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Introduction

The present paper is continued from the first part [27] with the same title.
In Part I, we studied the enumeration problem for liftings in fibrations which
are the compositions of two twisted principal fibrations, the enumeration problem
for cross sections of (n—1)-sphere bundles over CW-complexes of dimension less
than n+1, and the enumeration problem for embeddings of n-dimensional closed
differentiable manifolds in the real (2n—1)-space R2"~!. As an application, we
determined the cardinality of the set of isotopy classes of embeddings of the n-
dimensional real projective spaces RP" in R?"~1,

The organization of the present paper, which is divided into two chapters,
is analogous to that of Part I. In Chapter IV, we study the enumeration problem
for liftings in fibrations which are the compositions H - T4, E—2, D of three
twisted principal fibrations, and with some assumption we obtain in Theorem D
of §16 the formula for determining the set [X, H], of homotopy classes of lift-
ings of a map u: X—>D. This is a generalization of a theorem of Y. Nomura
[23, Theorem 2.4] and on the other hand, an extension of Theorem A in §2 of
Part I, and further a version of a theorem of J. F. McClendon [13, Theorem 5.1],
where the stability conditions are woven. Chapter V is as follows. In the begin-
ning, we construct the fourth stage Postnikov factorization of the universal S"~1-
bundle p: BO(n—1)—BO(n), which is continued from §7. This factorization
is a composition of three twisted principal fibrations which satisfies the assumption
of Theorem D. Next, applying Theorem D, we enumerate non-zero cross sec-
tions of n-plane bundles over CW-complexes of dimension less than n+2 in
Theorem E of § 18. This is an extension of Theorem B of §9. Lastly, as an ap-
plication of Theorem E to the enumeration problem of embeddings, we have the
following theorem in § 19.

THEOREM F. Let n>5 and let n#2"+25 (r>s>0). Then the n-dimen-
sional complex projective space CP" is embedded in the real (4n—3)-space R4"~3
and there are countably many distinct isotopy classes of embeddings of CP™
in R4n=3,
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Chapter IV. The enumeration of liftings in certain fibrations

§13. The situation and the preliminaries

Let B, C and A be H-groups with base point * and let ¢(G): n(G)—Homeo (G,
*) (G=B, C, A) be homomorphisms such that they satisfy the assumption (1.2).
Then there are fiber bundles

4g: L(G) = Ly(G) — K(G) = K(n(G), 1) (G =B, C, 4),

with fiber G and with canonical cross sections sg, which are constructed in (1.1).
In this chapter, we consider the following situation:

H

h

T —< L(4) -2, K(A)

(13.1) ql
" \E —2, L(C) -4<, K(C)
v 14

X/~ —w_, D _0, [L(B) 4=, K(B).

Here, p: E-D, q: T->E and h: H—T are the twisted principal fibrations with
classifying maps 6: D—L(B), p: E-»L(C) and o: T—L(A), respectively, and
moreover it is assumed that there exist p: D—K(C) and 6: D— K(A) satisfying

(13.2) qcp = Pp, q40 = apq.

Let u: X—D be a given map of a CW-complex X to D. Then, the purpose of
this chapter is the investigation of the set of homotopy classes of liftings of u to
H, that is, the set [X, H], of D-homotopy classes of D-maps of the D-space
(X, u) to the D-space (H, pqh).

For the neatness of the description, we assume that the H-groups C and A
are topological groups in the rest of this chapter. Further, for the simplicity,

ng: L(G) X g, L(G) — L(G),  ~': L(G) — L(G) (G = C, A)

denote the K(G)-maps uy ) and vy, of (1.3) induced from the multiplication and
the inverse of G, respectively.
Let AV u denote the join of two paths A and u with A(1)=pu(0) and let

mp: Qx@pyL(B) X gy E — E,
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(13.3) mC: QK(C)L(C) X K(C) T — 7;
m,: QgayL(A) X g4y H— H,

be the maps defined by mg(4, (x, u))=(x, AV u) for G=B, C, A, (cf. (1.7)).
By using the K(C)-maps

(13.4) p1: (QgsL(B) X 5y E, E) — (L(C), K(C))
of (2.3) and
(13.5) P (QIZ((B)L(B) X K(B) E, E) — (QK(C)L(C)’ K(0))

defined by (4, x) (f)=p,(A(2), x), the homomorphism
(13.6) 4,(p, [v]): [X, Q%5)L(B)]k@ — [X, Qk)L(O)k(c)
of (4.1) is defined by

