HirosHMA MATH. J.
4 (1974), 619-628

Orbit Method and Nondegenerate Series

Joseph A. WoOLF
(Received May 14, 1974)

1. If G is a reductive Lie group, then its Plancherel formula ([1], [2], [8])
involves a series of representations for each conjugacy class of Cartan subgroups.
These ‘‘nondegenerate series” are realized [8] by the action of G on square
integrable cohomology of partially holomorphic vector bundles over certain
G-orbits on complex flag manifolds. That is similar to their realization by the
Kostant-Kirillov orbit method using semisimple orbits. The differences occur
when G has noncommutative Cartan subgroups, and also for representations with
singular infinitesimal character, i.e. when the semisimple orbit is not regular.
Recently Wakimoto [6] used possibly-nonsemisimple orbits to realize the principal
series, which is the series for a maximally noncompact Cartan subgroup H, when
G is a connected semisimple group and H is commutative (e.g. when G is linear).
Here we use our method [8] to extend Wakimoto’s procedure and realize all
but a few members of every nondegenerate series of unitary representation classes
for a reductive group. In the case of regular infinitesimal character there is no
essential change from [8]. But in the case of singular infinitesimal character we
rely on results of Ozeki and Wakimoto ([4], [6]), using nonsemisimple orbits
in an interesting way.

To avoid repetition we assume some acquaintance with [8].

2. G will be a reductive Lie group of the class studied in [8] and [9]. Thus
its Lie algebra
(2.1a) g=c+g, with ¢ central and g, = [g, g] semisimple,
we assume
(2.1b) if g € G then Ad(g) is an inner automorphism on g,

and we suppose that G has a closed normal abelian subgroup Z such that

(2.2a) Z centralizes the identity component G, of G,
(2.2b) ZG, has finite index in G, and
(2.2¢) Z n G, is co-compact in the center Zg, of G,.

Then the adjoint representation maps G to a closed subgroup G=G/Z4;(G,) of
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the inner automorphism group G =Int(gc), where Z4(G,) is the G-centralizer of
G,.

By ‘‘Cartan involution” of G we mean an involutive automorphism 6 whose
fixed point set K =G? is the inverse image (under G—G) of a maximal compact
subgroup of G. If b is a Cartan subalgebra of g and

H = {geG, Ad(g)|, is the identity transformation of b}

denotes the corresponding Cartan subgroup of G, then there is a Cartan involu-
tion 0 of G with 6(H)=H. This splits

(2.3a) h=t+a wheret ={helh:0(h)=h} and
a=1{hebh:0(h) = —h} and
(2.3b) H = Tx A where T= Hn K has Lie algebra t and 4 = exp(a),
and the G-centralizer of A splits as
2.4) Zs(A) = M x A where (M) = M and M satisfies (2.1) and (2.2).
Let XF be a positive a-root system on g and denote

2.5) n= > g* and N =exp(n).

aeEE

The corresponding ‘‘cuspidal parabolic”’ subalgebra p=g and subgroup PcG
are given by

(2.6) p=m+a+n and P = MAN.

T is a Cartan subgroup of M with TnMy=T,. The object acting as
weight lattice is

(2.7a) A, = {veit*: v exponentiates to a character exp (t)— ¢*® on T,}.

We replace G by a Z,-extension if necessary so that, for all H and all choices
Z} of positive to-root system on mg,

(2.7b) Py = L > ¢ is contained in 4,.

2 ¢e£{

The relative discrete series (My)4isc Of unitary representation classes of
M, is parameterized by

(2.8a) Al = {veA,:vis m-regular, i.e. <v,p># 0 for all p e Z}}

as follows. If ve A7 denote
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(2.8b) sy(v) = [{compact g e Z}: <v, o> <0}|+
+|{noncompact ¢ € X} : <v, p> >0}].

Then the class [1,] € (M)gisc for ve A7 is the one whose distribution character
satisfies

(2.9) Polroamr = (=1 {T] (e¥/2—e7¢/2)}71 5 det(w)e™®
+ W(Mo.To)

PeXy

where M” is the regular set and W(M,, T,) is the Weyl group. The relative
discrete series of

(2.10) Mt = {me M: Ad(m) is an inner automorphism of M}
=Zy(Mo)M,

consists of the [y®n,] where [x]e Z,(My)" and [n,]€(Mg)4;sc both restrict
to the same unitary character on Z,, =Z,(M,)n M,. The relative discrete

series ﬂdisc of M consists of the classes

(2.11) [1,,v] = [Indpt1 p(x ® 1,)] Where [y @ n,] € (M)gisc-
Finally, the H-series of unitary representation classes of G consists of the
(2-12) [Tcx,u,n'] = [IndPTG(rlx,v ® eid)]’ ["x,v] € Mdisc and o € a*.

