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1. Introduction.
For any real function ¢(r) which is continuous and monotone decreasing
for r>0 w1th 11m ¢(r)=+ oo, Frostman [2] defined capacity C¢ with respect to

¢. Let ¢ be a ﬁxed function of the same type and let us consider the following
two properties.
i) If C%(K)=0 for some compact set K<=R", then C*(K)=0 and the con-
verse implication is also valid.
i) M;@o(r)Zd(r)=M,do(r) for each 0<r<dy, where M;, i=1, 2 are posi-
tive constants.
It is evident by the definition of capacity that ii) implies i). If ¢, is such that
ré¢do(r) is monotone mcreasmg with hm r"gbo(r) 0 and r "S do(s)st1ds=
M3po(r) for 0<r<d, we see that i) 1mphes d(r)S M ¢po(r) by Theorem 4 and
Remark in S.J. Taylor [6]. Our object in the present note is to show that i)
implies M5¢o(r) £ ¢(r) for 0<r < in case rP¢(r) is monotone increasing for some
0<p<d, which is a stronger assumption on ¢, than S.J. Taylor’s. Our result
is as follows.

THEOREM. Let ¢o(r) and ¢(r) be such that they are monotone decreasing,
right continuous with lim ¢o(r)=1lim ¢(r)=+ o0 and r?¢y(r) is monotone in-
r->0+ r->0+

creasing for some d>p>0. Then i) implies ii).

2. Definitions and known results.
We set
®={¢; ¢(r) is positive, monotone decreasing and right continuous with
lim ¢(r) = + o0},
r—0+
and

¢,={¢ € D; rP¢(r) is monotone increasing for 0<r <4}

For a compact set K in Euclidean d-space R4 we set
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My={u;u is a measure defined on K such that p(K)=1}.

and for ue Mg
VEK) = iggdgxqﬁ(lx—yl)u(dy)
Ve(K) =”i£{fKV;f(K).
Then we define the ¢-capacity of K, denoted C#(K) by
a) if V¢(K)=+ o, then C¥(K)=0
b) if V¢(K)< + o, then ¢(C*(K))=V*¢(K).
The following is known for ¢ € .
2.1 If C*(K)>0, then there exists p € My such that gkgb(lx—yl)u(dy)
<M everywhere for some constant M.
Let us put
Pc={peP; ¢ is continuous on (0, + )}, b5 = P, n P°
For h such that 1/h € #¢, we define the Hausdorff measure A, by

A,(K) = lim[ inf fh[d(c,.)]],
é-0L UC;DK i=1

i<

where d(C;) denotes the diameter of C; and the infimum is taken over all coverings
of K by sequences {C;} of spheres with diameter less than 6. Then Frostman
[2] shows

2.2) Ayo(K) =0=> C¥(K) = 0.1

The following result obtained by S. J. Taylor [6] plays an essential role in our
proof.

If ¢(t)edc, i=1,2, are such that ¢,e®, with limri¢,(r)=0 and
r—0
r"’Sr ¢,(s)dtds < Mop,(r) for 0<r<9, and
0

Lo 05(r)
2.3) llrlllolilf ¢f(r) =0,

1) Itis known by S. Kametani [3] that 4,,,(K)<oo implies C4(K)=0. But we do not need
this sharper result in this paper.
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then there exists a compact set K< R4 such that

A1/¢I(K) = 0, C¢1(K) > 0.

3. Proof of Theorem.

Throughout this section we always assume that a subset K of R¢ is compact
and denote the closed sphere with radius r by Q,. If ¢ € @ is such that

1
S P(s)s4*ds < + o0 for some 0 < o < d we define
0

[61.0) = e || $(s)s%ds.
In case a =1, we omit the suffix «. Then we have

(31) [¢]a € (pﬁ—aﬁl

Indeed by the monotone property of ¢ it holds that

(3.2) [91a(r) > 5———=&(r)

d—a+1 oc+1

and [¢l(r)=r"{—(d—a+1)[¢p](r)+d(r)} almost everywhere. If dpe® is
1

such that S ¢(s)s* " tds< + oo, then
0

3.3) Ay ps(K) = 0= C¥(K) =

This is proved as follows?). If u is a measure on Q, such thatg ¢(Jx—yDu(dy)

fo
=< M on Q,, then we have

_2°M

Indeed it holds that IQ,I“S de é(1x— y) i(dy) < M, where |Q,| denotes the
Q" Q"

volume of Q, and
inf 10,174 ¢(1x-yDdx 2 5, [610).
yeQ,

For a given ¢>0 we choose a countable number of spheres {Q,} with radii r, such

2) In case = @° L. Carleson [1] proved the sharper result than (3.3); that is 4;/;4(K)<+o0
> C¥(K)=0. Since =P now, we give the proof here for completeness though the
method is same,
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that UQ,< K and

2 1

(3.5) ;Ex oI <e.

If C¢(K)>0, there exists pe My such that S o(x—yDu(dy)<M on R¢ by (2.1).
K

Let u, be a measure which is the restriction of u on Q,. Then it follows from
(3.4) that p(Q,)<2°M[¢](r,)"'. Hence we have by (3.5)

1
Lo1(ry)

As ¢ is arbitrary, we can conclude that C¢(K)=0.
Now we prove our Theorem. Choose ay=d—p+1 and « such that g >a>1.
Then we may assume that

I = u(K) = Zp(Qp) = 2M2 S 2/Me.