4,(p, [v]) ([a]) = [p'(a, v)],

where v: X—E is a lifting of a fixed mapu: X—D. In the same way, the K(A)-
maps

137) 01: (QkyL(O) X ke T, T) — (I(4), K(4)),

011 (QkyLO X ki) T, T) — Qi) LAA4), K(A))
are defined by

01(4, x) = ny(emc(4, x), [omc(cz0 ¥)]171),

o1 (1, Y) (1) = o4 (u(®), ¥),
and, for a lifting w: X — T of v, the homomorphism
(13.8) 440, [w]): [X, Q%) lL(O)kc) — [X, Qe ldA)]xa)
is defined by

4,0, WD) ([b]) = [a1(b, w)].

In §4, we show that ng: Q) L(G) X k) L(G)— Q¥ )L(G) defined by ng(4,
x)(t)=ng(A(?), x) is a K(G)-homeomorphism for G=C, A and the map ng induces
a bijection

(13.9) nge: [X, QK(G)L(G)]K(G) x[X, L(G)]K(G) = [X, Ql’?(G)L(G)]K(G)
(G=2C, A4
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for any K(G)-space X. Let
(13.10) p't QFE — Qf )L(C), o' QFT — Q¥ 4)L(A),
be the maps defined by

PA@ = pA®), o'W (@) = o).

Then the following diagrams are commutative by (13.2):

QLE 2, Q%) L(C) QET o4, Q% 4 L(A)
(13'11) prgl lqcr qrrl lq,ﬂ'
D —?2 , KO, E_?, D _7, K(A).

where rg: QRE—E, rp: Q§T-T and r: Qf ,L(G)— L(G) are the evaluation maps
as in Lemma 3.3. Consider the maps

defined by mg(4, x) (t)=mg(A(?), x) for G=B, C. Then, for any CW-complex
X, there are two bijections (see §4)

mp.: [X, Q%(B)L(B)]K(B)X [X, E]p = [X, QE],

forany u:X — D,
(13.12)
mes: [X, QIZ((C)L(C)]K(C) x[X, T]g = [X, QFT]g

forany v: X — E.
Using (13.9-12) and Lemma 4.2. (2), we have the following

LeEMMA 13.13.  The primary operations 4,(p, n) of (13.6) for ne[X, E],
and Ao, &) of (13.8) for £€[X, T]g are determined uniquely by the relations

pxmp(B, 1) = nc(4,(p, 1) (B), pst),
oxmes(y, &) = nu(4,(0, (), 048).

§14. The twisted secondary operations

In this section, we shall define the operations ®([w]): Ker 4,(p, [v])—Coker
4o, [w]) for any lifting w: X - T of u and v=gw.
The following three lemmas are easily verified and so we omit the proofs.

LemMA 14.1. Let ¢'(C): n(C)»Homeo (Q*C, %) be the homomorphism
defined by ¢'(C)(2) () ()= @(C) () (A(t)) and let Ly c)(2*C)—K(C) be the fiber
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bundle constructed in (1.1). Then there exists a natural K(C)-homeomorphism
Y Q¥ c)L(C)—= Ly c(2*0).

LEMMA 14.2. There exist natural K(C)-homeomorphisms
QkcyProlUC) & Pyc)2%(c)lUC) & Py(cyLyc(*C),
QF )2k 0yL(C) = Qk )% (c)L(C).

LemMA 14.3. Let q': Q§T—Q}E be the map which is defined by the relation
q'(A)(®)=q(A(t)). Then, q' is the twisted principal fibration induced from
Py )% c)lAC) = Q¥ )P kcylUC) = Q% c)L(C) with classifying mapp': Q}E —
Q¥ o) L(O).

The next two lemmas play an important part in the definition of the twisted
secondary operation @([w]).

LemMA 144, Letwe[X, T]pandlet fe[X, Q¥E]p. If B lies in the image
of q4: [X, Q§T]p—[X, QFE], and if quw=rgp in [X, E],. Then, there is an
element ye[X, Q§T]p such that rpy=w and qyy=p, where rg: QsE—E and
rp: Q¥T—T are the maps of Lemma 3.3.

ProoF. By the assumption, there is an element y, in [X, Q%T], such that
quXo=P. Since guw=q.rrsYo by the assumption, there is an element ® in
[X, Qkc)L(C)]k(c) such that mcyu(w, rrge)=w by Lemma 15.2 below. Now,
let #iic: QgcyldC) X () QpT-QPT be the map defined by the equation mc(4,
w(@®)=mc(4, u(t)). Then the mapm. makes the following diagram commuta-
tive:

QrieyL(C) X gey T dxrr QrcyL(C) X gy QPT =2 QFT

lmc lmc lq'

T rr QXT @ » QLE.

