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In his paper [11] S. Mizohata gave a semi-group theoretic treatment of the
Cauchy problem for a regularly p-parabolic equation. This was successfully
done with the aid of an operator matrix H(t)=H(x, t, D,) introduced therein.
Recently D. Ellis [2] developed a Hilbert space approach to the Cauchy problem
for a uniformly p-parabolic equation, following in rough outline the method ex-
plored by S. Kaplan [9] in his treatment of the Cauchy problem for a parabolic

operatorait — L(t), where L(?) is uniformly strongly elliptic. Generally, in such

an approach, special attention has been paid to find out energy estimates appro-
priate to the problem. As for the Cauchy problem for a specified parabolic system
(§ 6 in [7]), the present author, in collaboration with K. Yoshida, has tried a gener-
alization of Kaplan’s treatment indicated above by introducing a certain type of -
energy estimates.

The main purpose of this paper is to investigate the uniqueness and existence
theorems of a solution to the Cauchy problem for a regularly p-parabolic equation
from a Hilbert space approach as done by D. Ellis [2], relying upon another type
of energy estimates which will be established with the aid of a prescribed operator
matrix H (), and following the same arguments as in our treatment (§6 in [7])
of a parabolic system.

By the Cauchy problem we shall always mean a fine Cauchy problem as des-
cribed in paper [7]. With this in mind, in Section 1, some notations and func-
tional spaces are introduced with a precise formulation of such a Cauchy problem
for a regularly p-parabolic equation, where the notions of the 21.-boundary
value and the 27.-canonical extension of a distribution are discussed in some
detail. In Section 2 the energy inequalities (cf. Theorems 1 and 2 below) for a
regularly p-parabolic operator and for its dual operator are derived by making use
of the operator matrix H,(t), which was introduced by S. Mizohata [11]. The
former estimate will be of a type very similar to the one obtained in [7, Theorem 8].
These estimates enable us to apply a Hilbert space approach to our problem.
Finally in Section 3 the uniqueness and existence theorems for our problem are
discussed along this line of thought. We improve some of the results obtained
by D. Ellis [2]. Combining Corollary 4 with Proposition 5 below, we have a
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refinement of Theorem 9 in his paper [2]. This, in a sense, is a generalization of
a result of S. Mizohata [11, Proposition 5]. We add here that the improvement
itself has been announced in his paper [2] without proof.

1. Preliminaries

We denote by R,,; =R, xR an (n+ 1)-dimensional Euclidean space with a

generic point (x, t)=(xy,..., X,,, ) and write D,=(D,,..., D,), Dj=—i_—£—,D,=
j
-11__667 and D= D3:...D% with a =(«,,..., ®,). For a point £ =(&,,..., &,) of the

dual Euclidean space =, we write |&|=(£3+---+¢E2)1/2 and Ex=E4r.. . Een,

Let p be a positive integer and let a, ;€ #(H) for a, j with |«| < jp, j=1, 2,...,
m, where by #(H) we mean the space of C* functions a on H=R, x [0, T] such
that a is bounded with its derivatives of every order. In the present paper we shall
consider the differential operator

P=Dr+ 3% 3 a, (x,)DDrI,  (m=1)
J=1 1a[Sip
satisfying the following condition: for every root t=1(x, t, £), £ €&, of the poly-
nomial
Po(x, 1, &, =1+ 33 3 a, (x, D¢
J=1 |a|=jp

in 7 there exists a positive constant J, independent of x, t and £ but depending on T,
such that Im =6 for (x, t)e H and £ €5, with || =1. Then P is called a regularly

p-parabolicin0=<t<T[11,p.269]. Let P=Dp+ f} IZ a, j(x,t) D2Dr~i, where
J=1|e|<jp

a,,;€C?(R}y1), R}y =R,%x(0, ), and their restrictions a, ;]Hy=R, %[0, T],
belong to the space #(Hy) for any T>0. If for any T>0 there exists a positive
constant dr such that Im t=d, for (x, )€ H, and (€&, with [¢|=1, then P
is called a regularly p-parabolic operator in 0< T<oo. It is known that p must
be a positive even integer. In what follows, we write p=2p’.

By 2,((2.:),) we mean the e-product 2:e(2%:), and by 2:((212),)(H)
the space of distributions E.@'(I;T) which can be extended to distributions €
2,((242),). The quotient topology is introduced in 2,((24.),)(H). Similarly
the space 2,((212),)(R, % (— o0, T]) will be defined.

Let u€ 2,((2%:),)(H) and suppose u(x, &t) converges in 2,((2%2),)(H)
to a distribution v as ¢ | 0. Then we see that v is independent of ¢ and it can be
written in the form o,® Y, where oy (2,.), and Y, is a Heaviside function
[6, p. 375]. a4 is called the 2/ .-boundary value of u and denoted by 2/ .-lim u

tlo
[6, p. 375].
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Let = 2(R]) be such that ¢=0 and Swzi)dt:l, and put p=Y+¢. Con-
sider a ue2,((212),)(H). Then p(t/e)u n(')xay be regarded as an element
of 2,((2,2))(R,x(—, T]) for any &>0. If p(t/fe)u converges in
2:(21,2))(R,x(— o0, T]) to v, as ¢ | 0, then vy does not depend on the choice
of ¢. The limit element is called the 2/.-canonical extension of u over t=0.
The 97 .-canonical extension u. exists whenever 2}.-lim u exists.

tlo
In the present paper we shall consider the fine Cauchy problem

Pu=f inH
® {

Ug=2452:-lim (u, Du,..., D u)=a
tio

for preassigned f€ 2;((21:),)(H) and a=(xg,..., Up_y), &;E(DL2),. Suppose
there exists a solution ue 2,((241.),)(H) of (1). Then f and u must have the
2/ .-canonical extensions f. and u. over t=0 [5, p. 82; 7, p. 404].

