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Introduction

In the paper [3] E. Kunz has proved the following:

Let R be an integral domain with quotient field Ky S be a subring of R
and k be its quotient field. If the module of S-differentials of R is finitely
generated and if the module of k-differentials of k has rank r, then the (r— l)-th
Kahler different of R over S vanishes and the r-th Kdhler different does not

In connection with this fact we introduce the following notion. A fi-
nitely generated module (over a commutative ring with unity element) is said
to be a module of type (Fr) if its (r — l)-th Fitting ideal (i.e. Determinanten-
ideal in [2Γ\) is the zero ideal and its r-th Fitting ideal is a regular ideal.

The purpose of this paper is mainly to study the torsion submodule of a
module of type (Fι). In §1 we give the definition of a module of type (Fr)
and state some properties of modules of this type. In §2 we study the tor-
sion submodule of a module of type (Fi), and in §3 we prove that, for a no-
etherian domain R of Krull dimension one, an i?-module of type (Fι) is the
direct sum of its torsion submodule and a free module of rank one if, and
only if, its dual module is a free module of rank one. In §4 we apply the re-
sults of the preceding sections to the module of differentials on an affine
curve defined over a perfect field.

Throughout this paper, all rings will be assumed to be commutative with
unity element and all modules to be unitary.

The writer wishes to express his thanks to Professor Y. Nakai, who has
often helped him with discussion out of which the ideas in this work de-
veloped.

§1. The module of type (Fr)

Let R be a ring and M be a finitely generated /^-module. For a system
{%ι, ..-, xn} of generators of M there is an exact sequence

(1) 0 >N >Rn-%M >0,

where Rn is a free /^-module with a system {eu •••, en} of basis, the iMiomo-
morphism φ is defined by φ(ej)=χj and N is the kernel of φ. Let N be gener-
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ated by ux=fxleι + ••• +fXnen, with λ in some index set A. We shall denote by
§ί(M) the ideal which is generated by all the (n — t)x(n — t) minors of the
matrix

l f\H

\
For t ;> n %t(M) is defined as the unit ideal, and for t < 0 ^ ( M ) is defined as
the zero ideal. The ideal %(M) will be called the t-th Fitting ideal of the
module M. It is known that %(M) is the invariant ideal determined by M,
that is, it is determined uniquely by M and it does not depend on the choice
of the system of generators of M (cf. []2]). It follows from the definition of
g,(M) that f$ί(Λf)cg/+1(j|f). Moreover, it can be shown directly that go(M)C
Ann M and (Ann M)w c go(M) for sufficiently large m, where Ann M is the anni-
hilator of M.

We shall say that a finitely generated i?-module Mis of type (Fr)Af the
(r —l)-th Fitting ideal gr_i(M) is the zero ideal and the r-th Fitting ideal
g r(M) is a regular ideal.1)

Let R be a ring and M be an i?-module. An element in M will be called
a torsion element in M if it is annihilated by a non-zerodivisor in R. The
submodule of M, which consists of all the torsion elements in M, will be called
the torsion submodule of M. If M coincides with its torsion submodule, M
will be called a torsion module.

PROPOSITION 1. Let R be a ring and M be a finitely generated R-module.
Then M is of type (Fo) if and only if M is a torsion module.

PROOF. Since (Ann M)m c go(M) c Ann M, the radical of f$0(Λf) coincides
with the radical of Ann M. Hence, %o(M) is regular if and only if Ann M is
regular, that is, Mis of type (Fo) if and only if AnnM is a regular ideal.
Therefore, the only if part is obvious. Conversely, assume that M is a tor-
sion module and let {#i, , χn} be a system of generators of M. Since Ann x{

is a regular ideal for each ί, AnnM is regular. Consequently, M is of type
(Fo). q.e.d.

Although it can be derived directly from the result of Kunz [3], we give
a proof of the following theorem for the sake of completeness.

THEOREM 1. Let R be a local ring, M be a finitely generated R-module and
r be a positive integer. Then, M is a free module of rank r, if and only if M
is of type (Fr) and the r-th Fitting ideal of M is the unit ideal.