Therefore, the following commutative diagram holds:
[X, Qkc)L(C)Ik(c) X [X, T]p T X, QkyL(C) k() X [ X, Q3T 1p ™25 [X, Q3T ]p

mcs mcx lq;

[X, T1p [X, Q3T1, —=— [X, Q5E],.

Set y=#ics(w, xo)- Then, the relations

el =W, QX = qxmclo, Xo) = qxXo = B

follow from the above diagram.
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LeEmMA 14.5. Letv: X—E be a lifting of u and let sg: E—QFE be the canoni-
cal cross section of the fibration rg: QYE—E defined by sg(x)=c, for any x € E.
If xe[X, Q§T]p satisfies qix=[sgv] in [X, Q}E]p, then yx is contained in the
image of iy: [X, QET]p—[X, Q¥T]p, where i: Q¥T-Q}T is the natural inclu-
sion. :

Proor. This is a simple application of the homotopy lifting property.

Using the preparation made above, we now construct the twisted secondary
operation

(14.6) @([w]): Ker 4,(p, [v]) — Coker 4,(a, [w]).

Here w: X —Tis a lifting of u: X—D and v=qw and 4,(p, [v]), 4,(a, [w]) are the
homomorphisms of (13.6), (13.8).

Let teKer4,(p, [v]). Since v has a lifting w, the relation p,[v]=0 holds.
Hence the relation pimip.(t, [v])=0 follows from Lemma 13.13. This relation
and Lemma 14.3 state that mfp.(t, [v]) lies in the image of qi: [X, @§T]p,—
[X, Q5E],. The equation rgmp(r, [v])=[v]=q4«[w] follows immediately.
Therefore by Lemma 14.4, there is an element y in [ X, Q}T], such that

qxx = mp(7, [V e[X, QFE]p,  rryx = [Wle[X, T]p.

By (13.9), the element a5y in [ X, Q¥ 4,L(A)]k4 is described uniquely in the form
oyx=njys(a, f) for some ae[X, Qg4 L(A)]kn and Be[X, L(A)Ikw). Since
B=rynyua, B)=ry0ix=04rrsx=04[w], we have

o) = niyi(a, o [W]) for some ae[X, Qg L(A)]x)-
By the use of the element « of this equation, we define &([w])t by
(14.7) O([w]r = a+Im A (o, [w]) € [X, Qg L(A)]k)/Im 4, (c, [W]).
Suppose that another element ¥’ in [ X, Q}T], satisfies the relations
gux' = mp(t, [v]) e [X, QFE]p,  rrax’ = [WlelX, Tlp,
and suppose that
owx’ = (o, ax[w]) for some o' € [X, Qg L(A)]k4)-

We may choose y and yx’ such that ryy=ry'=w as maps because ry: Q§T—>T
is a fibration by Lemma 3.3. Then y’'V x~! makes sense and q4(y’'V x~!)=[sgv]
in [X, Q3E],. Therefore, y'Vy ' e[X, Q¥T], by Lemma 14.5 and this is con-
sidered as an element in [ X, Q}T];, where X is considered as an E-space with the
mapv: X—E. Hence (13.9) implies that y'Vy~!=me(y, [W]) for [w]e[X,
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T]g and some ye[X, Q% )L(C)]kc) Further, Lemma 13.13 states
aximcs(y, [w]) = nipw(d,(o, [wl)y, oulw]).
Also, it follows that
oxmedy, [W]) = ou(}' V™) = o3’ Vo !
= nlW(o, ox[W]) Vniu(at, g, [w]) = nl(a’ Vo i, a,[w]).

Therefore, o' Va~! =40, [w])y by (13.9) and so a+Im 4 (o, [wW])=0a'+Im 4o,
[w]). Thisshows that the definition (14.7) of @([w]) is well-defined. By a similar
calculation, we see easily that &([w]) is a homomorphism.