If we put F=(0,...,0, f) and U=(uy,..., u,) with u;=D}j~'u, where V’
means the transposed vector of V, we can rewrite (1) in vector form

LU=D,U—A()U=F inH,
()] .
Di-limU=a
tlo :
with
0 1
A(x’ ta Dx)z ‘ . . ° 7aj= Z aa,j(xa t)D;-
lal<jp
0 1
—a, - - - —a

We shall write by M(x, t, ) the matrix A(x, t, £) with aj(x, t, £) replaced by
a%(x, t, f)=' IZ a, j(x, H)&e.
aj=jp
We shall next introduce some spaces. Let g, s be any real numbers. By

H=H#(R,) [8, p. 45] we mean the set of all distributions u € ¥’(R,) such that
# is a function and

112 =~ | 2O Z A +[E12)dE < o0,

and by S, ;= ,, (Ry+1) [9, p. 172] the space of all distributions u€ ¥'(R,. )
such that 4 is a function and

)12, = —@n—l)m—gg|a<z, D[22+ (1+|E[2)P)p(1 +|¢|2)dEd T < oo .



214 Mitsuyuki ITano

In what follows, we shall use the notatioﬂs
Ds(Rn) =‘}fs(Rn) X '%ﬂs—p(Rn) Xeee X ”s—(m— 1)1,(R,,),
Da,s(Rn+ 1) =fa,s(Rn;P 1) X fa,s—p(Rn+ 1) Xoeee X ‘%/‘a,s—(m— l)p(Rn+ 1),

where the norms ||‘[lp, and |||, , are defined by {||‘[|2+ -+ [|'|? = m—1)p} */*
and {|['|2 s+ - +[I'12 5= m-1)p} 1/ respectively. We shall denote by DZ(R,)
and D*, _(R,.,) the dual spaces of D(R,) and D, (R,.;) respectively. By

X, (H) we mean the set of all ue.@’(}f{) such that there exists a distribution
ved,(R,+1) with u=v in H. The norm of u is defined by |lu|l, s=inf||v]l,s
the infimum being taken over all such v. Especially, the space 2", (H), k being
a non-negative integer, has the equivalent norm

k (T . 2 1/2
(£ (Tipiuc, Do)
j=0J0

which will also be denoted by the symbol |jufl,,,. We shall consider the space
A +.s(H), the space of all uex e.s(Ry+1) With supp ucH. Then %, (H) and
9{° —q,-s(H) are anti-dual Hilbert spaces with respect to an extension of the ses-

T °
quilinear form g Sm‘;dxdt, ueC®(H), veC%(H) [7, p. 51]. The spaces

RaJO
D, (H), D,,’S(H) and the like are similarly defined.

Consider the space ¢, (H). The 2j.-boundary value 27.-lim u exists
tlo

for every ue X, (H) if and only if ¢>p’. If this is the case, Q'Lz-lilm u must
tlo

belong to the space #,.,_,(R,). The 2}.-canonical extension u. exists for
every ue X, (H) if and only if 6> —p’. It is also noticed that ", (H) and
A, (H) may be identified for |o|<p’ [4, p. 416]. Let k be a positive integer
such that |o—k|<p’. Then u.ex, (R,x(—oo, T]) for every uex’, (H)
if and only if 9'1‘2-!11;%1 u=.@iz-1tilr¥)1 D,u=~--=.@iz-ltilr¥)1 Di=1lu=0 [4, p. 419],

where the 2/ .-boundary value coincides with the distributional boundary value
[3, p. 12].

2. Energy inequalities

Let P be a regularly p-parabolic operator in 0<t<T. We shall derive energy
inequalities for P and for its dual operator P* by making use of the operator
matrix H,(t), which was constructed by S. Mizohata [11]. He starts for the
construction of H () with the following consideration.

Let Py(t)=1"+ f} a%(x, t, &)t/ and consider the symmetric polynomial
j=1

in T and 7’:
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K(Po; 1, U)= Po(T)P%‘(T"C)::”o(T')Pg(T) = kZ:':lAhk.ch—l,E/k—l ,

where P¥(t) stands for Po(7). Then —iA,, is real and coincides with —iAy,.
Since all roots of the polynomial Py(7) lie in the half-plane Im 7= d,>0 for (x, t)
e€H=R,x[0, T] and ¢ &, with [£{|=1, the Hermitian form

M m
H(Po; ul,..., um)= —ih kZ«IA,,kuhl_tk

is positive definite [1, p. 64]. Let B be the real symmetric matrix (b,,) with
b= —iA. Then it follows that —i(BM —(BM)*)=0 for M =M(x, t, £) stated
in Section 1, where (x, )€ H and (=&, with |£|=1. On the basis of these
facts and applying the method of J. Leray [10, pp. 121-127] in connection with
hyperbolic operators to the parabolic case, S. Mizohata has obtained the propo-
sition below.

