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Introduction

Pietsch [9] introduced the concept of absolutely p-summing operators in
normed spaces. This concept was extended in Ramanujan [10] to absolutely
A-summing operators by the aid of symmetric sequence spaces A. On the other
hand, Mityagin and Pelczynski [6] introduced the concept of (p, r)-absolutely
summing operators in Banach spaces and this was recently extended in Miyazaki
[7] to (p, q; r)-absolutely summing operators by using the sequence spaces [, ,
and I,. The object of this paper is to extend these two kinds of concepts to (4, u)-
absolutely summing operators in normed spaces by making use of abstract se-
quence spaces A and p and to develop a theory of such operators.

In Section 1, we define the sequence spaces 4 of type A and the sequence
spaces u of type M and define the (4, u)-absolutely summing operators. It is
shown that [, , is a space of type 4 and I, is a space of type M. In Section 2,
we state some basic properties of (1, u)-absolutely summing operators. We in-
vestigate in Section 3 some inclusion relations between the spaces of (4;, u,)-
and (4,, uy)-absolutely summing operators. Section 4 is devoted to studying
composition of two (4, u)-absolutely summing operators. Two spaces of (1,
1)~ and (4,, uy)-absolutely summing operators may happen to coincide, when
their domain and range are particular normed spaces. These facts will be investi-
gated in Section 5.

The author would like to thank Professor S. T6go for his valuable comments
in preparing this paper.

§1. Notations and Definitions

For a sequence space A the a-dual is denoted by A*. If A**=J], then
A is said to be a perfect sequence or a Kothe space. We start with the sequence
space ¢, of all scalar sequences converging to zero and the sequence space w of
all scalar sequences, which are given respectively an extended quasi-norm p and
an extended norm q satisfying the following conditions:

(@) Ifforany x=(X1,..., Xps...) ECyand y=(Y15..., Yps--.) E@W we set x' =(x,,
v X 0,..) and yi=(yy,..., ¥:,0,...) for i=1,2,..., then p(x’)— p(x) and q(y")
=4(y).
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(b) p and q are both absolutely monotone.

We shall then define the sequence space Acc¢, (resp. u<w) to be the space
consisting of all x € ¢y (resp. x € w) such that p(x)< oo (resp. g(x)< o).

Furthermore we assume that A and u satisfy the following conditions:

(¢) Aand uare both the K-symmetric spaces. That is, if x,, is the sequence
which is obtained as a rearrangement of the sequence x corresponding to a
permutation 7 of the positive integers, then p(x)= p(x,) for each x € 1 and each
7 and q(y)=q(y,) for each y e u and each =.

(d) uis a Kothe space.

(¢) The topology given by the norm q on p is the Mackey topology of
the dual pair (u, u*) so that p*=(u, q)'.

(f) A and p have the norm preservation property. That is, if x=(x;)
is such that x;=0 for all i#n, then p(x)=|x,| and q(x)=|x,|.

We say the above 4 and the space I, to be spaces of type A and say the above
1 to be a space of type M.

If u is of type M, then we have I, cucl,, and either p=c,y or p=1.

We remark now that ¢, o, ¢ and ¢, are not of type M and that any space of
type M is also of type A.

In the following, we shall show that the Lorentz space I,, (1<p,q< )
is of type A.

DEFINITION 1. The Lorentz space 1, , is the collection of all sequences
(a)ec, such that ||(a)ll,, , <o, where denoting by (|a;|*) the non-increasing
rearrangement of (|a;|) we put

q9_ 1
(Ziv 'a;|*)e  if 1<p<o, 1<q <o,

(@)l =1

sup ir|a;|* if 1<p<ow, g=c.

PROPOSITION 1. The Lorentz space 1, (1 < p,q < ) is of type A.

