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0. Introduction

In this paper, all rings considered are assumed to be commutative rings
with an identity element. It is known that an integral domain D may contain
an idempotent proper ideal 4. But when this occurs, 4 is not finitely gener-
ated [ 21, p. 2157, so that D is not Noetherian. Also, it is easy to show that
for any positive integer % there exists a ring R which is not a domain and
such that R contains an ideal 4 with the property that 4> 42> ... D 4*=
A*'=..., Whether an integral domain R with this property exists is a
heretofore open question which we answer affirmatively in §2.

Nakano in [[167] has considered the problem of determining when an ideal
of D is idempotent, where D is the integral closure of Z, the domain of ordin-
ary integers, in an infinite algebraic number field. In fact, the paper [16] is
one of a series of papers which Nakano has written concerning the ideal struc-
ture of D. In [187], Ohm has generalized and simplified many of Nakano’s
results from [16 ] and [177], showing that as far as the structure of the set of
primary ideals of D is concerned, the assumption that D is the integral closure
of Z in an algebraic number field is superfluous; the essential requirement on
D being that it is a Priifer domain according to the following definition: The
integral domain J is a Priifer domain if for each proper prime ideal P of J, J»
is a valuation ring; equivalently, J is a Priifer domain if each nonzero finitely
generated ideal of J is invertible [ 10, p. 554 ].

Following Ohm’s example, we show in §3 that most of Nakano’s results
in [167] carry over to the case when D is the integral closure of a fixed Priifer
domain D, in an algebraic extension of the quotient field of D,.

If Jis an integral domain with quotient field K, a domain J, between J
and K will be called an overring of J. In case J, is a valuation ring, we call
Jo a valuation overring of J. We say that J is an almost Dedekind domain if
for each maximal ideal M of J, Ji is a rank one discrete valuation ring [57,

(1]

1. Preliminary results on Priifer domains.

We list in this section some results in the theory of Priifer domains
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which we shall use frequently in the remainder of this paper.

In (18, pp. 1025-1027 ] Ohm, generalizing the results of Nakano in [16]
[177], proved this result concerning the structure of the set of primary ideals
of a Priifer domain.

Tueorem 1.1.  Suppose P is a prime ideal of the Priifer domain D, let
S=1{Qu} aca be the set of P-primary ideals of D, and let Q, Q1, Q. be fixed ele-
ments of .

(a) Jis closed under multiplication.

(b) If Q"=Q"* for some positive integer n, then Q=Q*=P.

(¢) If Q1<QCP, then Q; contains a power of Q. Thus N eaQu=/\;-1Q"
=P, and P, is a prime ideal. There are no prime ideals of D properly be-
tween P, and P.

(d) If P=~P? then J={P}7_,.

(e) If QC P, then Q*CQP.

(f) If Q:CQ. and if Q) : Q;=0Q,, then Q= P= P

If Jis an integral domain having quotient field K and if {V,}.ca is the
family of valuation overrings of J, an ideal B of Jis called a valuation ideal
of Jif there exists an element « of 4 and an ideal B, of V, such that B=
B,N\J; in this case we necessarily have B=BV,NJ [22,p.340]. If N is a
J-submodule of K, the completion of N, denoted by N, is defined to be M 4eaNV .
If N=N, we say that NV is complete. In case N is an ideal of J, NV is an ideal
of J, the integral closure of J. In [7, p. 2387, Gilmer and Ohm established
this result:

TureoreMm 1.2.  In an integral domain D, these conditions are equivalent:
(a) D1is a Priifer domain.

(b) FEach ideal of D 1is complete.

(¢) FEach ideal of D is an intersection of valuation ideals.

The final result we state concerns Priifer domains under integral exten-
sions. (a) was proved by Gilmer in [6, Cor 2. The “if” part of (b) is due
to Priifer [ 20, p. 317]. (c) and the “only if” part of (b) are due to Heinzer [ 8,
Thm. 1, Cor. 2. Butts and Phillips proved (d) in [1, p. 2707]. (e) is easily
shown and we list it here merely as a matter of convenience.

Turorem 1.3. Let D be an integral domain with quotient field K and let J
be a domain integral over D such that J has quotient field L.

(@) If D is Priifer and if B is an ideal of D, there is an ideal C of J such
that CND=B. In particular, B=BJND.

If J is the integral closure of D in L, then

(b) J s Priifer if and only tf D is Priifer.

(¢) If Jis almost Dedekind, D is almost Dedekind.

(d) 1f D is almost Dedekind and [ L: K |< oo, then J is almost Dedekind.
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(e) If D is Priifer, if Pis a prime ideal of D, and tf M is a prime ideal
of J, then MND=P if and only 1f Jy"K=Dp.