§15. The actions of groups [X, 2y ) L(G)]k)(G=C, A)
The maps m¢ and m, in (13.3) determine the actions of groups
mee: [X, Qiioyl(CO)]kcy X [X, Tlp — [X, T]p for u:X — D,
(15.1) mye: [X, Qyl(A)xyx[X, Hlp — [X, H],  for u:X — D,
m gt [X, Qrayl(A) ]k x [X, Hlg — [X, H]g for v: X —E,

which are given by mcy([al, [W])=[mc(a, w)] and so on. For the element w
in [X, T]p, I,(w) denotes the isotropy subgroup of [ X, Qg)L(C)]k () at w under
the action m¢,. Let {: X— H be a lifting of u and let v=qh{. Then I ([{]) and
I([{]) denote the isotropy subgroups of [X, Qg L(A)]kay at [[1e[X, H]p
and [{Je[X, H]g under the actions of m and m,, respectively.

From Proposition 1.8, the following lemma holds (see §3).

LEMMA 15.2. Let w: X—>T be a lifting of u: X—D and let v=qw. Then,
the actions mc., m 4 and my, are transitive on qx*([v]), hx'([w]). and hz*([w]),
where qy: [X, T1p—[X, Elp, hs: [X, Hlp—[X, T]p and hy: [X, Hlg-[X,
T]e.

The following lemma is proved in Lemmas 3.4-5 and Proposition 4.3.

LemMMA 15.3. Let {: X—>H be a lifting of u: X—»D and let w=h{ and v
=qw. Then the following equalities hold:

L(w]) =1ImA4,p, [v]), I([{D) =ImA s, [W]),
where 4,(p, [v]), 4,(0, [w]) are the ones of (13.6), (13.8).

The map o': QpT— Q% 4,L(A) defined by ¢'(4) (f) =a(A(t)) and the assumption
g.,0=3apq of (13.2) give rise to the commutative diagram
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[Xa QET]D _L’Il" [X’ T]D

- -

[X, QxL(A)] x4y 2> [X, Q¥ L(A)]kay 2> [X, L(A)]keay»

where i: Qg 4 L(A)— Q% 4 L(A) is the natural inclusion. We say that an element
yin [X, Qx4 L(A)]x4) is o-correlated to n in [ X, T7], if there exists an element
xin [X, QT]p such that ry.y=n in [X, T], and o4y =i,y. Then, the methods
similar to Lemmas 3.4-5 lead to the following

LemMmA 15.4. Let {e[X, H], and hel{=n in [X, T]p. Then yel () if
and only if y is o-correlated to 7.

Lemma 15.5. Let {: X—H be a lifting of u: X—»D and let w=h{ and
v=gqw. Then we have

Im &([w]) = L(LCD/ILALLD),
where ®([w]) is the operation of (14.6).

ProOF. Let y€[X, Qg4 L(A)]k4 lie in the coset &([w])r. By the defini-
tion (14.7) of &([w]), there is an element y in [ X, QFT], such that

qxx = mp(7, [V e [X, QFE]p,  rpx = [wle[X, T]p,
oyx = ni(y, o [wDelX, Ql’?(A)L(A)]K(A)-

Since w has a lifting to H, it follows that o,[w]=0 and so n/.(y, oL [W])=1i.y.
This shows that y is g-correlated to [w]. Lemma 15.4 implies ye I ([{]). Con-
versely, suppose that ye[X, Qg4)L(A)]k4) is contained in I,([{]). By Lemma
15.4, y is o-correlated to [w] e [X, T]p, i.e., there is an element y in [ X, Q}§T],
such that gy y=i,y and rp.y=[w] in [X, T]p,. From the facts rp.qyy=qxrrx
=[v] and (13.12), it follows that giy=mp.(1, [v]) e [X, Q}E], for some 7 in
[X, Q%5 L(B)]lknr). Thus we have 0=pimput, [v]) by Lemma 14.3 and we
have 0=p,mp.(t, [v])=ncd4,(p, [v])7, p«[v]) by Lemma 13.13. As a conse-
quence, 4,(p, [v])1=0 follows from (13.9) and so y € ¢([w])z.