¢0 € ¢§—a+l ’

because it is easily checked that My[¢ol.(r) S do(r) S Mp[dol(r), 0<r<d. In
the following we fix o« and always assume that (i) of Theorem holds. Since it
holds that

1
a—1

¢0(l‘) s

[6010) = 5 { po(s)si=ertseras <
¢, satisfies S. J. Taylor’s condition (2.3). Next we show

(3.6) [61(r) £ Mo(r)

for0<r<d,. If(3.6) did not hold for any M, and §,, then liminf ¢o(r)([¢](r))~!
r—0+

=0. Hence there exists a compact set K < R9 such that C#°(K)>0 and A, 4,(K)
=0by (2.3). Using (3.3) we see that C¢°(K)>0 and C%(K)=0, which contradicts
to (i). Combining (3.2) with (3.6) we have

€X)) B(r) = dMho(r)
for 0<r<4,. Next consider [¢], for a>p>1. Then
(3-8) [¢1p€ Pips1

[[P1pl(r) = Ma[¢lp(r),  0<r<d,.

Indeed the first assertion follows from (3.1), because Slqﬁ(s)s""‘g ds < + oo by (3.7).
0
Now we have
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(61,10 = ¢ [\ (810150415725 < 2L (62,0,

which is the second assertion. If liminf[¢]4(r)do(r)~! =0, then by (2.3), there
r—»0+

exists a compact set K such that CI4l#(K)>0 and 4, ,,,(K)=0, which implies

CI#ls(K)>0 and C?%°(K)=0 by (2.2). Hence C¢(K)>0 and C*#°(K)=0 by (3.2),

which contradicts to (i). Therefore

(3.9 [91p(r) = M3o(r)
for 0<r<d. On the other hand it holds by (3.7) that

(3.10)  [41,(n) < r‘fﬁ,ﬁlg bo(s)si-o+15a-B=145 < :ﬁl,é bo(r) .

Combining (3.9) with (3.10), we have
(3.11) M po(r) 2 [¢]p(") 2 M3po(r)

for 0<r<d,. Note that (3.11) holds for arbitrary B such that «> > 1, although
M3, M,, 8, depend on the choice of f. Choose o> > f'>1 and fix them. Then

M5[¢]ﬂ'(") = [¢]p(") = M6[¢]p'(")

for 0<r<ds. Hence

0 < My[¢1 (1)~ [d1(r) = S;d)(rt)t“‘ﬁ[Mst”'/"-—l]dt = go
Choosing ¢=(2M)~¢—#)"* we have

0= S:= Sc-+gl~§ ——%—qus(rt)t““ﬂdt+Msgl¢(rt)t"‘ﬂdt,

0
from which we get

T #en 2 - et [gly(en)

for 0<r<ds. Since (d—p+1)[¢d]s(cr)=¢(cr), it holds that

(3.12) M;[¢1p(r) 2 ¢(r) 2 Mg[14(r)
for 0<r<dg. Combining (3.11) with (3.12), we can finish the proof of (ii).

4. Remarks.

a) Let X=(x,{, M,, P,) be a Markov process and assume that X is a Hunt
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process and it has Green function G(x,y) with respect to Lebesque measure.
Suppose that, for each compact set K, there exists a measure pug(dy) on Ksuch

that P (ox< + 00) =SG(X, Vug(dy), where ox=inf(t>0,x,e€K). Then we can

define the capacity C(K) of K relative to X as usual setting C(K)=pug(K). If
M d(x—y) Z£G(x, Y)SM,d(Ix—y]) (M, =M,>0) holds on a neighborhood of
the diagonal set and ¢(r) is a monotone decreasing function on (0, + co0) with
lim ¢(r)=+ oo, then it is easy to check that C(K)=0 if and only if C#(K)=0.

r—-0+
Hence we can apply our theorem to Markov processes of the above mentioned type.

For example Theorem 3 in [5] is a corollary of our theorem.

b) We can apply our Theorem to calculate the singularity of Green func-
tions. Consider a Markov process X on R¢ (d =3) which is a process subordinate
to Brownian motion by a subordinator whose exponent is ¥Y(s) on [0, + 00). It
is known that X has Green function G(x, y) =¢(|x— y|), where @(r) is continuous
and monotone decreasing on (0, + o0) with 1irg1+¢(r)=+oo in case sup {f=0;

sTPYP(s)— + o0 as s—+ o0} is positive. (See the proof of Corollary [4].) Let
X? be such that P(s) =Sa, b(B)sPdp, 1=a>a’ =0, where b(p) is positive continuous
on [o’,a]. Then we have, for each sufficiently small r,

4.1) M r2*~dlogl/r < ¢(r) £ M,r?*dlogl/r, M,>2M,>0.

Indeed we proved (4.1) by a direct calculation in case b(f)=1 in §6 [5] and it is
easy to check that C(K)=0 if and only if C,(K)=0 for each compact set K,
where Cy(K) (resp. C,(K)) denotes the capacity of K relative to X? (resp. X1).
Therefore (4.1) holds by our Theorem.

¢) For a certain class of isotropic Lévy processes we can show that Green
function G(x, y) =¢(]x — y|) exists, but it is difficult to check whether ¢(r) is mono-
tone decreasing or not. It is desirable to extend our theorem in some sense to
the above processes for which ¢(r) is not known to be monotonic (in this case
Frostmann’s capacity C¢ is not always defined, and so we denote by C¢ in i) the
capacity defined in a)), although there exists an isotropic Lévy process for which
¢(r) is not monotonic and i) does not imply ii) for ¢o(r) =r*~¢ for some fixed «,
O<a<1/2.
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