2. Idempotent ideals of an integral domain

In [167], Nakano determines conditions under which a fixed ideal 4 of
the integral closure Z’ of Z in an infinite algebraic number field is idempotent.
Nakano’s major results in this area are contained in his Sitze 9-11. We first
show in Theorems 2.1, 2.3 that the results of Nakano are valid in any Priifer
domain. Then we turn to a study of idempotent ideals of an arbitrary in-
tegral domain. In particular, we show that for any positive integer k there
is an integral domain D, and a maximal ideal M, of D, such that M,> M?>
COME=ME =

Before proving Theorem 2.1, we introduce some terminology due origin-
ally to Krull. If A4 is an ideal of the ring R and if S is a multiplicative sys-
tem in R, the ideal As={x € R|xs€ A for some se€ S} is called the isolated
component ideal (1. K.I) of 4 with respect to S. Hence if “e” and “c” denote
extension and contraction of ideals of R with respect to the ring Rs (see [ 21,
pp. 218-2277), then As5=A°°. In case S is the complement of a prime ideal
Pin R, we use the notation Ap instead of Az_p. If P is a minimal prime of
A, then A4° has radical P° in Rp, and P° is maximal in Rp. Hence Ap is P-
primary in this case, A< 4p, and each P-primary ideal containing 4 contains
Ap. We call 4pthe isolated primary P-component of 4 [18, p. 1024 ].

Turorem 2.1. Suppose D is a Priifer domain and A is an idempotent
ideal of D. If P1is a prime ideal of D containing A, then Apis an idempotent
prime ideal. In particular, each minimal prime of A is an isolated primary
component of A and is idempotent.

Proor. In the proof, we use strongly the result, established in [4, p.
2487, that an idempotent ideal of a valuation ring is prime.

Thus, since A= A% ADp=[ ADp* and Dpis a valuation ring since D is a
Priifer domain. Consequently, 4Dp is prime in Dp: ADp=QDp for some prime
ideal Q of D containing 4. We have Q*Dp= A*Dp= ADp=QDp, and by Theo-
rem 1.1, Q? is Q-primary. Hence Ap=ADpN\D=Q=QDpN\D=Q*=Q*DpN\D,
and A4p is an idempotent prime ideal, as we wished to show. Q.E.D.

Lemma 2.2, Suppose V is a valuation ring and that P is a proper idem-
potent prime ideal of V. If A is an ideal of V with radical P and if A=~P,
there is a P-primary ideal Q such that A<Q C P.

Proor. By [4, Proposition 1.10, p. 2497, P>= Pis generated by {p*|p € P}.
Hence there is an element x of P such that x®¢ 4. Therefore, 4 C(x*)CP.
If Q is the i.K.I. of (x*)with respect to P, it follows that Q is P-primary and
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that 4 C(x*)SQ(x)CP. Q.E.D.

Turorem 2.3. If A is an ideal of the Priifer domain D such that each
isolated primary component of A is idempotent, then A is idempotent.

Proor. To show that 4= 4% it suffices to show that 4Dy= A4°Dy for
each maximal ideal M of D containing 4 [22, p. 947].

Thus, if P is the minimal prime of A4 contained in M, then PD, is the
radical of 4Djy. Since 4pis P-primary and is idempotent, Theorem 1.1 shows
that 4p=P. Hence PDy is the only PDy-primary ideal of Dy containing
ADy. Since PDy is idempotent, Lemma 2.2 shows that ADy=PDy. More-
over, A*Dy=(PDy)?= PDy= ADy and our proof is complete. Q.E.D.

Tureorem 2.4. Suppose A is a finitely generated ideal lof the Priifer do-
main D, that {P,} is the set of minimal primes of A and for each «, N(P,) is
the intersection of the set of P.-primary ideals. Then \;_,A"=/\N(P.)

Proor. We first observe that since each P, is a minimal prime of the
finitely generated ideal 4, N(P,) P, for each « [7, Theorem 4.37].

We choose an element x of /\ M(P,). To show x € A” for a given positive

integer n, it suffices to show that x ¢ 4”Dy, for an arbitrary maximal ideal M
of D containing 4”. Hence, let P, be the minimal prime of A4 contained in M.
We complete our proof by observing that » ¢ N(P,)Dy < A”Dy. The contain-
ment N(P,)Dy < A"Dy follows in this case since 4Dy has radical PDy, so
that 4"Dy & N(P,)Dy C P,Dy. We conclude that N\N(P)S N\;- A"

Conversely, if ye /\;.,4”, then for any «, ye (\;_,4*Dp)N\D. How-
ever, A°Dp_ is a P,Dp -primary ideal distinct from P.Dp, so that N\;_,(4°Dp, )"
is the intersection of the set of P.Dp -primary ideals of Dp [4, Theorem 1.77].
That is, N\74*"Dp=N(P.)Dp,. It then follows that ye N(P.)Dp,ND=N(P.),
so that N\;_,4"= QN(Pa) as we wished to show. Q.E.D.

Remark 2.5. Theorem 2.4. was proved by Ohm [19, Corollary 1.5 in case
A is a principal ideal. Our notation in Theorem 2.4 is that of Ohm, and our
method of proof is not essentially different.