§16. The main theorem of Chapter IV

We say that the composition of fibrations H T2, E_?, D in the diagram
(13.1) is stable if there exist two maps

d: (2 L(B) X g D, D) — (L(C), K(O)),
c: (QK(C)L(C) X gcyD, D) — (L(4), K(4)),
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such that the diagram

(Qkw)L(B) X k) E, E) 25 (L(C), K(C))

(16.1) (a) [ U
(Qxp)L(B) X (s D, D) -4 (L(C), K(C))

is K(C)-homotopy commutative and the diagram

(QK(C)L(C) Xk T T) 2% (L(A), K(A))

(16.1) (b) l“” n
(Qk(c)L(C) X g(cy D, D) — (L(A), K(A))

is K(A)-homotopy commutative, where p, and o, are the maps in (13.4) and (13.7),

(cf. §2).
Let

d’: (Qks)L(B) X g8y D, D) — (Qk(c)L(C), K(C)),
¢t (QkcyUC) X k(¢) D, D) — (Qk(a)LAA), K(4)),
be the maps defined by the relations (cf. (2.4))
d'(A, x)(1) = d(A1), x), ', y)(1) = c(u(1), y).
Then the diagrams below are K(G)-homotopy commutative (G=C, A4):

(QIZ((B)L(B) X sy E, E) AN (Qk(c)L(O), K(C))

llxp

(le((B)L(B) X kg D» D) 4, (QK(C)L(C)7 K(0)),

Q2 LO Xk T, T) 255 (QuyL(A), K(A))

llqu

(le((C)L(C) X kc) Ds D) < (QK(A)L(A)s K(A)),

where p'; and ¢’; are the maps defined in (13.5) and (13.7).
Now, for a given map u: X— D, we have four functions

0. [X, QK(B)L(B)]K(B) — [X, L(C)]K(C)9
(16.2) 0": [X, Q&) L(B)Iks) — [X; Lxicyl(CO)]k(cy
r:[X, Q) L(O)Ikey — [X, L(A)Ikcay»

I': [X, Qc\L(O)lkcy — [X, kLA ]kcay >
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by setting
O([a]) = [d(a, w)],  O'([b]) = [d'(b, u)],
r(x]) =[x, w],  I'(yD = [y, w)],

(cf. (2.5)). Then, we have the following results by the consideration given in
§5: The functions @' and I'" are homomorphisms and moreover

0' = A,(p, [v]) for any lifting v: X — E of u,
(16.3)

I'" = Ao, [W]) for any lifting w: X — T of v,

where 4,(p, [v]) and 4,(c, [w]) are the ones of (13.6) and (13.8). Further, if u
has a lifting {: X— H, then ©® and I' are homomorphisms and

(16.4) O = pump( , [qhl]), I = aumed , [h]).
We, now, turn to the study of the twisted secondary operation
D([w]): Ker @' = Ker 4,(p, [v]) — CokerI"" = Coker 4,(c, [W])
of (14.6) on the assumption that the composition pgh is stable.

LEMMA 16.5. Let w, w': X—T be liftings of v: X—>E such that both w and
w’ admit liftings to H. Then ®([w])=®([w']).

Proor. Using the diagram (16.1) (b) and the relations
Q& )2y LAC) X k(¢ 25T = 2p( Rk L(O) X k) T)
Q% )2y L(C) X k() D = Qp(L2k(c) L(C) X k() D)
we have a K(A)-homotopy commutative diagram

(Q% 2k cyL(C) X k(e QET, Q¥T) 2210, (Q% 4, L(A), K(A))

llxp"l’

(QI*(:(C)QK(C)L(C) X kicy D> D) R (Q;'(:(A)L(A), K(A)).

Since q': Q¥T—>QFE is the twisted principal fibration with classifying map p’:
QFE—- Q4 L(C) by Lemma 14.3, there exists a map

tic: QgeyQR%c)L(C) X k(cy QT — Q3 T,

which is defined by #i(4, (x, w)=(x, AV w) (cf. (13.3)). Inthe same way as (13.7),
this map determines the map

(a);: (QK(C)Q}'E(C)L(C) X ko) 23T, QpT) —. (QI”E(A)L(A), K(4)).
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From the second relation in Lemma 14.2, the relation
Q*(,) = ('),

follows immediately, and moreover the following diagram is K(A)-homotopy
commutative by the commutativity (16.1):

(Qz%m)L(C) X k() QK(C)L(C)) X gcyD RCETIEN QK(A)L(A) X K(4) L(4)

lnhcxl l";{

QI"E(C)(QK(C)L(C)) X gy D e 'QI"E(A)L(A) s

where (¢’, ¢) (4, p, x)=(c'(4, X), (i, x)) and ngc: Qi) Rx(c)LAC)) X k(cy Lk(c)LAC)
= Q% ¢)(Qgc)L(C)) is the product induced from the product ngc: Qi) L(C)
X k(cy Lk AC) = Q) L(C).