Proor. It suffices to show that [,  satisfies the condition (a). Assume
o 4
first that 1<p<oco and 1<g<oo. If a=(a)el,, we have 3 ir Ya;*1 < o0.
i=1
Here putting (|a;|*)=(b,), for any ¢>0 we have a positive integer M such that

q_ N oy
f: ip l|b,-|‘1<s. If we denote b;=a,, for i=1,..., M, there exists a positive
i=M+1
integer N such that {a,..., ay}2{a,,...,a,,}. Let {c,...,cy} be the non-
increasing rearrangement of {a;,...,ay}. Then ¢;=b; for i=1,...,M and we

have

© I N 4,4
2 ir T |bi|a— le” [ci|4
y &

i=1
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Therefore||a'l|,, , converges to |al|;, .

Next assume that 1<p<oo and g=o. If a=(a)el we have

p,q>
sup wla |*—Q<oo Hence if we put (Ja;|*)=(b,), there exists a positive integer

M such that MPIbM|>Q—-a Hence taking N by the same way as in the above
proof, we have sup lPIa,-I*>Q—e. Hence |a’|,, , converges to |all;, .
1<i<N ’ .

Finally, in case of 1<p< oo and 1<g< o0, if [al|,, ,= 0, it is easy to show
that [la|,, , tends to |al|,, , and the proof is complete.

Next we start with two normed linear spaces (E, || ||) and (F, || ||). Let u
be of type M. Then we shall denote by u(E) the vector sequences x =(x,), x, € E,
which are weakly contained in p in the sense that for each a e E’ the sequence
(<x,,a>) of scalars is in p.

Here suppose that x=(x,) belongs to u(E). Then from a theorem of Pietsch
[8] it follows that “shlgl q(l<x,, a>[)<co. We shall denote by ¢, the functional

defined on w(E) by a,,(x)=”s1'.I1p q9((|<x,, a>1)) which is also denoted by
all<1

Ishlp (<X a>Dll,. &ux) can easily be verified to be a norm. This gives u(E)
lajl<1
a natural topology.

Next let A be of type A. Then we define the space A[F] as the space of all
vector sequences y=(y,), y, € F, such that the sequence (||y,|)eA. We denote
by a; the functional defined on A[F] by a,(y)= p((|y,|])) which is also denoted by
NlyalDlla or I(y)llar- Thus A[LF] is topologised in a natural way by the quasi-
norm o,(y). We can easily show that u(E)> u[E] for any u of type M.

DErFINITION 2. Let E and F be normed linear spaces, let T be a linear
mapping on E into F and let A and pu be of type A and of type M respectively.
Then the mapping T is said to be (4, u)-absolutely summing provided for each
finite set of elements x,..., x, in E the following inequality is satisfied:

(1) I(Tx) 2pry < Pui‘ulgl I < xp,a>Dlys
where p is constant.

REMARK. [(Tx)ll;r; appearing above is to be interpreted as the quasi-
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norm of the element (Tx,,..., Tx,, 0,...) in the vector sequence space A[F] with
a similar interpretation for ||(|<x;, a>|)| .

We denote by =, (T) the least constant p satisfying (1) for any finite set
{*1;...,%,} in E and by =, ,(E, F) the set of all (4, u)-absolutely summing opera-
tors. Then m, ,(E, F) is a quasi-normed linear space with a quasi-norm m, ,(T).

When A=1,, and p=1,, the mappings T above are called (p, g; r)-absolutely
summing operators and discussed extensively in Miyazaki [7].

§2. Elementary properties of (4, g£)-absolutely summing operators

ProPOSITION 2. Let B(E, F) be the normed space of all bounded linear
operators with the norm lIT[I:IIS}ilp |Tx|, let A be of type A and let p be
x||<1

of type M. Then we have =, (E, F)cB(E, F) and |T|<m, (T) for every Te
n; W(E, F).

Proor. By virtue of Definition 2, we have

1T, 0,00 < ﬂz,,,(T)”fhlgl I <x,a>1,0,..)l,.

Therefore we have | Tx|| <=, (T)|x|. Consequently we have
TeB(E,F) and |T| < m; (7).
Thus the proof is complete.

ProPOSITION 3. Let A be of type A, let u be of type M and let | be a Banach
sequence space satisfying 1> ¢, |le)|=1 and I'cl*. If there exists &=(&,)
such that ¢(ec,, & ¢ A and &-1*cp, then there exists a continuous linear map-
ping on 1 which is not (A, u)-absolutely summing.