This series depends only on the conjugacy class of H in G, and not on the choice
of . The Plancherel measure on G is concentrated on the union of the various
H-series.

3. Fix a semisimple element xeg. Then x is contained in some Cartan
subalgebras of g, and we choose

3.1 h: maximally split among the Cartans of g that contain x.

With § ﬁxéd, we choose 6 and obtain the splitting (2.3) and (2.4). Now choose
(3.2a) Zt: any positive a-root system on g, and

(3.2b) Zf: positive te-root system on me with @(ix) >0  for peZ}.
These specify a positive hc-root system X+ on g such that

(3.2¢) 2t ={yla:yeZt and 7, # 0} and

Zf ={yl;:yeZ* and 9|, =0}.
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Evidently the centralizer of x in g is
(3.3) g* = g N g¢ where g¢ = hc+ X ,e5+,,(x)=0(3 +9c7) -
Ozeki and Wakimoto [4, Lemma 4.4 and its proof] proved
(3.4a) if ¢ € 2} with o(x) =0, and ifyeX* with ¢ = y|,, then g¢ = {.
where f=g?, Lie algebra of K=G?. In other words
(3.4b) u=g* N m is contained in f.
This says
3.5) e = Ye, 0#e,e9*N g% is regular-nilpotent in g*

where the sum runs over {simple a € 2} :a=7|, with y(x)=0}. Now, according
to Wakimoto [6, Theorem 3.6],

(3.6) q = (tc+ 2 pest,0(ix)>0 88) +ac+nc

is a complex polarization of g for x+e. If T denotes complex conjugation of
gc over g then we note

3.7 g+tq=mc+ac+nec=pc and qN1q=uc+ac+nc.
In case x is regular, g*=0, so e=0and qn1q=tc+ac+nc.
LemMA 3.8. The polarization q for x+e is Ad(G**¢)-invariant.

Proor. We may replace G by Ad(G)=G/Z4z(G,)=G for the proof, thus
assuming G <Int(gc)=Ge.

Since x is semisimple, e is nilpotent, and [x, e] =0, the centralizers satisfy
G*te=G* G*=(G*)".

Observe that qngg=p*, which is a minimal parabolic subalgebra of
g*. It follows ([3]; see [5]) that qng* is an invariant polarization of g*
for e. Writing P, P, and Q for the parabolic subgroups with respective Lie
algebras p, pc and q, G**e=(G*)*c P*c P¢=GcnNQc<=Q. Thus G**¢ nor-
malizes Q. Q.E.D.

4. We briefly recall the orbit method as it would apply to G. Let yeg
corresponding to the linear functional y*:z—<y,z> on g, and let q be a G-
invariant polarization of g for y. Then one has groups

E = G»E, where E, is the analytic group for ¢ = (q+1t9)Ng,
D = G»D, where D, is the analytic group for d =(qntq)ng.
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Suppose that y is integral in the sense that
5y=funitary characters & on D:d&(z) =i<y,z> for zebd}

is not empty. Every éeﬁy specifies a G-homogeneous complex line bundle.

Z:—G/D associated to { ® e’ where p(z) =—é— trace, ad(z)
which is holomorphic over every fibre of G/D—G/E. One looks for a cor-
responding Hodge-Dolbeault theory which will produce Hilbert spaces HY5(.Z;)
that are square integrable cohomology groups for the cochain complex
{A4%°(Z,); 0} where

A%s(&L,): C= objects that are #,-valued (0, s)-forms on each gE/D,

0 : operator whose every ;| g p-restriction is the usual 0 there.
If this is done correctly, the natural action of G is

T, ,.¢s. UNitary representation of G on H$5(%Z,).
In fact we will modify this general pattern as in [6] and [8], enlarging D and
E to contain Cartan subgroups of G. Then the results of [8] will apply directly.

5. We describe our modification of the orbit method as applied to the
element y=x+eeg of §3, and we prove the lemma that allows one to apply
the results of [8].

Retain the setup and notation of §3. Using (3.7) and Lemma 3.8, we
consider the groups E and D of §4 for y=x+e, but we replace them by their
respective finite extensions

(5.1a) Pt = MTAN where Mt = Z,,(M,)M, as in (2.10), and
(5.1b) L = UAN where U = G*n M is in K by (3.4b).