Let us denote by E,=E(D,) the operator matrix (e,,), e,,=S25"2(h—1)p,
h=1,..., m and e, =0 otherwise, where S is a pseudo-differential operator with
symbol A(€)=(1+]&2)1/2. For two Hermitian matrices C,(x, t, D,) and
C,(x, t, D,) whose components are differential operators with coefficients &
%(H), the inequality C,(x, t, D,)< C,(x, t, D,) means that (C,(x, t, D,)¢p, )<
(C, (x, t, D), ¢) for any ¢ =(2:), and t[0, T], where (,) means the inner
product in L2. For the system of operators L=D,— A(t) stated in Section 1
we have

PropPOsSITION 1 (S. Mizohata). Let q be any integer. Then there exists
an Hermitian matrix H (t)=H(x, t, D,) such that

oE, = Hq(t)g o E,s
—i(Hy () A1) = (H () A0)*) 25 E g1y —74E,

with positive constants &, «, a, and y,, which are independent of (x, ) H, and
H, () is an L(D, Dy_,,)-valued C* function of t&[0, T] for any real s.

We shall give an energy inequality for L. We need the following lemma
(cf. Lemma 3 in [7, p. 405]).

LemMA 1. Let r(t) and p(t) be two real-valued functions defined in the
interval 0<t<T and assume that r is continuous and p is non-decreasing.
Then the inequality

r() < Clp(t)+ S‘Or(t')dt') (C>0 is a constant)
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implies r(t) < CeC*p(t).

THEOREM 1. Let s be any real number. Then there exists a constant
Cr, independent of U and t,, t, but depending on s, such that

ty t
(B UG D B,w,, + {103, dt s CrUGNR,.,, + " 1LUW 13,40
o o
for any to, t; with 0=t,<t, <T and any U=(uy,..., u,), u;€CF(R,4).

Proor . Let U=(uy,..., u,) with u;€ C§(R,,) and put F=LU and h%(t)=
(Ho(HU(t), U(¢)). Then we have

AL () =1(Ho()DU(0), V) = i(Hy())U(D),DU®) + (- Ho(t) U, U) )
=iHOADU®, UO) = iHOUE), AOVD)+

FI(H(OF(), U®) =i Ho()U(0), F(©)) + (- Ho(6) Ule), U0))

=- 7(E U(1), U()) +70(EoU(), U(1)) +

+2Im(Ho(OF(@), U]+ | (- Ho(0) U®), U®) )|

and therefore
W ()=t < ~5 (" 10013, e+ o+ v U015 +

+2§:;1<H0<t)F(t), U))\dt

with a constant y, such that —%Ho(t)gy'oEo,Ogth. Put V=S—s7r'U.

Then each component v; of Vis a (2,:),-valued C* function of t[0, T] and

VIR0, = 2ol VB, = =5 IVOIB,.,de+

t
+(?0+?6)S I V(t)ll%s+,»dt+2S“ |(HoLSs*P'V(2), S*P'V(1))|dt,
to to
[(HoLSstP' V(t), Ss*P' V(2))]
S|(HoSSHP' LV, SStP' V)| + | Ho(ASSHP — S5t2° A)V, S5+P' V)| .

Since H(t) is a continuous operator from D; into D} for each t[0, T] and
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D%, is the dual space of D,., we have the following estimates:
[(HoSSHP'LV, S*7' V)| = |[(HoS*" P'LV, S V)pt . p,.|
S| HoS** LV ps,, ISP Vl|p,,
=C ISP LY b, IV,
=C1”LVHD5HVHD5+1, s
|(Ho(ASS* — S50 )V, S50 V)|
= [(Ho(AS*+? — S0 A)V, S0 V)ps .,
S| Ho(ASSH" —S*2" A) V| ps |1V lIp,.,
S G |(ASH P =S )V p_,.IIVp,.

with constants C, and C,. Here the operator matrix ASs*?" —Ss*?'4 has the
form (o (f)) with o, (f) =0 for h#=m. In virtue of Proposition 15 in [6, p.
387] we see that a,,(t) is the operator of order <(m—k+1)p+s+p’'—1. Thus
there exists a constant C; such that

(ASs*? = S+ YV |p_,. = C5l[Vlip, . -,
and therefore we have
|(HoLS**?'V(2), S*P' V()]
=CULVOllp IV (Dllp,s, + C2C3lIV(Dllp, s - IV (DIp,, -
Let &’ be any positive number. Then there exists a constant C,(g’) such that
1V pesp- =€ Vlp,., + Cale)Vllp,
and we have the inequalities
1Plpysp- [IVllngs, < € N Vlp,. , + Cae)VIpI I VI, ,
=2¢'||Vll3,.,+CsE)VI3,
with a constant Cs(¢") and consequently
t
t

S“ |(Ho,LS**?' V(2), S0 V(1))|dt <e'(1 +zczcs)g Nv@l,, 4t +
to 1]

+Co(@)|" 1LV B+ Co@) " 170 3.de

t t
t t
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Lemma 1 we obtain (E,) for V. Thus the proof is complete.
For the regularly p-parabolic operator P we have the following energy
inequality.