Proor. The identity mapping T on [ is linear and continuous. Define
(x™) in I by x("W=¢,e,. Then if ael' =1*, we have (<x™,a>)=¢laecé*cpu
and (x™)ecy(l). However |[Tx™|=|&,|. Hence (|Tx™|)¢ A. Thus the
proof is complete.

COROLLARY. Assume that A is of type A, A=c, and u is of type M. Then
there exists a continuous linear mapping on ¢y which is not (A, u)-absolutely
summing.

Proor. Since l,cucl, and there exists a £ec, which does not belong
to 4, the condition of Proposition 3 is satisfied.

THEOREM 1. Let A be of type A and u be of type M. Let us consider the
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following properties of T: E~F.
(i) Tis a (4, p-absolutely summing operator.
(ii) If x=(x;)e W(E) N ¢c,(E), then Tx=(Tx,)e A[F].
(iii) If x=(x,) € w(E), then Tx=(Tx,) € A[F].

Then

(1) () and (ii) are equivalent.

(2) If Ais of type M, (i), (ii) and (iii) are equivalent.

(3) Let A be of type M. Then even if A and p do not satisfy the condition
(f), (i) and (iii) are equivalent.

Proor. (1) (i)=(ii): Let (i) be valid and let x=(x;) e u(E) N co(E). For
each fixed n, consider x"=(x,,..., X,,0,...). Then we obtain

1Tyl 1 TXaH5 0,00 )05 < P Sup, 10 < xp,a >, | < xp@ > 1,0,

and since the norm on p is absolutely nomotone, the above expression is
<pe,(x). Since A satisfies the condition (a), it follows that (|| Tx;|)}l,<co.
By Proposition 2 (|| Tx;||) belongs to ¢,. Consequently Tx e A[F]. Thus (i)=(ii)
is proved.

(ii)=>(i): Let (ii) be valid and let (i) be not valid. Then for any positive
integer j there exists a finite set {x{},< j<n(j) in E satisfying "satlllglll(|<x{ ,a>ll,

<1 and ||(| Tx{|D|l;>j2/. From our assumptions it follows that the sequence
x of vectors

[N

x Xu1) X Xa(2) X1 Xa(i)

2 geeey 2 ,—2—2,..., 22 gesey AR 27 9 e

is in pu(E), and, since {x{} is bounded, x is contained in co(E). Also since the
quasinorm defining the topology of A is absolutely monotone, it follows that
Tx ¢ ALF]. This is a contradiction.

(2) (iii)=>(ii) is clear. The proof of (ii)=> (i) follows in the same way as in
the proof of (i) = (ii) of (1) and the proof of (i)=>(iii) follows in the same way
as in the proof of (i) = (ii) of (1).

The analogous calculation of (1) shows the part (3) of the theorem. Thus
our assertions are proved.

THEOREM 2. Let A and p be of type M. Then the space =, ,(E,F) is a
normed linear space with the norm =, (T) and if F is a Banach space, n; ,(E, F)
is complete.
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Proor. We omit the proof of n; ,(T) being a norm and of =, ,(E, F) being
a normed linear space. Assuming that F is a Banach space, we shall prove that
7, .(E, F) is complete. Let {T,} be a Cauchy sequence in =, ,(E, F). Then for
given ¢>0 the inequality || T,— T, <=, (T,—T,)<e holds for n, m>N. Thus
{T,} is a Cauchy sequence in the Banach space B(E, F) and therefore there exists
a TeB(E,F) such that lim|T,—T|=0. Since =, (T,—T,)<e for n, m>N,

we get for n, m> N and for each finite set {x;},<;<, in E

101 Tyt = Tl < e sup 1 < x> Dl

Letting m— o0, we get

I Toxi = TxilDl2 < & “Snllllglll(l <xpa>Dl,.

This implies n, ,(T,— T)<e for any n>N. The proof is complete.

PROPOSITION 4. Let A be of type A and p be of type M.
(i) Ifunco¢4, then m, (E, F)={0};
(i) =, (E, F)=B(E,F).