Remark 2.6. In Theorem 2.4, the hypothesis that A4 is finitely generated
is necessary. For example, if 4 is the maximal ideal of a rank one non-
discrete valuation ring, /\;.,4"= 4, but the intersection of the set of A4-
primary ideals is (0). However, it is true that for any ideal 4 of a Priifer
domain MN\J.; 4" is an intersection of prime ideals (In the terminology of Krull
(127, an ideal C of a commutative ring T is semi-prime if C=4+C ; equivalent-
ly, C is semi-prime if C may be expressed as an intersection of prime ideals
of T.) This statement follows from the fact that the radical of an ideal B of
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a ring R is the intersection of the set of prime ideals of R which contain B,
[21, p. 1517, and from Theorem 2.7.

TreoreM 2.7. If A s an tdeal of the Priifer domain D and if B=/\;., A",
then B=4B.

Proor. LetueyB:u*e B. We show, for n a positive integer, that
u € A". Hence, if M is a maximal ideal of D containing 4, u* € 4™ implies
u* € A" Dy=(4"Dy)*. Since Dy is a valuation ring, it follows that u € 4"Dy
[7. Lemma 2.87]. Consequently, u € 4”, and u € \;_,4"=B. Q.E.D.

We turn now to a consideration of idempotent ideals of an integral domain
J which is not assumed to be Priifer.

TureoreMm 2.8. Suppose A is an idempotent ideal of the domain J. The
completion A of A is a semi-prime ideal of J, the integral closure of J.

Proor. Let {V,} be the family of valuation overrings of J. By defini-
tion, A=\AVa=/\(4V.NJ). For any «, AV, is idempotent in V,, so that
AV, is prime in V,. Consequently, A=/\(4V.NJ) is semi-prime in J.

Q.E.D.

CoroLLARY 2.9. If A is an tdempotent ideal of the domain J such that A
18 an intersection of valuation ideals of J, then A is semi-prime.

Proor. By Theorem 2.8 A, the completion of 4, is semi-prime in J, the
integral closure of J. But since 4 is an intersection of valuation ideals of J,
A=ANJ. It then follows that 4 is semi-prime in J. Q.E.D.

CororrLArY 2.10.  Suppose 4 is an ideal of a domain J such that 4*= A***
for some positive integer k. If A* is an intersection of valuation ideals of J,
then A is idempotent and is semi-prime.

Proor. By Corollary 2.9, 4* is semi-prime. And since A<+ g+, A< A~
Hence A= A*= A**'. In particular, 4= 4% and A is semi-prime. Q.E.D.

CororLrARrY 2.11. If A is an ideal of the Priifer domain D such that
A*= A" for some positive integer k, then A is idempotent and semi-prime.

Proor. Since each ideal of a Priifer domain is complete, Corollary 2.11
follows immediately from Corollary 2.10. Q.E.D.

CororLrary 2.12. If A is an idempotent ideal of an integrally closed
domain J, then the completion of A coincides with the radical of A.

Proor. The completion of an ideal of an integrally closed domain is
always contained in the radical of that ideal [22, p. 350]. But Theorem 2.8
shows that /=yA2yA4. Hence 4=+A4 as we wished to show. Q.E.D.
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From Corollary 2.11, questions naturally arise concerning the existence
of idempotent ideals of an integral domain which are not semi-prime, as well
as the existence of non-idempotent ideals 4 such that 4*= 4*** for some posi-
tive integer k. Theorem 2.13 relates to these questions.

Tueorem 2.13.  In a domain J, these conditions are equivalent:
(1) There is an idempotent ideal of J which is not semi-prime.
(2) There is an ideal A of J such that AD A*=A*=. ...

Proor. If (1) holds in J, there is an ideal B of J such that B=B? and
BC+yB. Hence there is an element x of YyB—B such that x*¢ B. If A=
B+(x), then BCA. But 4°=B*+ Bx+(x*)=B. Therefore, 4> A*=A3=...,
and (2) is valid. And if (2) holds, the ideal 4% is idempotent but is not semi-
prime.

We proceed to given an example of a domain in which condition (2) of
Theorem 2.13 holds. We prove, in fact, the following stronger statement:

If k is a positive integer, there is a domain D, and a maximal ideal M,
of Dy, such that M, > MZD>...DO Mk=Mt1=....

To obtain such a domain D,, we consider a field F and indeterminates X
and Y over F. There is a unique rank one nondiscrete valuation » on F(X, Y)
such that » is trivial on F, v(X)=1, and v(Y)=+2. Let ¥ be the valuation
ring of v and let M be the maximal ideal of 7'; M is idempotent in this case.

We let 6=*/X and D,=V[6]. D,isa domain with identity and {1, 6, ..., 61}
is a free module basis for D, over V. The ideal
Mk=M+(6)= llno+ d10+ s + dk_lekﬂl l mg € M, d; € V}
is maximal in D, and D,/M,~V/M. Further, if 1 <i<k—1, then
(MY =(M+0))=M+ M6+ ... + M6~ +(6°)
= {m0—|- ce +m,~;10i'1+ di6i+ ot dk_lﬁk'l l m; € M, dj € V}
Moreover,

(M)f=M-+... +MO**+(0%)= M+ MO+ ... + MO* = MV [ 6= M*V[6]=...
It then follows that M,D> MZ> .. DO Mi=Mt"1=. ...

