and hence

s(t)=S()=0

for almost all ce I'= \U]"W It follows from (E5) in 1.8 that for any VeV
n=1

with B(V)r, the function S is equal to HY. Namely, S has 0-behavior on 7.
Consequently (C4) implies that Theorem 3 is applicable to S and a function
Hs is obtained as in Theorem 3. Because of S(r)=f(c) for almost all r € I,
we see that Hj satisfies conditions (I), (II) and Hs(r)=f(c) for almost all c € I',.
Moreover, it is easily proved that our function Hs is bounded in W. We
have thus completely proved Theorem 4.

4.3 Untiqueness theorem

The next example shows that, for some L, a and some f, the existence
of a function with properties (I), (II), (III) is true but the uniqueness is not
true: :

Let an open Riemann surface W be the circular slit annulus

(2:1/2< 2| <1} —\J{z: |z| =1—1/n, 1/n <arg z=2r—1/n}. Leta closed
n=3

set « on B(W) be two boundary components of # corresponding to {z: |z]|
=1/2} and {z: |z|=1}. Obviously, the set « is not L;-null. We take the
system L, for L and take a boundary value function £ to be 0 on {z:1/2<
|z|<2/3} and 1 on {z:3/4<|z|<1}. If we denote by o the harmonic func-
tion on the annulus {z: 1/2=<C|z| <1} such that w=0 on {z: |z| =1} and =1
on {z: |z| =1/2}, then for any real number % the function ke satisfies condi-
tions (1), (D), (I1D).

To investigate the uniqueness theorem for H; is equivalent to study the
following problem:
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Is it true that a function ¢ in W such that

(I) ¢ is harmonic in W and has Dy(p)< oo,
(II") ¢ has L-behavior on 7,
")  ¢(z)=0 for almost all c € I,

must reduce to zero?

If o is Lo-null, then (III") is meaningless. It follows that any constant
satisfies (I"), (II"), (III"). Hence in the sequel we assume that « is not Ly-null,
ie., A(I",)< eo.

We find in M. Ohtsuka [7], [9] that the uniqueness theorem holds for
the system L,. We shall prove the following uniqueness theorem:

TueoreM 5.  Suppose that the closed set a is not Ly-null and is isolated on
B(W).Y  Then the uniqueness theorem holds for any system L.

Proor. Let ¢ be any function in W with properties (I"), (II"), (III"). Since
« is isolated, we can choose an approximation {£2,} of W toward « such that
B(2,)=r for all n. Consider the sequence of Dirichlet solutions H2- (see (E5)
in 1.3). We can see lim D, (H#»— H2»)=0 by the same reasoning as that

n,m—>e°

showing lim D, (L, f—L,f)=0 in the proof of Theorem 3. Hence there is a

harmonic function H in # up to an additive constant such that lim D, (H— H?»)

n—e0

=0. Extend Hf» by ¢ to W—£, and denote it by @,. Properties (E2), (E4),
(E5) in 1.3, together with (III'), imply that there is /™*C/ gw, such that

/I(F,é(w)—l“*)zoo and 0,(t)=0 for all e 7™ and all n. That is, S do, =

—,(z(0)). Applying Fuglede’s lemma with {p,|dz|}={|grad(®,— H)||dz|},

we conclude that there is a subsequence {o,,|dz|} such that, for almost all

v 1'%, 0=lim| |grad(@,,— H)| | dz| =1im| |0,,—dH|=lim| do,, —{ am| =
koo JT koo JT T

ko)t
| —lim 0, (<(0))— g dH|. Hence lkim 0,,(r(0))=1im H2(z(0)) exists and is finite.
o0 T —00 koo

It follows from A(",)< == (Proposition 2) that lim H# ¢ exists and is harmonic

koo

in W. We can easily infer that, for the original sequence, lim H2» exists.

700

Set H=1lim H#» (=1im®,). By the above computation, 0 = —H(r(O))—g dH

n—oo n—so0

for almost all reI'*. Otherwise stated, H(cr)=0 for almost all r € Igmw,.
It follows from Lemma 1 that the function H reduces to zero.

On the other hand, since ¢ has L-behavior on 7, Lo ¢=¢ on 2,. This,
together with Lemma 2, implies that

4) Suppose a is isolated on S(W). Then we easily see that « is L-null if and only if a is Ly-null.



Distinguished Normal Operators on Open Riemann Surfaces 241

0=Dy(p) = Dyp(H—9¢) = },39 Dy (Hf»—Lg,0)
= 11313 {Do,(Hy") = Dg,(Lg,9)} = —lim D, (9) <0,

or Dy(¢)=0. Hence ¢ is a constant. It follows from (III') that ¢ reduces to
0. This completes the proof.
Finally we shall show the following uniqueness theorem:

TuroreM 6. Suppose « satisfies the same conditions as in Theorem 4. Then
any function ¢ which satisfies conditions (1), ("), (III") and is bounded in W
must reduce to zero.

Proor. Replacing by ¢ the extended function f in the proof of Theorem
4 and otherwise using the same notations, we have lim Dw(S,—S)=0 and

n—ro0

S(t)=0 for almost all r € I'gw)=1I,JI",. It follows from Lemma 1 that S is
identically zero. Now, fix n. Take an approximation {2;} of W toward «,.
Then the sequence of Dirichlet solutions H?* tends to S, pointwise in W and
in terms of Dirichlet norm. It follows from the Remark in 2.1 and D, (¢p) =

[, #Cde)* that Dy(S,, )=lim Dy (HEx, @)= lim | Hodg) =lim | eldgy
—hm Dy, (¢9)=Dy(p). Hence Dw(S,) = Dw(p). On letting n— o0, we obtam
Dw(qa) 0. We see by (IIT") that ¢ is equal to zero.
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