Proor. (i) If possible, let T(#0)en, (E,F) and let (a,)epuncy\d.
Here a; may be assumed to be positive for i=1, 2,.... Let x, be an element of

E such that |xo|=1 and |Tx,|=V(#0). Then we have (”T‘;/ Xo >=
(a))euncy\A but (” ‘;/" X0 >=< ai )eunco. This contradicts Temn, ,(E, F),

vV
which proves (i).
(ii) Since u satisfies the conditions (b) and (f), for each finite set of elements
X{,..., X, in E the following inequality holds:

sup [ Txill = [ Txioll < [ TlHxill < I Tl Sup, 10 <xia> Dl

where x,, is an element of x,,..., x,. Thus our assertions are proved.

THEOREM 3. Let E, F and G be normed spaces, let A be of type A and let
ubeoftype M.

(i) If SeB(E,F) and Tem, (F,G), then TSem, (E,G) and =, (TS)
<7, (DISI.

(i) If Sem,,(E,F) and TeB(F,G), then TSemn, (E,G) and =, (TS)
< T 7z, .S).

Proor. (i) For each finite set of elements x,,..., x, in E, by our assump-
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tion the following inequality is valid:

INTSxiDN2 < 7a,(T) HSB”I;III(I < Sx;a >,

(| <x,.,’%%>|) )

< 1, (DS sup (I < xi, b > D,
fIpli<1

< TC;.,“(T) || S“ Sup

llall<1

which proves (i).
The analogous calculation shows (ii) of the theorem. In fact, the following
inequality holds:

IATSxIDI. < ITHIASx D2 < 1T |7, ,4(5) sup I < xi@a > Dllu-

Thus our assertions are proved.

CoROLLARY. Let A be of type A and let u be of type M. Then =, ,(E, E)
is a two sided ideal in B(E, E) and for Semn, (E, E) and Te B(E, E), the fol-
lowing inequalities hold: m; (ST)<m, (SIT| and =, (TS)<|T|mr,, S).

LeEMMA 1. Let A be a space of type A. Then we have A\Q EcA[E].

PrOOF. Let ¢ be the mapping on AQE into S(E), the linear space of all
sequences with values in E, defined by @((c)), x)=(c;x) € ALE]. Consequently

by usmg the definition of tensor product, the linear mapping ¢: Z(cu)®x
—»(2 ¢;;x;) mapps A®E into A[E] and ¢ is an algebraic 1somorphlsm Thus

the proof is complete.

Now we denote by A®,,F the quasi-normed space AQ F with the topology
induced by the quasi-norm «; and also by u®, E the normed space u®E with
the topology induced by the norm ¢,.

PROPOSITION 5. Let A be of type A, let u (#1,) be of type M and let
7, f(E, F)#0. Then the mapping T: E—F belongs to w, ,(E, F) if and only if
I®T: p®, E~A®,,F is continuous.

PrROOF. Assume that IQT: u®, E—A®,,F is continuous and T does
not belong to m, ,(E, F). Then for any positive integer j there exists a finite
set {x/}1<icn;y in E satisfying o,((Tx})>je(x})). Since 3" e,@x;= 3 (0,...,

i=1 i=1
0, x;,0,...)=(x;,-.. X, 0,...), we have

(I ® T(E & ® x)
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= a)(3e ® Txf) = a(Txeh) > jeu (<)) = jeu( ¥ & ® x).

Consequently I®T is not continuous. This is a contradiction. Thus the suffi-
ciency is proved. Conversely, assume that Ten; (E, F). Then T: u(E) N c,(E)
—A[F] is continuous. Therefore IQT: u®, E—~i®,,F is continuous, for
1®, Ecu(E) N co(E) and T and I®T have the same values on u®E. This
completes the proof.

§3. Some inclusion relations between the spaces of (4, z£,)-and (4,, ¢,)-
absolutely summing operators

Suppose that o and f are sequence spaces. We define a-f={(x,,): (x,) €,
(y,) € B}. Here we denote by D(f, a) the set of diagonal matrices carrying f into
o. We use the following results of Crofts [1].

LeMMA 2. D(B, o) =(B-a*)* and, if o is a Kéthe space, D(B, o) =(B-o*)*.