COROLLARY 1. Let s be any real number. Then there exists a constant
Cr, independent of u and t,, t; but depending on s, such that

m—1 . m—1(ty .,
S IDIuC s 1)l Erypt 5 | IDIC, DIE o1t
Jj=0 Jj=0Jto
' m—1 R ty
<Ci('5, 1D (s 10) o+ | I1PUC, DlIZ 1)
for any ty, t; with 0<ty<t,<T and any u€Cg(R,41).

Let us consider the formal adjoint operator of P:
P*=Dy+ 3, Dyia¥(x, 1, D) =D+ 3 ¢ (x, t, DYDY,
j=1 J=1

where

a:}:(x’ t9 Dx)= Z D;au,ﬁ cj(xa t9 Dx)= Z aa,jD:-l_ Z ca,jD;'
le|<jp le|=jip lel<ip

Let ve C§(R,+,) and put g=P*v. If we write V=(vy,..., v,)’ with v;=D}"'v,
j=1,2,...,m and G=(0,..., 0, g)’, then P*v=g can be rewritten in the vector
form

LV=D,V-C()V=G,

where C(f)=C(x, t, D,) is the operator matrix A(x,t, D,) with ay(x,t,D,)
replaced by ci(x, t, D,). Following the method of construction of H ()=
H,(x, t, D,) obtained by S. Mizohata with the matrix M(x, t, £) replaced by
M(x, t, &), we can find an operator matrix H (f), g being any integer, such that
PE,<H()<B,E,
- l(ﬁq(t)c(t)—(ﬁq(t)c(t))*) = '—BEq+p’ +'))qEq
with positive constants ¢, f, 8, and y,, which are independent of (x, f)e H. FIq(t)

is an #(D,, D}_,,)-valued C* function of t&[0, T] for any real s.
We shall derive the following energy inequality for L by making use of H (¢).

THEOREM 2. Let q be any integer. Then there exists a constant Cr,
independent of u and t,, t, but depending on q, such that

170, SVt o, + " ILVOllo,dt)
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for any ty, t; with 0=t,<t,<T and any V=(vl,...,'um)’, 0;€CF(R,41)-

ProoF. Let V=(v,,...,v,) with any v,€Cg(R,+;) and put G=LV and
hz(t)=(ﬁq(t)V(t), V(t)). There exists a positive constant f, independent of
(x, tye H, such that %ﬁq(t)gﬁ;Eq, 0<t<T. In the same way as in the proof

of Theorem 1 we have
L) 26(E ey V, V)= (g B EY, V)= 20Glo IV,
2 —2C,h%(1) - 2C, |Gl p, A(1)
with C; =(y,+ f,)/(2B) and a positive constant C,, which implies
(e h(1)) 2 ~ | G(D), -
Thus we obtain

t
t

h(t6) S e h(t,) + G €10 G(0)l|p s
o

Since we have the inequalities B||V(9)||3, <h*()=<B,[IV(D)||3,, our proof is com-
plete.
For the formal adjoint operator P* we have the following

COROLLARY 2. Let q be any integer. Then there exists a constant Cr,
independent of v and t,, t; but depending on q, such that

m—1 . m—1 . ty
jZ:O ”D{U(, tO)“q—jpéCT(jZO ”D{D(', tl)”q-—jp'}‘gl “P*l)(’, t)“q-—(m—l)pdt>
= = o

for any ty, t, with 0=ty <t, <T and any veCZ(R, ;).

3. Cauchy problem
Let us consider the fine Cauchy problem (1):

{PuED'{'u+ f}laj(x, t, D)Dr iu=f in H,
=
uOE.@iz-lilm (u, D,u,..., D" lu)=u
tlo
for preassigned fe€ 2,((21:),)(H) and a=(ag,..., 0p—1), a;E(DL2),, Where
aj(x, t, Dx)=| ]Zs: a, ;D% with a, ;€ #(H). As noted in [5, p. 78], a, ; can be
a|sJjp

extended to a function € Z(R,,;). We assume that a,;€ Z(R,,).
Suppose there exists a solution u e 2;((2%.),)(H) of (1). Then f, u have
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the 92/ .-canonical extensions u.., f. as noted in Section 1. In addition, u. and
f. satisfy the equation

m—1
Pu)=f-+ 5 D6®n(0)  inRyx (=0, T],
where

mo jk . i — ;
ww==i 5 S0 I ) Dira, x, 1, Doas.

J=k+

For example, y,,_1=—ittg, V-2 =—1a,0g—iA1, Yp_3=—i(ay—(m—2)D,a)oy—
—ia,0y—ia,, ...[5, p. 82]. In what follows, we shall use the notation I'(«)=
o(®)s-+s Ym—1()). Then I, is an isomorphism of D; onto D ), for any
real s.