8. Idempotent ideals in the union of a net of Priiffer domains

In this section, we use the following notation: D, is a Priifer domain
with quotient field K;,. K is an algebraic extension field of K, which may be
expressed as the union of a net {K,}..s of finite algebraic extension fields
over K,. By a net, we mean here that for «, 8 € 4, there is an element 7 of
A such that K, and K; are subfields of K,. We also assume that K, € {K,}.
(The assumption that K be expressible as the union of such a net is not res-
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trictive; the family of all subfields of K which are finite extensions of K, is a
net whose union is K. We shall not assume, however, that {K,} is the family
of all subfields of K which are finite extensions of K,.) For each a€ 4, we
denote by D, the integral closure of D, in K,. By Theorem 1.3, each D, is a
Priifer domain. And we set D=\_J,caD.; D is the integral closure of D, in
K, DNK,=D, for each « in 4, and D is also a Priifer domain.

Suppose P, is a prime ideal of D, and P is a prime of D lying over P,.
We consider here the problems of determining when a given P, or when each
such P, is not idempotent. The results we obtain generalize Nakano’s results
obtained in case Dy=Z7 and {K,} is a chain. The additional generality of our
approach, however, seems to clarify the results obtained, for the question of
idempotency of a prime P of D is unextricably connected to the structure of
the valuation ring Dp, when considered as an extension of the valuation ring
(Do)e,- :
Finally, we consider in this section the problems of determining when
D is almost Dedekind or when D is a Dedekind domain. Our first two theo-
rems are basic results which will be used throughout the remainder of this
section.

TueoreMm 3.1. Suppose J is a Priifer domain with quotient field F, that L
18 an algebraic extension field of F, and that J is the integral closure of J in L.
If P s an idempotent prime ideal of J, then each prime ideal of J lying over P
18 also idempotent.

Proor. Because J is Priifer, J is also Priifer. and since J is integral over
J and J is integrally closed, the prime ideals of J lying over P are the minimal
primes of PJ[11, Satz 9. Because P is idempotent, PJ is also idempotent.
Theorem 2.1 then shows that each minimal prime of PJ is idempotent. Q.E.D.

Turorem 3.2. Suppose J is an integrally closed domain with quotient
field F, L is a finite algebraic extention field of F, and J 1s the integral closure
of Jin L. If P is a prime ideal of J, the number of primes of J lying over
P s finite and 1s <[ L:F|,. If Jis Priifer and P is not idempotent, then no
prime of J lying over P is idempotent.

Proor. We let ¥ be a valuation overring of J associated with a valua-
tion » such that » has center Pon /. The number of extensions of » to L is
finite and is not greater than [L: F ], [22,p.29]. Butif Qis any prime ideal
of J lying over P, there is an extension v* of v to L such that Q is the center
of v* on J[22, p. 317]. It then follows that the set of primes of J lying over
P is finite and is not greater than [ L: F ..

In case J is a Priifer domain, we consider a normal closure E of L over F.
E is a finite extension of F and the integral closure J* of J in E is Priifer.
The prime ideals of J* lying over P are conjugate under elements of the
Galois group of E over F[15, p. 317]. It follows that either each prime of J*
lying over P is idempotent or no prime of J* lying over P is idempotent. The
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prime ideals of J* lying over P are the minimal primes of PJ/* in J*. Fur-
ther, their number is finite—say {P,, ..., P;} is the set of minimal primes of
Pj*. Then yPJ*=P,N...N\P,=P,P;...P, and by Theorem 4 of [ 37, (P1P;.--P,)"
c PJ* for some integer n. If each P; were idempotent, we would then have
P,P,... P, PJ*C P\P,... P, so that PJ*=P,P,...P, and PJ* is idempotent. But
part (a) of Theorem 1.8 shows that P?J*N\J=P?=PJ*NJ=P, which contra-
dicts the assumption that P is not idempotent. We conclude that no prime
of J* lying over P is idempotent.

We consider a prime ideal M of J lying over P. Each prime of J* lying
over M in J lies over Pin J, and hence is not idempotent. By Theorem 3.1,
this implies that M is not idempotent. Q.E.D.

We return now to the notation introduced in the beginning of this sec-
tion in order to prove our next results.

Lemma 8.8. Suppose C is an ideal of D and « is a fixed element of A. We
let B={B€ A|K,SKp}. For e B, welet C3=CNDs.

(1) If k 1s a positive integer, C*= U g5Ch.

(2) If for any 8 € B, there is a 7 in B such that C,< C%, then C s idem-
potent.

Proor. The containment \UgzC% < C* is clear. The reverse containment
follows from the fact that if x € C*, then x ¢ E* for some finitely generated
ideal F contained in C. (2) follows immediately from (1).