PrROPOSITION 6. Let A, and 1, be of type A and let u, and u, be of type
M. If yy;op, and Ayo A4, then =, , (E,F)cn,, ,(E, F).

THEOREM 4. Let A, and A, be of type A and let y, and p, be of type M.
If there exists a sequence space v<l,, satisfying the conditions v-u,cp, and
(v-AY)* <= A,, then we have m, , (E,F)cn,, ,.(E, F).

Proof. Let Tbe (4,, u,)-absolutely summing on E into F and let (x,) € u,(E)
nc,(E). Then for each a=(x,)€v and a € E' we have

(<oxpa>)=o<Xp,a>)Ev, < U.

Since T'is (4,, u;)-absolutely summing it follows that |a|(|| Tx,|)= (| T(a,x,)|) € A,
and since A, is solid, a(|| Tx,||) € 4, and therefore we have (|| Tx,|) € D(v-A;). Hence
by Lemma 2 (||Tx,[|)e(v-A4%1)*<d,. Thus T is (4,, u,)-absolutely summing.
This completes the proof.

ExAMPLE. Let A,=Il;, u;=I1,, A, be of type A and p, be of type M such
that u,<=4,. Then if we set v=(u¥-p,)*=u3, we have v.u,cl, and (v.Ay)*=
Uy <=4, so that, by the above theorem, every absolutely summing mapping is
(44, u,)-absolutely summing.

§4. The composition of (4, z)-absolutely summing operators

THEOREM 5. Let E, F and G be normed spaces, let 1<p, r;<oo(i=1,2)
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1,1

be real numbers such that —+ L
P r

r2

of type A satisfying 2,22,°1,. Then for any Tem,,, (E, F) and Senh,,rl(F, G)
the composition ST belongs to nh’,rz(E, G) and satisfies nlz,,rz(ST) <
Cnh.,rl(S)n,p,,p(T) where C is a constant.

< and let A, and 1, be sequence spaces

Proor. By virtue of Proposition 6, it suffices to prove the assertion under

the assumption %=~l—+%. Since T is absolutely p-summing operator, by
2

p
Pietsch [9] there is a probability measure u, that is, a regular positive Borel

measure y with total mass 1 on the weakly compact unit ball K’ of E’ such that
1
I Txllsn,p,,p(T)(g |<x,a>|Pd/,t(a)>pfor every xe E. Let {x;};<i<, be an arbi-
X

trary finite set of elements in E. Put x;=x?&, where éF(S |<xi,a>|'2)p.
X

Then, by our assumption, it follows that

IASTx;DI 2, < CHASTx2 DN, A&,

1
p
< Cripg, (9) sup 10 < TxB 6> Dl (] 1 <xpa> 1),
lIpll<1 i JK’
where C is a constant. The terms of the form < Tx, b> can be written as

<Tx,b> = S < x,a > f(a)du(a) for each xe E
pe

with an fe L, (K’, p) satisfying the inequality

1
p

.1_,
(2) (Sx,lf(a)l"'du(a)>" < 7y, (T) llbli,%+ _—1.

In fact, let E,(K', u) be the subspace of L,(K’,u) which is constituted by the
rest classes ¢, for ¢ (a)=<x, a> e C(K') with xeE. Then for each beF’
there exists a linear form B, on E,(K',n) defined by <¢.By>=<Tx,b>
and it satisfies

, 1
< dobo> 1 <ITxIB] < 7,0, D({ 1<% a > 1edu@) 181
Therefore there exists an fe L ,(K’, p), —}D—+#= 1, such that
< Tx,b> =XK’ < x,a > f(a)du(a) foreach xe€E

and it satisfies (2). Hence by Holder’s inequality, we obtain
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|<Tx, b>1 < | _1<x, a>llf@lduca)
r2 _l_ E'_.
= SKV' <x,a>[7( <x,a> |7 f(a)P) |f(a)lr du(a)

<(Jt < '"d"(“)ﬂgx,' <% a> [ f@P du@)

1
ra’

x({_1r@pdu@)
Replacing x by x? in the above inequality, we obtain

1<t b> 1< ([ 1< a> rif@r ) @ dua)s

Finally, we get
1

()_: | <Tx?, b> |n)7

< sup (S| <xya>12)" (1@ 17 du@)7”

T all=1\ T

Consequently
1
ST s, < Crisy, (S, (T) sup (1< 3 a > p2)”

which completes the proof.