Conversely, if ve 2)((2],2),)(R,x(—o, T]) with support in R,x[0, T]
is a solution of the equation

m—1
Po=f.+ %, DES@WO),
that is,

©)] (v, P*w)=((f-, W)+ TTo(®), wo), ~ wECF(R,x (— o0, T)),

where by ((, )) we mean the scalar product between 2,((242).)(R,%(— o, T])

and 2((— o, T))R,(2.2),, then the restriction u=v!ﬁ is a solution of the
Cauchy problem (1) and v=u.. The equation (3) implies Green’s formula:

(((Pu)~, W)= ((u~, P*w))=—(Io(uo), Wo).

Similarly we have the equation
((Pu)z, w) = (uz, P*w))=(Ts(ur), wr)—(T'o(uo); wo),

where wr= .@Lz-hm (w, Dw,..., D"=tw), u~ is the 9/.-canonical extension

of u over t=T and (( , )) means the scalar product between 2.((21.),) and
‘®L(9L2)x'
Let s be any real number and let L, L be the differential operator systems
that correspond to the operators P, P* respectively, which are defined in Section 1.
Then we have :

ProrosiTION 2. If Ue&Dg,,,(H), LU=FeD,(H) and @22-“11'11 U=
tlo
€Dy, (R,), then UeD, (H) and U satisfies the inequality

t t
VD3, ,. +\ IUDI3,.,dt=Cr(llallB,, . +\ IFDI3d0), 0=z<T.
0 0
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In particular, if F=0 and a =0, then U =0.

Proor. From the relation D,U=F+ A(t)U € D, (H) we see that U D, (H).
There exists a sequence {®,}, &, €CFR,; )X+ xCF(R,+,), such that {P}
converges in D, (H) to U. The sequences {®,(-, 0)} and {L&,} converge in
Dy, , and D, (H) to « and F respectively. Owing to the energy inequality (E)),
we see that {®,} is a Cauchy sequence in D, ;. (H). Let V be the limit of {®,}.
Clearly V coincides with U as a distribution and U satisfies the above inequality.

THEOREM 3. If UE€D,((212),)(H) X -+ X D4((D}2))(H), LU=0 in H
and 24:-lim U =0, then U=0 in H.
v ti0

Proor. There exist two integers k, I such that UeD, (H). Suppose
k<p. From the relation D,U=A(t)U € D, ,_ (H) it follows that U € Dy ,,,_ ,(H).
Repeating the procedure, we see that U€ D, ;- ,(H). Thus Proposition 2 implies
U=0.

Let us denote by &£9(5#,)(resp. £2(Dy)), 0=<t< T, the space of s#(R,)-valued
(resp. D(R,)-valued) continuous functions of t[0, T). Along the same line
as in the proof of the preceding theorem, we have

PROPOSITION 3. If VE 21((D12))(H) X -+ X D1((D1.2))(H), LV=0 in H
and 24.-lim V=0, then V=0 in H.
T

Proor. We can find a real s such that V€D, (H). Thereexists a sequence
{@}, D,eCF(R,41)% - x CH(R,+,), such that {&,} converges in D, (H) to V.
The sequence {®,(-, T)} converges in D, , to 0 and therefore it converges in D,
to 0. On the other hand the sequence {L®,} converges in D, (H) to 0. In
virtue of Theorem 2 we have

T
124, Dllo, S Cr124C Dllpg+ I LD 1,40
and therefore {®,} converges in £2(D,), 0<t<T, to 0. Thus V vanishes in H.

COROLLARY 3. If vE€2,((2}.),)(H), P*v=0 in H and 2).lim (v,
o 1T
D,..., D"~1v)=0, then v=0 in H.

THEOREM 4. Forany fe X o (H) and 0 €Dy, (- 1)p+ there exists a unique
solution ue A", (H) of the Cauchy problem (1) and u satisfies the inequality

m—1 . m—1Ct .
(4) j;() |‘D{u('at)ll.sz+(m—j—1)p+p'+J_§0S0”D{u('a t)”s2+(m—.f)l7dt
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t
S Coll@lBun ey + ), IO, DIZAD)
with a constant C.

Proor. We shall first show that A={(P¢, I'o(¢o)): ¢ CF(R,+,)} is dense
in o (H)x D}, (R,). Let weiy _(H) and f€D_,_,(R,) such that

[ .(Poc, 0. we, D)+ To(0), B)=0
for any ¢=CZ(R,+,). If we take ¢ C‘(’,"(ﬁ), then the relation is reduced to
f.Pac, 0. we, yar=o,
which means P*w=0in H. If we take ¢ C%(H) such that ¢ =0near t =0, then
= .POC, 1, WG, D)t =(Tx(r), wo)

where ¢ =(¢(, T), D,¢C, T), ..., DP~1¢(-, T)). Since I'r(¢) may be arbitrarily
taken, it follows that wy=0. By Corollary 3 w must vanish in H and therefore
(I'o(do), B)=0 for any ¢ = CH(H), which implies g =0.