In order that a prime ideal P of D fail to be idempotent, Theorem 3.1
shows that it is necessary that P, not be idempotent, where Py= PN\ D,. The-
orem 3.4 concerns the converse of this statement.

TuaroreMm 3.4. Suppose P is a prime ideal of D lying over the prime ideal
Py of Dy and suppose that P,> PZ. Then P is idempotent if and only if the
following condition, which we label as (*), holds:

(*) For any a in A, there is an element 3 of A such that K, < Kz and such
that P,< P}, where P,=PN\ D, for any a e A.

Proor. Part (2) of Lemma 3.3 shows that if condition (*) holds, P is
idempotent. To prove the converse, we suppose that condition (*) fails and
we show that P is not idempotent. Hence there is an element « of 4 such
that if B= {8 ¢ 4|K,.<S Ky}, then for any 8 ¢ B, P,Z P3. By part (1) of Lemma
8.3, P2=\UgpP3. To show PDP? it therefore suffices to show there is a
fixed element of P, which belongs to no P2 for any g¢ B. By Theorem 3.2,
P, is not idempotent. Therefore P.Dp, is principal and is generated by any
element x of P,— P?. Since P; lies over P,, Dp, extends Dp, to K. Further,
P, is not idempotent and P,Z P;. Consequently, Pu(D.)p,(Dg)py=PuADg)ps T
PYDy)ps 1t follows that Pou(Dg)Ps=x(Dp)py=Po(Dy)p,. Hence x ¢ PA(Dy)p,
so that x ¢ P3. We conclude that x ¢ P— P? and that P is not idempotent.

Q.E.D.
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Before proving Theorem 3.5, we introduce some new notation. We fix a
prime ideal P, of D, and we consider collections {P,}.c4 satisfying these two
properties:

(a) P,is prime in D, and P, lies over P,.

(b) For a, B € A with K, Ky, Pg lies over P,.

With each P, we associate a positive integer e, defined as follows: Since P,
lies over Py, P, is a minimal prime of PD,. Thus if Vo=(Da)p,, PoDoVe=
PV, is primary for the maximal ideal P,V, of V,. Because P, lies over P,
and P, is not idempotent, P, is not idempotent. Consequently, P,¥V, is not
idempotent. Theorem 1.1 then shows that P,V is a power of P,V,: PyV,=
(P,V,)». We note that if K,S K, Ps lies over P, so that V; extends V..
Therefore, e, < eg if K,S Kz Hence with each collection {P,}..4 satisfying
(a) and (b), we obtain the set {e.}aesa. In terms of the sets {e,} we state
Theorem 3.5.

TuaroreMm 3.5.  In order that no prime of D lying over P, be tdempotent, it
18 necessary and sufficient that each collection {e.}.cs obtained as described in
the preceding paragraph be bounded.

Proor. If the prime ideal P of D lies over P, and if P is idempotent,
then if P,=PND, for each a in A4, {P,}.cs satisfies conditions (a) and (b).
Further, Theorem 3.4 shows that there is a sequence {«,};., of elements of 4
such that K, CK,,  for each i and such that e,  >2e, for each i. It
follows that {e, }7, and hence {e.}, is not bounded.

On the other hand, if no prime of D lying over P, is idempotent, then
given a collection {P,}.c4 satisfying (a) and (b), P=\U.eaP. is a prime ideal
of D lying over P, in D, for any € A. Since P is not idempotent, Theorem
3.4 shows that there is an element « € 4 such that for any 8 € 4 with K,< K,
P,ZP;. As we have previously observed, this implies that P,Vs=PsV,.
Hence PgaV = PiaV g=PgaV, V=P VoV =PV, It follows that e,=e;z for
any @8 € A such that K, 2Kz Now if 7 is any element of 4, there is an ele-
ment B of A4 such that K,\K,SKs Hence e,<ez=e, It follows that
{e,},ea 1s bounded by e,. Q.E.D.

We turn now to the problem of determining when D is almost Dedekind
or when D is Dedekind. By Theorem 1.3, if D is almost Dedekind, so is D,
and if D is a Dedekind domain, D, is also a Dedekind domain. Hence our
question may be posed in this way: Suppose D, is almost Dedekind (respec-
tively, Dedekind). Under what conditions is D almost Dedekind (resp., De-
dekind)? Under either hypothesis, D, is one-dimensional Priifer so that D is
also one-dimensional and is Priifer. Therefore, D is almost Dedekind if and
only if D contains no idempotent maximal ideals [1, p. 2707, and D is a De-
dekind domain if and only if D is Noetherian. Hence, under the assumption
that D, is almost Dedekind, we consider the problem of determining when D
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contains no idempotent maximal ideals, and under the assumption that D, is
Dedekind, we seek to determine necessary and sufficient conditions in order
that D be Noetherian. Theorem 3.5 immediately yields one set of necessary
and sufficient conditions in answer to the first question:

CorOLLARY 3.6.  Suppose D, is an almost Dedekind domain. In order that
D be almost Dedekind it is necessary and sufficient that for any maximal ideal P,
of Dy and any collection {P,}sca satisfying (a) and (b), the set {e,} is bounded.