THEOREM 6. Let E, F and G be normed spaces, 1<p, r<oo, —[1;+%SI,

and 1 be of type A satisfying lyA<l,. Then for any Temn,,, (E, F) and any
Sem,, (F,G) the composition ST belongs to m,, ; (E, G).

ProoF. In case of p=1, this is clear by Theorem 3. We shall show this
in case of p>1. Put %+—’},—=1. Then it satisfies Acl, and [,>1,. By Pro-

position 6, Sen,, (F,G)<=n,,, (F,G). Hence applying Theorem 5 to S and
T, we obtain STem,, ; (E, G). Thus the proof is complete.

§5. (A, p)-absolutely summing operators on special spaces E and F

LEMMA 3. Let E be isomorphic to a subspace of L (1) for a measure space
(K, Z, 1), let F be any normed space and let A be of type A. Then Te B(E, F)
belongs to m,,(E, F) if and only if for any SeB(l,, E) the composition TS
belongs to n; (1, F).
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PrROOF. By virtue of Theorem 3 it is clear that if Ten,, (E,F) and Se
B(l,E), then TSem,,(l,, F). Conversely, we assume that Te B(E, F) satisfies
the condition TSen,,(l,, F) for any SeB(l,, E) but T¢ n,,(E,F). Then
there exists a sequence {x;} =E such that 3 x; converges unconditionally and

(3 KT, = oo

Here we define SeB(l,, F) by S((a;))=Xa;x; for each (a)el,. On the other
hand, from (3), there is a sequence {n,} elc,, such that |[(n;]| Tx;|)||,= o0, that is,
I TS(me) DIl =o00. Since Y |<me, a>|<co for each ael,, that is, (n;e)
eli(ly) Neo(ly), we have TS ¢ m;,,(l, F). This contradicts our assumption
and the proof is complete.

THEOREM 7. Let A, and 4, be of type A.

(i) If I,:AY{>4A3 and 1, is a Kothe space, then we have =, ,(E, F)c
nlz,lz(E’ F)'

(ii) Let E and F be the same spaces as in Lemma 3. Then if 1,-A{<A}
and i, and 4, are K6the spaces, we have m; ,(E, F)omn,, (E, F).

Proor. (i) Putting v=(I}:1,)*=1,, we have (I,"A})*<A}*=41, and I,'l,
<l,. Therefore by Theorem 4 n; ,(E, F)cn,, (E, F).

(ii) Let Tem,, ,,(E,F). SeB(l,, E) is always 2-absolutely summing. Since
(I;-A7)= 23, it follows that I,*A,<A;. Therefore on account of Theorem 5,
we have TSemn,;, ;(l,, F). Hence by Lemma 3, we have Ten,, ,(E, F), which
completes the proof.

COROLLARY. Assume that A, and A, is of type A, l,-A5=213 and A, and
A, are Kothe spaces. Let 1<r<2and F be any normed space. Then we have
n}.l,ll(ln F)=mn,, lz(lr’ F) and Thys 1,(Lr(0, 1), F)=7fzp (L0, 1),F).

Proor. This follows from Theorem 7 and the result [5] asserting that
for 1<r<?2 the spaces I, and L,(0, 1) are isomorphic to subspaces of L,(u).

THEOREM 8. Let A be of type A and let u be of type M. If l,-u*>A%,
A is a Kothe space and H is a Hilbert space, then we have n; ,(H, H)=B(H, H).

Proor. From [4] it is known that =, (H, H)=B(H, H). Therefore we
may show that =, ,(H, H)nn, (H, H). But this follows from Theorem 4, for
putting v=(I{-p)*=p* we have v.ucl; and (pu*-1)*<A**=A. Hence we
obtain w, ,(H, H)> B(H, H). Thus the proof is complete.
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