For any given f € 4" (H) and a € Dy, (,,~1),+, there exists a sequence {¢y},
¢ CF(H), such that (¢(:, 0),..., DP~1¢hy(-, 0)) converges in Dyi(m-1)p+p tO
« and {P¢,} converges in oy (H) to f. In virtue of the energy inequality

m—1 . w10t '
j§0 1D{diCs ONZ+im=j-1)p+p’ +J§OSO||D{¢,‘(.’ [

m—1 3 t
écT(jZ;o 1DIdi (-5 O Z (m-j—1)p+p’ +SOI|P¢k(', t)llfdt),

we see that (¢y,..., D'~ 1¢,) is a Cauchy sequence in Dy ;4 pmp(H). Let (vy,..., v,)
be the limit. From the fact that D/¢, converges in X _j, i, (H) to D{v, and
the space g+ m-j), belongs to the space A _j;, ;. m,(H) it follows that v;, , =
Djv;,j=1,..., m—1, and Pv, —fin H with (v,)o=0. Since (v;, Dpy,..., DP=1v,)
EDOs+mp(H) and DM, =f— Z agx, t, D)D" Iv, €Ay (H) we see that (v,
Dyy,..., DP~10,)ED, st (m- 1),,(H) and therefore v, € X, (H), which is a unique
solution of the Cauchy problem (1) (Theorem 3) and satisfies the above inequality

.

ReMARK. Theorem 4 is in a sense a generalization of a result of S. Mizohata
[11, Proposition 5].

PROPOSITION 4. Let k be any non-negative integer. For any f& X'y, (H)
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and o€ Dy (mikyp-p there exists a unique solution UE XA (k) (H) of the
Cauchy problem (1) and u satisfies the inequality

mk—1 ) mtk—1(t . )
(%) Zo | Dju(-, )| +(m+k—j)p-p' T JZO SOHD{“(‘, t)”s+(m+k—j)11dt
i= =

k=1 .
g CT(llalllz),+ (m+k)p-p’ + j;ollD{f(', 0)“sz+(k—j)p—p’ +

k (t
+ 5 1D, Dl 0stsT,

with a constant Cr.

Proor. In the case where k=0, the statement coincides with Theorem 4.
Let us consider the case k=1. Since f € Xy, (H)C H o 544,(H) it follows from
Theorem 4 that there exists a unique solution u& .t x,(H) of (1). u
€ A p,s+ip(H) means U=(u, Du,..., D" 'u) €D, ;s m+r-1y,(H). Then D,U
=AW U+FED, ot mik-2p(H) with F=(0,...,0,f) and therefore Ue
D, s+ (m+x-2)(H). Repeating this procedure, we see that U € D4 1y 5+ (m— 1),(H),
that is, u € X 4 kyp,(H)-

Let k=1. For any fex',(H) and a€D,,,,+, the unique solution u
€ A (m+1)p,{(H) satisfies

©) NUOB sy + § WO 11,8 S CrlllB e+ L FDN20)

with a constant C;. Put V=D,U. Then V€D, ,,(H), D,V—A(t)V=D,F+
D,A(t):UE Dy 54 (m—1)p(H), @iz-lilrg VEDsym-1)p+p and therefore V satisfies
t

D VO Bar e e+ VOBl

t t
SCHUVO B grerypere + | 1D DR+ [ UDIB,..,,00)
with constant C%, where

” V(O)“%s+(m-1)p+pr écl ”a”lz)si-mp+p’ +C2”f(‘9 0)“82+p'

with constants C; and C,. Summing (6) and (7) and applying Lemma 1 to the
result, we have

m . m (t .
j;o”Dfu('a t)”s2+(m-i)p+p’ +j£§OS°”D1u('s t)”sz+(m—j+1)pdt

1 (t
S CHUB.1 e + 1S CL Oy + 35 [ IDIC, Dll2eca- D)
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with a constant C}. Repeating this procedure we obtain (5).

Let k be a positive integer and put yo=2"g (H), v, =24, (H). Then
v, is dense in y, and |[ullo < ||ullx,,s for any ucy, and therefore there exists
an unbounded self-adjoint operator J in 1y, with domain y,, which generates
a Hilbert scale {9;}_,<1<,- In the same way as in the proof of Corollary 4 in
[5, p- 97] we see that v, ="y, (H) within the equivalent norms. From the
preceding proposition the map (f, «)—u which assignes a unique solution u to
the data (f, @) is continuous from %" (H) X Dy pp—, into A", (H) and from
Hip,s(H) X Dyt (makyp-p N0 A iy, (H). By the interpolation theorem we
obtain

CoROLLARY 4. Let o be any non-negative number. For any f e X", (H)
and «€ D, sy there exists a unique solution u€ A, 4, (H) of the Cauchy
problem (1) and (f, @)—u is a continuous map from A, (H)X D, simp—p into

l%/‘a' +mp,s(H)'

We shall denote by /", (H_) the space which is a restriction of the space
A 4, o(Ris1) to R,x(—oco, T) and similarly D, (H_) is defined.