1) An ideal is said to be regular if it contains a non-zerodivisor.
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PROOF. Assume that M i s a free module of rank r, then in the above
exact sequence (1) we can put n — r and N=0. This implies that g ί(Λf)=0
for t < r and %r(M) is the unit ideal. The proof of the if part is as follows:
Let {#i, • ••, xn] be a minimal generating system of M. Taking any genera-

n n

tors ux=Σifλjej of iV( = the kernel of φ in the sequence (1)), we have Σfxjxj
. 7 = 1 .7 = 1

= 0, and hence all fλj are in the maximal ideal of R. Hence %(M) is a proper
ideal in R for t<n. By the assumptions this implies that n = r and, gr_i(M)
= 0, and therefore, since g f_i(M) is generated by all / λ ; , JV=O. Thus M is
isomorphic to Rr. q.e.d.

§2. The torsion submodule of a module of type (Fi)

It follows from Proposition 1 that the torsion submodule of an i?-module
M of type (ίΊ) is properly contained in M. The aim of this section is to prove
the following:

THEOREM 2. Let R be an integral domain, M be an R-module of type (JF\)

and T be the torsion submodule of M. Then there exists a non-zero ideal b con-
tained in the first Fitting ideal of M and an R-homomorphism Φ of M into b
can be defined such that the sequence

(2)

is exact.

0 • 0

Let R be a ring and Mbe an i?-module of type (ί\). Assume that M is
generated by n elements xu • •-, xn and consider the exact sequence (1) in §1;

0 • 0 .

In order to prove Theorem 2 we shall first study the module φ~\T) where T
is the torsion submodule of M.

With the same notations as in the definition of the Fitting ideal in §1, we
consider the nxn determinant

Λ

for a system {μu •••, μn.χ} of n — 1 elements in A and for an element
Λ-anen in Rn. Let g^j be the cofactor of this determinant with respect to
dj. Since the 0-th Fitting ideal f$0(ΛΓ) is the zero ideal, we have
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(3) ΛiffO}; i + * * +hng{μy, n = 0

for all Λ in Λ and for all systems {βι, • •-, /^_i}. From the relations/
\nXn = Q (λ c Λ) in M, we have

for z, A = l, , n and for all systems {μu , /^_i}.
Let L be the submodule of Rn generated by the elements

such that aigWΛ + .. +angw.,H = O for all systems {μu .-.,/^_i}. Then, by
the relations (3), the module L contains JV( = the kernel of φ in (1)).

LEMMA. Let M, N and L be the same as above and T be the torsion sub-
module of M. Then the sequence

(5) 0 >N >L-^T >0

is exact, where the map φr is the restriction on L of the map φ in the sequence

(1).

PROOF. First we shall show that φ'(L)^ T. Let x = Σa,jXj be an element
3=1

n

of φ\L). Then, since Σ^jg{μyj = ^, we have
3 = 1

yk% = Σ aj(g{μykXj —

Hence, by the relations (4), we have g{μy,kχ = θ for & = 1, , n and for all
systems {/*i, •-, βn-ι}- Since %ι(M) is generated by all g{μy,k, this implies
that f?i(M) is contained in Ann x, and hence Ann x is a regular ideal. Con-
sequently, x is a torsion element in M.

Next we shall show that the map φ': L -> T is surjective. Taking any ele-
n

ment x=ΣajXj in Γ, then ax = 0 for some non-zerodivisor a in R. This means
3 = 1

n
that the element aiΣaje/) in Rn is in TV. Hence we can write aaj=Σafχtj

3 = 1 i

(y'=l, •••, n; λj e A; CJ e R). Therefore, we have

jg{μy,j
3=1 i 3=1

n

Hence, by the relations (3), we have Σajg{μy,j = Q for all systems {μu ..., μH-ι}.
3 = 1

n n

This shows that the element Σ^j^j is in L and ^ ( Σ ^ y ) - ^ -
.7 = 1 3=1

Finally, since NQ L, it is obvious that the kernel of φ' is JV.
q.e.d.

As a direct consequence of the proof of this lemma, we have the follow-
ing:
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COROLLARY. Let Rbe a ring and M be an R-module of type (F{). Then
the first Fitting ideal of M is contained in the annihilator of the torsion sub-
module of M.