In case D, is almost Dedekind, the integer e, may be related to the fac-
torization of P,D, in D,. To see this we first prove.

Lemma 8.7.  If J is an almost Dedekind domain and if B is a proper ideal
of J which is contained in only finitely many maximal ideals My, My, .., M,,
then B may be expressed as a finite product of members of the set {My, ..., M,}.

Proor. We have B=N7_,(BJy,N\J), where for each i, BJy NJ is M-
primary. But in an almost Dekekind domain, primary ideals are prime
powers [ 5, p. 813]. Hence there is a set {ki, ---, k,} of positive integers such
that BJy,NJ= M for each i between 1 and n. Finally, because the M%’s
are pairwise comaximal we have B=N\"_, M =T]7_, M%:. Q.E.D.

In case D, is almost Dedekind and P, is a maximal ideal of D,, then for
any a € 4, D, is almost Dedekind, and by Theorem 3.2, there are only finitely
many maximal ideals M, ..., M, of D, lying over P,. Hence {M, ..., M,} is
the set of maximal ideals of D, containing PyD,. By Lemma 8.7, P,D,=

n_,M# for some set {k;}7-, of positive integers. But since, for any ; be-
tween 1 and n, IT7_,M% extends to [ M;(Da)y, * in (Du)u,, it follows that the
positive integer e; associated with any M; is %;, the power to which M, occurs
in the prime factorization of P,D,. In case K, is a normal extension of K,
the ideals M,, ..., M, are conjugate under elements of the Galois group of K,
over K,. Hence if K, is normal over Ky, ky=k,=...=k,. This observation
allows us to state Lemma 3.7 in a much more convenient form in terms
of a normal closure L of K over K,. Thus for a«€ 4, we let L, be a
normal closure of K, over Ky, in L. {L,}aea is a net of subfields of L,
L=\UgeaL., and each L, is a finite normal extension of K,. If E, is the in-
tegral closure of D, in L, for each « and if E is the integral closure of D, in
L, then E= U 4E, and each E, is almost Dedekind. Using this notation we
state Theorem 3.8.

Turorem 3.8. In case D, is almost Dedekind and L 1s a normal extension
of K, these statements are equivalent:

(i) D is almost Dedekind.

(ii) E s almost Dedekind.

(ili) For each maximal ideal P, of Dy, there is an element «, of A, de-
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pending on Py, such that each maximal ideal of E,, lying over P, is unramified
with respect to E—that is, no maximal ideal of E. lying over P, is contained
wn the square of a maximal ideal of E.

(iv) For any maximal ideal Py of Dy, there is an element oy of A such
that each maximal ideal of E,, lying over P, is unramified with respect to Eg
for any B in A such that L, < Lg.

Proor. (i)—(ii): By Theorem 1.3.

(ii)—(@ii): If P, is a maximal ideal of D, we consider a maximal ideal P
of E lying over P,. If P,=PNE, for each « in 4, and if e, is the exponent
to which P, occurs as a factor of PyE,, Corollary 3.6 shows that the set {e,}
is bounded. We choose 5 € 4 such that es>>e, for each ac 4. We show
that no maximal ideal of E; lying over P, is contained in the square of a
maximal ideal of E. We first show that P; is contained in the square of no
maximal ideal of E. If C={re 4|E;SE,}, then P’=\, P2 Hence by
choice of e; and from the fact that PgDs)p, is principal, it is clear that
P;Z P?. If M is any maximal ideal of E lying over P, then since L is normal
over Lg, there is an element of the Galois group of L over L; sending M onto
P. Since P;Z P?, it therefore follows that P, M?. We have proved that P
is contained in the square of no maximal ideal of E. If H; is any maximal
ideal of E; lying over P, there is a Kjy-automorphism ¢ of Lg such that
0(Hz)=Ps. Further, ¢ can be extended to a K;-automorphism ¢* of L since
L is normal over K, (compare [ 9, Vol III p. 427]). It follows that if H, were
contained in the square of a maximal ideal of E, P; would also be contained
in the square of a maximal ideal of E. Consequently, Hy is not contained in
the square of a maximal ideal of E, and (iii) holds.

(iii)—>(ii) : This is immediate from Corollary 3.6.

(ili)>@dv): Trivial Q.E.D.

We conclude this section by considering the case when D, is a Dedekind
domain. As we have previously remarked, D will be Dedekind in this case if
and only if D is Noetherian. Further, D is Noetherian if and only if each
prime ideal of D is finitely generated [2, p. 29]. And because D is one-
dimensional, we are therefore led to the problem of determining when each
maximal ideal of D is finitely generated. In Lemma 3.9 and 3.10 we need
only assume that D, is a Priifer domain. That is, we do not require that D,
is Noetherian.