PROPOSITION 5. Let ¢ be a real number with —p’<e<0. Forany fe
Ay (H) and «€D, ¢y, there exists a unique solution u€ A, ., (H) of
the Cauchy problem (1) and (f, ®)—u is a continuous map from A, (H)x
Da'+s+mp—p’ into '%/‘a--f-mp,s(H)'

Proor. .Let fex',(H) and a€D,, imp-,. Since —p'<o<0 the
94,.-canonical extension f.. belongs to the space £~ os(H-). Letg ex o +mp,s(H =)
be such that (D,—il?(D,))"g=f., where A(D,) is the operator with symbol
MO =1+[E?)1/2. Then it follows from Corollary 3 in [6, p. 393] that 9/ .-
lzi?zl) (g, Dg,..., Dr~1g)=0. The Cauchy problem (1) is reduced to

POYu-9)= 5 (/T WD) - ax, 1, DYDrig in H
® £ TN
iz'ltif% ((u—g)’ Dt(u_g)s---a D;n—l(u_g))=a’

where Z((—z)ll“’(D,,) ajx, t, DY))Drige A, -, (H_) with c+p>p'. It
follows from Corollary 4 that there exists a unique solution ve &~ o+ (mt ps— (H)
of the Cauchy problem (8). Thus u=v+g& X, (H) is a unique solution
of the Cauchy problem (1). In view of the closed graph theorem it follows that
(f, ®—u is a continuous map from A, (H)X Dy 4simp—p N0 H g 4y (H).

Let o, s be any real numbers and write 6 =kp+ ¢’ with integer k and —p’ <
¢’ <p’. Then we have the following
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THEOREM 5. For any €D, i p,—y and f X, (H) with f.eA, (H_)
there exists a unique solution ue X', ., (H) of the Cauchy problem (1). In
particular, if a=0 then u~eyi},+m,,,s(H_).

Proor. Consider the case where k=0. By Proposition 5 and Corollary 4
it suffices to show that u~EJi} o+mps(H-) for a=0. Suppose a=0, that is,
Qiz-lim (..., DP~'u) =0. If k>0 then f.€X,4, (H-) implies 2%.-

t!

lim ( f, , D¥=1f)=0. From the equation P(D)u=f we obtain @Lz—hm (u,...

tl0

Drtk-1y)=0 for k=0. If ¢'’<p’ then u. EJi””mp,s(H ). Ifo'=p then u.

j‘a+(m—-1)p,s+p(H—)' Since @Lz-h?l(u, Dr=1y) =0, if we put V=(u.,
tlo

D(u.),..., D"~ Y(u.)y, F=(0,...,0, f.)y, then V€D, ;1 ,,(H_) and D,V=At)V+

FeD,qim-1,(H-) and therefore VED,,,im-1),(H-), that is, u.e

‘9{0’+mp,s(H—)'

Consider the case where k<0. Assume that the results hold true of any
k+1. Letf.ex, (H.),0=kp+o' and «a€D, ipmp-p. Let gEL 44pm(H-)
be such that (D,—i?(D,))"g=f.. Then Q'Lz—lim ,..., D" 1g) =0 and the

Cauchy problem (1) is reduced to (8), where Z (- 1)1<m>1“’(Dx) ailx, t, D))

D~ Jge%,ﬂ,s S(H_) and o+p=(k+ 1)p+a Thus there exists a unique
solution V& A", 4 (m+ 1)p,s— p(H). Consequently, u=v+ge X, ,, (H). Since v.
EX 5t (m+1yps—p(H-) for =0 we can conclude that u.=v.+gEX 1, (H_).

PRrROPOSITION 6. For any h E.}i}a,s(H_) there exists a unique solution v
ENX 4 iymps(H-) of Pv=h.

Proor. In the case where o> —p’, the problem to find a solution v of
Pv=h is equivalent to the problem to find a solution u of the Cauchy problem
Pu=h|H ex, (H) with .@iz-}ill'(])] (u,..., Dr~'y) =0. Thus there exists a
unique solution U € H .4 pp(H) and u € X", 4y (H_).

In the case where o < —p’, our assertion will follow in the same way as in the
proof of Theorem 5.

Let P be a regularly p-parabolic operator in 0< T< o and consider the
Cauchy problem

Pu:f in R:+19

® .
.@iz-lllm (u, D,u,..., D" y)=a
tlo

for given a€(Di2) XX (2%2), and f€2'(Rf)((212),)=2'(RH)e(D2),
which has the 2{.-canonical extension f.. From the fact that Theorem 3
bolds true of any Hr=R,x[0, T], the Cauchy problem (9) is unique in

2i((212))(Ry41).
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The spaces &', (Rir,) and &, (R},,) are defined in the same way as
A 4, (H) and Ji}m(H). By o5 (R}:y) we mean the space of u€2'(R}.y)
such that gue X, (R}:,) for any ¢ 2(R,) and the topology is defined by
the semi-norms u—||¢ul|, . Along the same way as in the proof of Theorem 5
and Proposition 6 we have the following

THEOREM 5'. For any o€D, s ipmp—p and fex; (Ri.,) with f.€
A3 (Riyq) there exists a unique solution u€ X'y ., (Riv1) of the Cauchy
problem (9). In particular, if a=0 then u~e.9f;+,,,p,s(R—:+1).

ProPOSITION 6. For any he.)i};,s(l?jﬂ) there exists a unique solution
VEA G imp,s(Ry+1) of Pu=h.

Let us denote by 2/, the subspace of 2; which consists of all one-dimention-
al distributions with support contained in [0, o) and by (2}),((2%2),) the &-
product 2.e(2%:),, which is a reflexive, ultrabornological Souslin space [6,
p- 372]. In the same way as in the proof of Theorem 5 [7, p. 415] we have

THEOREM 6. For any he(2}),((2}2),) there exists a unique solution
vE(2;),.((2L2),) of Pv=h and h—v is a continuous map from (2,),((242),)
onto itself.