From now on we assume that R is an integral domain. Let {vi, •-, vn-ι}
be a fixed system of n — 1 elements in A such that at least one of g{Vyj ( / = 1 ,
• ••, n) is not the zero element, and put gj — g^yj-

Let L be the above defined submodule of Rn. Then it is defined by the
n n n

one relation Σ ajgj = 0,, i.e., L = { Σ α, βy | Σ ajgj — 0}
i=\ j=ι y=i

In fact, let {/a, ••> A«-i} be another system which has the same property
as {vi, .-., vw_i}. Then, since %o(M) is the zero ideal and since R is a domain,
we have

where c^ and cμqi are the elements in i?, cμqΦ0, and wλ= Σ/λyβy Hence, we

have cfg{μ};j = cgj (y = l, ••, ̂ ), where c is the (rc —l)x(ra —1) determinant
|c^ρl | and c/ = ciltl...c/tn_1. It is clear that neither c nor cr is the zero element

n

in R and they do not depend on the index j . Therefore, Σ ajgj = 0 if and only
i = i

if Σ ajg{μγ,j — Q' Consequently, L is defined by the relation Σ ajgj=Q'
j=i y = l

Let b be the ideal in R generated by gu •-, gn. Then the non-zero ideal
b is contained in §i(Λf). Let 0 be the i?-homomorphism of jf?w into b defined
by Ψ(ej)= gj, then the map φ is surjective and the kernel of ψ is L. There-
fore, we have the exact sequence

(6) 0 >L >Rn >b >0.

REMARK. If the module N in the sequence (1) is generated by n — 1 ele-
ments, then the ideal b coincides with f§i(Af).

PROOF of THEOREM 2: From the exact sequence (1), (5) and (6) we have
the commutative diagram

0 —

0 —

0 —

0

I

1
0

I

Ί
1
->M—

-> 0

I
-> b -—>0

—>0
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n n

where the map a is defined by σ(Σ <*//?/) = residue class of Σajxj module T.
j=l 3 = 1

Since in the above diagram three rows, the first and the second column are all
exact, the map a is an isomorphism. Therefore, we have the exact sequence
(2). This completes the proof.

§3. The free dual of a module of type (F1)

PROPOSITION 2. Let Rbe a noetherian ring of Krull dimension one and a
be an ideal in R. If Ή.omR(a, R) is a free R-module of rank one, then a is a
regular principal ideal and conversely.

PROOF. Let/ be a free base of Hom*(α, R). Assume that α is not regular,
then there exists a non-zero element x in R which annihilates α. Hence
χf=0. This is a contradiction. Therefore, α is a regular ideal. Let {au ,
an} be a system of generators of α such that a\ is a non-zerodivisor and let b
be the ideal in R generated by /(αi), ••-,/(«»). Then since f(aχ) is a non-
zerodivisor, b is a regular ideal.

We shall now show that Ra :b=Ra for any non-zerodivisor a in R.2) Let
y be an element in Ra : b, then there exist n elements &i, , bn in R such that
yf(aj) = bja (y = l, •••, n\ and then we can define an i?-homomorphism g of α

n n

into R by g(Σιrjaj)=Σrjbj.) Since / is a base, we have g=bf for some
j=1 j=l

element b in R, and hence bj = bf(aj) (/=1, , n). Therefore, since /(αi) is a
non-zerodivisor, we have y= ba. This shows that y is in i?α.

Next we shall show that b is the unit ideal. Suppose that b is not the
unit ideal, then there is a maximal ideal m in which b is contained. Taking
a non-zerodivisor c in m, then m is an associated prime ideal of the principal
ideal Re. Therefore, we see Re: bφRc. This is a contradiction.

From the fact that b is the unit ideal, we can deduce the existence of ele-
n n

ments c i? , cn in R such that Σ Cjf(aj) = l. Put d— Σ <?yo/, then it is easy to
see that α is generated by the element d.

The converse is evident. q.e.d.

The following example shows that Proposition 2 is not true if Krull
dimension of R is greater than one.

EXAMPLE.4) Let R = k [X, Y~] be a polynomial ring in two indeterminates
X and Y over a field k and α be the ideal generated by X and Y. Then

2) The proof of this part is due to Y. Nakai.

3) In fact, let Σ5yα./ be another representation of Σr.7αj> then we have Σ r j / ( α j ) ~ Σ 5 j / ( α j

Multiplying this relation by y, we have α Σ r Λ = α Σ 5 A » a n d hence 'Σirjbj = ̂ Σ1sjbj. This shows that

is well defined.

4) This example is due to H. Yanagihara.
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Hom#(α, R) is a free module of rank one.
In fact, let/ be any element in Hom#(α, R\ then we see f(XY)=Xf(Y)

= Yf(X). Hence, there is an element C in R such that f(X) = CX and
/( Y) = C Y. Therefore, f(AX+ BY) = C(AX+ B Y) for any AX+ B Y in α. This
shows that Hom#(α, R) = Rί, where ί is the inclusion map of α into R.