Lemma 8.9. Let B be an tdeal of D and for a€ A4, let B,—BND,. If S
s a finite subset of B, S generates B in D if and only if there is an element
a € A such that for any B € A for which K,< Kg, S generates Bg in Dg.

Proor. It is clear that if an « can be found in 4 satisfying the condition
described, then S generates B in D. And if B=SD, then because S is finite,
there is an « in 4 such that ScD,. If fe 4 and if D,< D, then by Corol-
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lary 2 of [6] SDN\Dz=SDg since D, is a Priifer domain. But B=SD so that
SDNDg=B,. It follows that S generates Bg in D, for any B in 4 such that
D.C Dp.

LemMma 3.10. Let B an ideal of D and for a€ A, let B,.=BND,. B 1is
finitely generated if and only if there exists o in A such that B, is finitely
generated and such that Bz=B,Dg for any B in A such that D,< Dyg.

Proor. Lemma 3.10 is a mere restatement of Lemma 3.9.

Tuaeorem 3.11.  Suppose D, is a Dedekind domain. These conditions are
equivalent:

(i) D s a Dedekind domain.

(ii) For each maximal ideal Py of D, there exists an element «, of A,
depending on Py, such that each maximal ideal of D, lying over P, is inertial
with respect to D.

(iii) For each maximal ideal P, of D,, there exists an element «y of A,
depending on Py, such that each maximal ideal of D., lying over P, is inertial
with respect to Dg for any B in A such that Do, S Dpg.

Proor. That (ii) and (iii) are equivalent is clear. To establish the equi-
valence of (i) and (iii) it suffices, in view of preceding remarks, to show that
(iii) is equivalent to the condition that each maximal ideal of D is finitely
generated. Hence if (i) holds and if P, is a maximal ideal of D,, there are
only finitely many maximal ideals My, .., M, of D lying over P, (these are the
maximal ideals which occur in the prime factorization of P,D). Each M; is
generated by some finite set S;, and there is an element a of 4 such that

1.18; € D,. If for each i between 1 and r, H;= M; N\ D,, our proof of Lemma
3.9 shows that S; generates H; and H; is inertial with respect to D; for any
B € A such that D,c Ds. To establish (iii), we note that {H,}%_, is the set of
maximal ideals of D, lying over P,. That this is true follows by choice of
the set {M,, ..., M,}.

If (iii) holds and if P is a maximal ideal of D, we let P,=PND,. By
hypothesis, there is an element a, in 4 such that each maximal ideal of D,,
lying over P, is inertial with respect to D. Hence if P, =PN\D,, P. D is
maximal in D and is contained in P. Thus P=P, D. But D,, is the integral
closure of a Dedekind domain in K,, where [K, :K,]<co. Consequently,
D.., is Dedekind [ 22, p. 2817, and P, is finitely generated. We conclude that
P is finitely generated so that (i) is valid. Q.E.D.

Remark. 3.12. Exercise 10, page 83, of [0] may also be used to obtain
necessary and sufficient conditions in order that D be Dedekind. For it is
known that a Krull domain is a Dedekind domain if and only if it has dimen-
sion <{1.[22, p. 84].
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4. Examples

Let D be a Dedekind domain with quotient field K. Under the assump-
tions that D/P is finite for each maximal ideal P of D and that the set of
maximal ideal of D is countable (the integral closure of Z, the ring of in-
tegers, in any finite algebraic number field is a Dedekind domain with this
property), we provide in this section a method for constructing an infinite
algebraic extension field L of K such that the integral closure D of D in L is
an almost Dedekind domain which is not Dedekind. For this construction
we need Lemmas 4.1-4.2,

LemMma 4.1. Let R be a commutative ring with identity and let {A4;}%_, be
a collection of pairwise comaximal tdeals of R (that is, R=A;+ A; for i 7).
If {f.}1-1 ts a finite subset of R[ X ], where each f; is monic of degree k, then
there exists f € R[ X ], f monic of degree k, such that f=f; (A X)), i=1,2, ..., n.

We omit the proof of Lemma 4.1 since it is essentially that of Theorem
31 (9).in [ 21, p. 177]].

If F is a finite algebraic extension of K, then the integral closure D of D
in F is a Dedekind domain. Therefore, if Pis a maximal ideal of D, PD is a
product of maximal ideals of D; we write PD=Ms:... M¢, where the maximal
ideals M; are all distinet. The integer e; is called the reduced ramsification
index of M; over P, and the degree [D/M;: D/P]=/; is called the relative
degree of M; over P; 3,4 _je;f;<<[F:K ], and in particular, D/M is finite for
each maximal ideal M of D [21, pp. 284-2857]. If PD is maximal in D, we say
that P is inertial with respect to D; if g=1 but e;>1, we say that P ramzifies
with respect to D; and if g>1, we say that P decomposes with respect to D.
Using this notation and terminology, we state and prove Lemma 4.2.