Proor . Take a sequence {t;} of real numbers such that t,<0<t; <t,<--,
lim¢;=co and put U;=(t}, t;,,). Let {¢;} be a partition of unity subordinate
{o the covering {U;};=0.;... Of (tp, ) and consider the equations Pv;=4,f,
j=0, 1,..., where ¢jfe.)f°;j,sj(ﬁj+1). In virtue of Proposition 6’ there exists
a unique solution vjeai};ﬁmp,sj(R;H)c(9;)+((95_z)x). By our energy in-
equality (E,) we see that v;=0 for t<t;, Thus v=32]v; is well defined in
(2)+((212),) and v is unique in (2{).((212),).

Consider the map

1:2:(212))2v->Pre(2)+((212),),

which is linear, continuous and onto. Since the space (2}),.((2%2),) is ultra-
bornological and Souslin it follows from the open mapping theorem that I
is an epimorphism. Thus the proof is complete.

As a consequence of Theorem 6 we can state the following

THEOREM 7. For any oa€(Di2),X - X(Dy2), and f€2'(R})((22),)
with f.€(2:).((212),), the fine Cauchy problem (9) has a u‘nique solution u
€ 2'(RH)((2,2),) and (f., ®)—u. is a continuous map under the topology of
(2)+((212);) X ((DL2) X -+ X (D12),) and the topology of (27)+((D12)x).

We shall close this paper with some remarks on the Cauchy problem (2):
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LU=D,U—-A()U=F in H,
Qiz-lim U=a
tio

for preassigned Fe 2,((212),)(H) % - x 2,((242),)(H) with 2/ .-canonical
extension F. and a€(212), X -+ X (2}2),. Asshown in Theorem 1 the energy
inequality (E,) holds true for any U=(u,,..., u,), 4;E CF(R,+1).

Let s be any real number. If for any FeD, (H) and a€ Dy, ,(R,) there
exists a solution U € D, ,, ,(H) of the Cauchy problem (2) we shall say that (CP),
holds for L. As shown in Theorem 3, U is uniquely defined if it exists. In the
same way as in the proof of Proposition 7’ in [7, p. 434] we have

ProrosiTION 7. (CP), holds for L if and only if the conditions that W &
D}, _(H), L*W=0 in H and 2/ :-lim W=0 imply W=0 in H.
1T

LeMMA 2. Suppose (CP), holds for some s. Then, for any FeCg(H) x
<X C®(H) and a=Cg(R,) % - x C&(R,) a unique solution U of the Cauchy
problem (2) belongs to the space D, ¢ (H) for any s'.

Proor . From our assumption it follows that Ue Dy, ,(H). If we put
V,=AD,)U, then

{D, Vi+A@)V, =A(D,)F + (A()A(D,) — (D, )A)U in H,
Di2-lim V; =A(D,)a,

tio
where A(D)Fe¥(H), ADyee(R,) and (A(HDAD,)—AD,)A))Ue D, (H)
[6, p. 387]. From our assumption it follows that V,=A(D,)U&€ D, ,(H)

and therefore UE€ Dy g4 p+ 1 (H).
If we put V,=4%(D,)U, then

DV, + A1)V, =22(D)F + (A()A*(D,) — 22(D)A())U € Do ((H),,
{9 paelim ¥, =22(D)re #(R,).

Thus V,=22(D,)UE Dy 44 ,(H) and therefore U€ Dy, ,4,(H). Repeating this
procedure, we see that Ue N\Dy (H).

ProrosITION 8. If (CP), holds for some s, then it does also for any s'.

Proor. For any given FED, (H) and a€Dy ., (R,) there exist two
sequences {F;}, F;€ C§(H)x -+ x C3(H) and {a;},a;€ C§(R,) x -+ x C§(R,) such
that {F;} and {«;} converge in D, (H) and Dy, ,(R,) respectively. Let U, be
a unique solution of the Cauchy problem (2) for L associated with F; and a;.
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Then U; belongs to the space N\D, (H) and it satisfies the energy inequality
s

t
10Oy + . N0, 1B,0 8 = Colllens 1B, + [ 17,05, a0), 0505 T,

with a constant Cy, which implies that {U;} is a Cauchy sequence in D ¢ , ,(H).
By the relation D,U;=F;—A()U;E D, ,(H) we see that {U;} is also a Cauchy
sequence in D, (H). Let U be the limit of U; in D, (H). Then U D, (H)
satisfies LU = F in H and QLz-hm U =a, which means that (CP), holds true.

From the energy inequality (ES) and Proposition 8 we can prove the following
proposition in the same arguments as used in [7, Proposition 6].

ProrosITION 9. Ifforany Fe D, (H) and « € Dy, ,.(R,) the Cauchy problem
(2) has a solution U 2;((21,2),) (H) X - x 2,((242),)(H), then U D, (H).

If we suppose (CP), for L, then our discussions on the Cauchy problem for
a specified parabolic system given in Section 6 of [7] can be applied also to
the Cauchy problem for L.
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