Let R be a noetherian ring with total quotient ring K, then the following
facts are known (cf. [I]).

a) Let α be a regular ideal in R and put a~ι={χ e K\ xa^R}, then a~ι is
a finitely generated i?-module in K and is isomorphic to Hom#(α, R).

b) Let f be an i?-module in K such that \K=K, then f is invertible if and
only if f is a finitely generated iϋ-module and f(g)i?m is a free i?m-module of

R

rank one for any maximal ideal m in R, where Rm is the quotient ring of R
with respect to m.

From these a) and b) and from Proposition 2 we can easily deduce the
following:

PROPOSITION 3. Let R be a noetherian ring of Krull dimension one and a
be a regular ideal in R. Then, a is an invertible ideal if and only if Hom^α, R)
is a protective module.

PROOF. The only if part is evident. Assume that Hom^α, R) is pro-
jective, then the i?-module α"1 is invertible, and hence a~1^>Rm is a free Rm-

R

module of rank one, that is, KomRm(aRm, Rm) is a free i?m-module of rank one
for any maximal ideal m in R. Therefore, by Proposition 2, aRm is a regular
principal ideal in R „ for any m, whence α is invertible. q.e.d.

We now state and prove the main theorem in this paper.

THEOREM 3. Let R be a noetherian domain of Krull dimension one and M
be an R-module of type (ί\). Then the following conditions are equivalent:

i) The module M is the direct sum of its torsion submodule and a free
module of rank one (resp. a protective module).

ii) The module Hom#(M, R) is a free module of rank one (resp. a protec-
tive module).

PROOF. Let T be the torsion submodule of M. By Theorem 2, there exist
a non-zero ideal b in R and a map Φ: M-^b such that the sequence

0 > T >M-%b >0

is exact. Dualizing of this sequence, since Ή.omR(T, i?) —0, we have
Hom#(M, i^)^Hom^(b, R). If ii) is true, then Hom#(b, 7ϋ) is a free module of
rank one (resp. a projective module). Hence, by Proposition 2 (resp. Proposi-
tion 3), b is a principal ideal (resp. an invertible ideal). Therefore, the above
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sequence splits. This implies i). Since Ή.omR(T, R)=0, it is obvious that i)
implies ii). q.e.d.

REMARK. Let b be the same ideal as that in Theorem 2. Then the proof
of Theorem 3 shows that the conditions i), ii) and the following condition iii)
are all equivalent.

iii) The ideal b is a principal ideal (resp. an invertible ideal).

§4. Applications

Let V be an r-dimensional irreducible affine variety defined over a perfect
field k and W be an irreducible subvariety of V/k. We assume that V/k is
embedded in an affine ra-space, that is, V is defined by a prime ideal p in the
polynomial ring A = k\lXi, •••, Xn~} Let q be the prime ideal in A which cor-
responds to W, then the local ring R of W on V is the ring AQ/pAQ, where AΛ

is the quotient ring of A with respect to q. The prime ideal pAq is generated
by at least n — r elements in Aq. In particular, if pAQ is generated by n — r ele-
ments, we shall say that V is a complete intersection locally at W. Let {/i,
• ,/m} be a system of generators of pAq and / ί ; be the :p^4q-residue of the

partial derivative -^~. Then, since A: is a perfect field, the rank of the Jac-

obian matrix

is equal to n — r (cf. [_7J). Hence the ideal % which is generated by all the
(n — r)x(n — r) minors of /, is not the zero ideal and the ideal, which is gener-
ated by all the (n — r + l)x(n — r + ΐ) minors of /, is the zero ideal in R. We
shall call the ideal $5 the Jacobian ideal of R. It is well known that the Jac-
obian ideal $ of R is the unit ideal if and only if the subvariety W is simple
on V.

With the above notations and assumptions, let Dk(R) be the i?-module of
/^-differentials of R, let Rn be a free i?-module with a system {ei, •-, en} of
basis and let iVbe the submodule of Rn generated by the 771 elements ui —
faei+ - >+finen (i = l, •••, m), then it is known that the module Dk(R) is iso-
morphic to the residue module of Rn by TV, that is, the sequence

0 >N >Rn >Dk(R) >0

is exact. (For the definition of the module Dk(R) and the above mentioned prop-
erty see [3] or [5].) Therefore, the r-th Fitting ideal of Dk(R) is equal to
the Jacobian ideal $ of R and the (r —l)-th Fitting ideal is the zero ideal.
This shows that the module Dk(R) is of type (Fr). Moreover, the fact that
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the Fitting ideal of Dk(R) is the invariant ideal of Dk(R) means that the Jac-
obian ideal 3 of R is independent of the choice of the affine embedding of
V/k.