Notice that Pt = EH, = TE, and L = HD, = TD,,.
Recall G=G/Z;(Gy)<Int(gc)=G.. Using the terminology ([7], [8]) of
real group orbits on complex flags,

LEMMA 5.2. Let Q denote the parabolic subgroup of G with Lie algebra
g=ad,.(q), and let X be the complex flag manifold G¢/Q. Then there is a
measurable integrable orbit Y=G(x,)< X such that Pt is the G-normalizer of
the holomorphic arc component of Y through x, and L is the isotropy subgroup
of G at x,.

ProoF. Let II; be the simple tc-root system on m. gorresponding to X}
(3.2b) and let IT be the simple hc-root system on g. corresponding to Z* (3.2c).
Define
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&, ={pell,:p(x) =0} and & =, UI\Il,)<=II.

Using this data, the construction [8, 6.7.6] gives our algebra q and so the asser-
tions follow directly from [8, Proposition 6.7.4] and [8, Corollary 6.7.7].
Q.E.D.

6. We examine the representations of L that give the bundles to which we
apply our variation on the orbit method. Those are the elements of

6.1) L,,,={[A1eL: forlel, di(l) is multiplication by i<x+e, >}

Since [=u+a+ncp and een=ptcl,
if ueu,aea and nen then <x+euta+n>=<x,u>+<x,a>.
Thus we define

(6.2a) o, € a* by the property o,(a) =<x,a> forallaea,
(6.2b) v, € u* by the property v, (u) =i <x,u> forallueu.
Then of course

(6.3) 0, = {[u] € U: du(u) is multiplication by v (u)}

is nonempty just when v, integrates to a character

6.4 e'=e U, given by e"*(expu) = e"*® for uecu.

LEMMA 6.5. U=Zy(M)U, and U,=UnM,, so O.={[x®@e"*]:[x]e
Zy(My)™ and x|z, (Moynu, i @ multiple of e¥x}.

Proor. Recall(5.1). Asxem+awehaveZy,(My)<G* so Zy(My)=G*n
Mt=U. The holomorphic arc component mentioned in Lemma 5.2 is PT(x,)=
PT/L=MTU=M,/UnM,. Since G(x,) is of flag type [7, Theorem 9.2 (ii)],
its holomorphic arc components are simply connected [7, Theorem 5.4]. Thus
Uo,=U n M, and it follows that U=Z,,(M,)U,. Q.E.D.

If [A]e L,.., then dA(n) =0, so A annihilates N, and thus 1 is a representa-
tion of UA=U x A4 lifted to L. Now (6.2), (6.3), (6.4) and Lemma 6.5 give us

PROPOSITION 6.6. L., is nonempty just when e~eU, is defined, and

Ex+e={[.u®eidx]: [.u] € Ux}

Since Z,(M,) has a co-compact central subgroup, Z,(M,)" consists of
finite dimensional classes. If H is commutative, so is T={me M:Ad(m)|,
is the identity on t}, which evidently contains Z,/(M,), so further Z, (M)~
consists of 1-dimensional classes. Thus
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COROLLARY 6.7. The representation classes in L., are finite dimensio-
nal. If H is commutative, e.g. if G is a connected linear group, then L.,
consists of unitary characters.

7. We produce the bundle, the cohomologies and the representations
corresponding to a class [A]=[u®ei**]=[}®e"*®ei*] e L,,,. Retain the
notation of §§ 3, 5 and 6.

Let pa=% Y (dim g*) o« where the sum runs over XZf. Then [ acts on

g/l with trace —2p,. Now consider the G-homogeneous complex vector
bundle

7.0y w,=u — G/L associated to A ® e’ = y ® e~ ® erotiox

H,0x

Every fibre of G/L—G/P' has a complex structure specified by

(7.2a) q/lc is the holomorphic tangent space to S = PT/L at 1-L
and, viewing ¢S as the fibre of G/L—G/P' over gPT,

(7.2b) if g, 9g'eGtheng:g'S — (99')S is holomorphic.

Just as in [8, Lemma 8.1.5], now

(7.3a) each %, , |,s is an Ad(g)P'-homogeneous holomorphic bundle

H,0x

in such a way that
(7.3b) ifg,g'eGtheng: %, , |,s = %y,0.l44s is holomorphic.
It also defines a G-homogeneous vector bundle

(7.4) 7 — G/Lsuch that 7 | ;5 is the holomorphic tangent bundle of gS.