Lemma 4.2. Let {P;}7_,, {Q;}5-1, and {U,}}_, be finite collections of dis-
tinct mazximal ideals of D. Then there exists a simple quadratic extension K(t)
of K such that each P; is inertial with respect to D, each Q; ramifies with res-
pect to D, and each U; decomposes with respect to D; here D denotes the integral
closure of D in K(t).

Proor. For each i between 1 and r, D/P; is a finite field and D[ X ]/P[ X ]
~(D/P;) X]. Hence we can find f1, ---, f, € D[ X ], f; monic of degree 2, such
that f; is irreducible modulo P,[ X | for each i. For each i between 1 and s,
let g, € Q;—Q% Since the ideals {P;}7_,, {Q%}i-, {U;}!-, are pairwise co-
maximal, there exists, by Lemma 4.1, an element f of D[ X], f monic of
degree 2, such that

f=fi (BLX]), 1<i<r
f=X*+q; QIX), 1<i<s
f=XX+1) ULX]), 1<i<t.
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Let a be a root of f in an extension field of K. f is irreducible (since f is monic
and is irreducible modulo P[ X ]) so that K(«) is a quadratic extension of K.

From Theorem 5 [21, p. 260, it follows that {ge D[ X ]| g(a)=0}=(f),
the principal ideal of D[ X ] generated by f. Then from fundamental pro-
perties of ring isomorphisms we have, for any maximal ideal P of D,

Dled)/PLa]=[DLX/(f(X))]/L(PLX ]+ (fCON/(f(X))]
~DLX/(PLX]+(f(X))=[DLX/PLXTY/I(PLXT+(f(X)))/PLXT]
~(D/PLX /([ (X))

where f(X) is the canonical image of f(X) in (D/P)LX].

If P=P, 1<i<r, then f(X)=f(X) is irreducible; consequently P«
is a maximal ideal of D[a]]. Further, since fi(X) has degree 2, [D[a]/P{a]:
D/P]=2. If P=U, 1'<i<t, then f(X)=X(X+1) so there exist two distinct
maximal ideals of D[ «] containing U a]. Finally, if P=Q;, 1<i<s, then
f(X)=X* so that Q=(X)/(f(X)) is a maximal ideal of (D/Q)[ X J/( f(X)) such
that Q?=(0). Therefore, (Q, o], «) is a maximal ideal of D[« such that
QLa], @fcQLa]CQLal, @). We show that (QLa], @’ =QLa]. Thus
suppose f(X)=X?4+pX+gq. Since f(X)=X*QLX]) and f(X)=X"+q.Q¥ X)),
it follows that peQ; and g€ Q,—Q% 1<i<ls. Then Q?CQ%?+(¢)=Q; and
since D is a Dedekind domain, Q?+(¢)=0Q;. But g=—a’—pa € (Q a], @)* so
that Q;=0Q%+(¢9)=(Q,[a], @)’. Hence Q. a]=Q:D[a]<(Q ], a)’, and con-
sequently, equality holds.

Since D is integral over D[ o], it now follows that there exist maximal
ideals {M,}7_1, {N;}i_1, {H{}io, j=1, 2, such that P,.c M;, 1 <i<r, Q; S NZ,
1<i<sand U;CSH{’,1<i<t,j=1,2. For 1<i<r, the relative degree of
M; over P; is greater than or equal to 2 since [D/M;: D/P;]=[D/M;: D[]/
Pla ] Dla]/P{«]: D/P]=2[D/M;: D[a]/P{a]]. It now follows from
Theorem 21 of [21, p. 2857 that P,.D=M,;, 1<i<r, Q;D=N?, 1<i<s, and
U,D=H{ H®, 1<i<t.

Now let {P,;}7_; be the collection of all the maximal ideals of D. Using
the method described in Lemma 2.4, we may construct a sequence K C K(a,)C
... CK(a,)C--- of simple algebraic extensions of K such that the following
properties hold:

1) [K():K]=2and [K(a;,): Kla)]=2,i=1,2, ...

(2) If D, is the integral closure of D in K(«,) and if {M{", ..., Mg} s
the set of maximal ideals of D, lying over P,, 1<r <n+2, then M:’D,., =
MiP MYy, and for any M == M, M;? is inertial with respect to D, ..

For any positive integer n, no prime factor of P,D, ramifies with respect
to D,, for m>n. However, for any positive integer m, M’ is a prime factor
of P.D,, which decomposes with respect to D,.;. Therefore, by Corollary 3.6
and Theorem 3.11, if D is the integral closure of D in L=\7_,K(«,), D is an
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almost Dedekind domain which is not Dedekind. Further, by Lemma 3.10,
M=\U7_, MV is the unique maximal ideal of D which is not finitely generated.

Similarly, using Lemma 4.2, L may be constructed in such a manner that
D is a Dedekind domain.
Maclane and Schilling in [137] by a similar method of construction.

This has been done for the case in which D=_Z7 by
Also, if

D is not a local domain, L may be constructed so that D is not an almost De-

dekind domain.

In fact, L may be constructed so that D contains a unique

maximal ideal which is idempotent.
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