From the definition of Dk(R) the dual module Df(R)=ϊlomR(Dk(R), R) of
Dk(R) may be identified with the module of A -derivations of R into itself.
Since the defining field k of V is perfect, it is known that if D%(R) is free then
the rank of Df(R) is equal to the dimension of V/k (cf. [4]). Therefore, if
Dk(R) is free then the rank of Dk(R) is equal to the dimension of V/k.

Applying these facts to Theorem 1 in §1, we have the following well
known:

THEOREM 4. Let V be an irreducible affine variety defined over a perfect
field k, W be an irreducible subvariety of V/k and R be the local ring of W on
V. Then, the module Dk(R) of k-differentials of R is a free R-module if and
only if the subvariety W is simple on V. Moreover, the rank of Dk(R) is equal
to the dimension of V/k.

From now on we will restrict the variety V to a curve. Let P be a point
of an irreducible affine curve V and R be a local ring of P on V. If V is a com-
plete intersection locally at Pand if we put M=Dk(R) in Theorem 2 in §2,
then the ideal b in Theorem 2 coincides with the Jacobian ideal of R (cf. Re-
mark in §2). Therefore, as a corollary of Theorem 3 in §3, we have the fol-
lowing:

THEOREM 5. Let V be an irreducible affine curve defined over a perfect
field k, Pbe a point of V/k and R be the local ring of P on V. Then the follow-
ing conditions are equivalent.

i) The module Dk(R) of k-differentials of R is the direct sum of its torsion
submodule and a free R-module.

ii) The module D%(R) of k-derivations of R into itself is a free R-module.
Moreover, if V is a complete intersection locally at P, then i), ii) and the

following condition iii) are all equivalent.
iii) The Jacobian ideal 3 of R is a principal ideal.

REMARK. Clearly Theorem 5 is valid if we replace R by the affine ring
of V/k.

If the characteristic of k is zero, it is shown in [4] that Dk(R) is free if
and only if D%(R) is free. However, in the case of positive characteristic,
the freeness of Dk(R) is not deduced from the freeness of D*(R). In fact:
Let A; be a perfect field of positive characteristic p, V/k be the plane curve
defined by the equation Xp— γp+1 = 0 and R = k[_χ, γ](X,y) be the local ring of
the origin on V. Then, although D*(R) is free, Dk(R)^R®(R/Ryp) (direct
sum).

The following example shows that Theorem 5 is not true for higher
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dimensional varieties.

EXAMPLE. Let & be a perfect field of positive characteristic p. Let V/k
be the irreducible surface, in an affine 3-space, defined by the equation
XY-Zp=0 and P be the origin. Then Df(R) is free and Dk(R) is torsion
free, however, not free.

PROOF. For the fact that Df(R) is free see [4]. It is clear that P is a
singular point of V, and hence Dk(R) is not free. The direct proof of the
fact that Dk(R) is torsion free5) is as follows: Let V/k be an irreducible sur-
face, in 3-space, defined by the equation /(X, Y, Z) = 0 such that /(0, 0, 0) = 0
and let R = k[_x, j , z~](x> y> z) be the local ring of the origin on V. Then, it is
easy to show that a differential ω = adx + bdy+cdz (α, ό, c e R) is a torsion
element if and only if afy = bfx, bfz = cfy and cfx = afz, where fx=fχ(χ, y, z)
etc.

In our case, since fx= y,fy = χ a n d / ^ 0 , a differential ω = adx-\-bdy+cdz
is a torsion element if and only if ax —by and c = 0. On the other hand, since
zp=xy, the Jacobian ideal $=(#, y)R is an m-primary ideal where m is the
maximal ideal of R. Since V is a complete intersection locally at P, i? is a
Macaulay ring and hence both {x, y} and {y, #} are prime sequences. There-
fore, ax —by implies b e Rx and a c Ry, whence there exists an element u in
R such that a—uyenciά b = ux. Hence, we have ω=u(ydx + xdy) — 0.

q.e.d.
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