We now have G-homogeneous bundles %, , ® A"(T*)® A%(T*), 0<r,
s<n=dim¢S, whose sections are the “#, , -valued partial (r,s)-forms on
G/L.” The 0-operators of the #, , |,s fit together to give first order ope-
rators on the spaces of C* #, , -valued partial (r, s)-forms, which we denote

(7.5) 0: AU ,5,) > A (U 5,) -

The representations 7., , s of G are supposed to be unitary representations of
G on square integrable cohomology spaces of the complex {4°5(#, ,.); 0}.
Comparing our spaces, bundles and complex structures with those of [8,
§ 8], we identify G/L with the orbit Y=G(x,)=X of Lemma 5.2 and the fibres
gS of G/L-G/P' with the holomorphic arc components of Y, with complex
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structures on the gS induced by X and partial holomorphic structure on %, ,,
the same as that of [8, Lemma 8.1.5]. Thus, square integrable cohomology
spaces of the cochain complex {4°(%,,.); 0} are provided by the Hilbert
spaces

,,,.-valued square integrable partially
(7.6) HYs(%,,,): . )
harmonic (0, s)-forms on G/L as in [8, §8. 1].

on which G has a natural action [8, 8.1.10],

(1.7) s

HsOx

unitary representation of G on HY5(%,, ,..)-

Now the desired n,,,,,  for our modification of the orbit method, are just
the ns . of [8, §8.1].

H,0x

8. We recall the main result of [8], which more or less identifies the .., , 1.
=n5 .. in terms of the H-series classes described above in §2.

Let xeg and retain the notation of §§3 through 7. Suppose that e'~
exists. As ¢(ix)>0 and <¢, p,> >0 for all ¢ € X}, we have

(8.1) v+ p, € A] with
suvet+p) = |{@eZf: ¢ is noncompact}|.

Since v,+p, e A}, [8, Theorem 8.3.4] applies. It says that the sum H#n$
of the H-series constituents of #S, , is the (discrete) direct sum of the irreducible

,0x

subrepresentations of =3 that it has a well-defined distribution character

Ly, Cx?

O(H4ns . ) and that the alternating sum of those characters is an H-series

character
(8.2) T (= 1¢0(Im ;) = (= M Ct000(T, 1y )
Further, [1n, m] determines a constant by >0 such that
if |[<v,+p,, >|>by for all pe Xt
8.3) J then HY:s(%,,,.) = 0 for s # sy (v.+p,) and
[ to0] = [0 itppr0nd -

In other words, [7,,, +,,,s.] always is a subrepresentaion of the [7,+cq,1,]
[A]l=[x®e’*®ei°x] e L,,,, obtained from our variation on the orbit method.
And if <v.+p,, 9> >by for all ¢ € X}, then

(84) [nx+e,q,).,sM] = [nx,vx+pt,ax] Where



Orbit Method and Nondegenerate Series 627

sy =|{peZf: ¢ is noncompact}|.

9. We reformulate the discussion of § 8, realizing the various nondegenerate
series of G by the modified orbit method.

THEOREM 9.1. Let H be a Cartan subgroup of G and [m,,,4,,,.] an
H-series representation class such that

9.2) if @ is a noncompact tc-root of mc then <@, v> # 0.
Define xely by v=v, and 6 =0,, that is
9.3) wt) = i<x,t> for tet and o(a) = <x,a> for aca.

Then by is maximally split among the Cartan subalgebras of g that contain x.
Let e be a regular-nilpotent element of g* and consider the representations

Txte,q,4,59 [)»] = [X ®e'® ei“] € f’x+e’
of §§6 and 7.

1. [7,,v+pt,0] is implicitly realized on the orbit of x+e as a sub-
representation of an [m., . 1] 0<s<% dim,M*/U.

2. If the roots are ordered as in (3.2), and if for every @ eZXf the non-
negative number <v+p,, 9> is >by, then [n, .., ,] is explicitly realized on
the orbit of x+e by

0.4 (% vtnpad = [Txte,q 1,50 ] Where
sy =|{peZf: ¢ is noncompact}|.

In the case of the principal series, every tc-root of m¢ is compact, so (9.2)
is automatic and s, =0. Also, there by=0. Thus we recover Wakimoto’s
result [6, Theorem 6.6] as the case where G is a connected semisimple Lie group
and H is commutative in

CorOLLARY 9.5. Let [m, ,i,,,] be a principal series representation
class of G, that is an H-series class where H is a maximally split Cartan sub-
group of G. Define xel by (9.3), let e be a regular-nilpotent element of g*,
and suppose that the roots are ordered as in (3.2). Then [m,, 4, o] is
realized on the orbit of x+e as the representation [T,., . @ev@ecis,0] 0f G
on square integrable partially holomorphic sections of #,g.v,,—G/L.

Finally we note that if H is not maximally split, i.e. if the H-series is not the
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principal series, then X} does contain a noncompact root, so the H-series classes
[7y,5,.c] do not satisfy (9.2) and thus are not realized by the procedure of
Theorem 9.1.
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