Suppose that

d((wr =a+ImI’, &([w]r =o' +ImI’ for teKer®'.
By the definition, there are two elements y, x' € [X, Q5T], such that
guX = qux’ = mpz, [V]), rrg =[], rpg’ =[w1],
oux = Mg Ox[W]) = Lo, oy’ = nlg(o, 0 [W']) = iy,

The map riic mentioned above induces the action #icy: [X, QkyQ%c)L(C)lk(c)
x [X, Q§T]p—[X, Q5T]p and this action is transitive on gy~ '(mp.(z, [v])),
where g [X, Q¥T]1p—[X, Q¥E]p (cf. Lemma 15.2 for the action mc.).- There-
fore we can choose an element Ae[X, Qk)2%c)l{C)]kc) such that ric.(4,
=y €lX, Q§T],. Hence we have

(6«4, 1) = 0%(hca(Z, D)V [o4(ficd(x, x)]™' by the definition,
=04) V(oW ! = ni(a' Varl, ¥).
On the other hand,
(0«4, 1) = (2% ))x(4, 1) = (Q*)(1 X p'q)x(4, 1) = (%) (4, u).

Since ngc: Q%) L(C) X k(cy LkcylAC) = Q¥ (c)2xk(cyL(C) is a weak K(C)-homo-
topy equivalence by [10, Theorem 2.7], there exist two elements pue[X,
Q% c)L(C)Ik(c) and ve[X, Q) L(C)]k) such that A=ngc.(p, v). Hence we
have

((6)0)x(%s 1) = (2*)sl(4, u) = (2*)s(ngc(pss v), 4)

= R, 1), cu(v, w)) = n(I'(), I(v)).
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Therefore o' V o~ ! =I"'(u) because n'y, is a bijection by (13.9), and we have Lemma
16.5 completely.
Next, we consider the another twisted secondary operation
(16.6) ¢: Ker® — CokerI for a flxed (e[X, H]p,

where @, I' are the homomorphisms of (16.4). Let ae Ker®. Then 0=0(a)
= p.mpsa, v), v=q,h,(, by (16.4), i.e., mga, v)e[X, E] lies in the image of
qx: [X, T]p—[X, E]p. Letw,e[X, T]p be the element such that q,w,=mpg.(a,
v) and set

¢(a) = o,w,+ImI e[ X, L(A)]x4)/Im I = CokerI .

In the same way as [23, §2], we see that ¢ is well-defined and moreover we have
the following

LeEMMA 16.7. [23, Lemma 2.3]. Let aeKer®. Then mg(a, v)e[X, E]p
is contained in q.h,[X, H], if and only if ¢(a)=0.

By Lemma 16.5, it is easily seen that if w runs through the elements of h,[X,
H]pn[X, T]p then the twisted secondary operation ®(w) of (14.6) depends only
on g,we[X, E],. Therefore we set

(16.8) ®, = d(w) for aeKerd,

where q.w=mpa, v), v=q.h,(.
The following theorem is the main theorem in this chapter.

THEOREM D. Suppose that the composition of fibrations H—>T—424,E_2,
D in the diagram (13.1) is stable by the maps ¢ and d in (16.1). Let X be a CW-
complex and let u: X—D admit a lifting {: X—>H. Then the set [X, H], of
homotopy classes of liftings of u to H is given by

[X,H], = U (Ker['/Im®')x Coker®,,
aeKer ¢
where I', @', ¢ and @, are the ones of (16.2), (16.6) and (16.8).
ProoOF. By Proposition 1.8, there is a bijection
mp( , 0): [X, QkL(B)Ik@ — [X; Elp, (v = gxhi0).
From Lemma 16.7, it follows that
(16.9) [X, H], =aEKkejr ¢h;‘q;1m,,.(a, v).

Let w, be a lifting of mpg.(a, v) to T such that w, has a lifting to H. The cor-
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respondence which associates with an element 1 e [X, Qg ,L(C)]k(c, the element
me(T, w,) induces a bijection

[X, Qxc)L(O)Ik(cy/1(w,) = Coker O = g5 '(mp(a, v)),

by Lemmas 15.2-3 and (16.3). Since mc.(t, w,) has a lifting to H if and only if
teKerI' by (16.4), we have a bijection

KerI'/Im @' = g3 '(mg.(a, v)) n h[X, H]).

For any teKerT, let {, . be a lifting of mc.(t, w,) to H.  Then, by Lemma 15.2,
the correspondence which associates with ye [X, Qg4 L(A4)]x, the element
m4(3, {, ) induces a bijection

[X’ QK(A)L(A)]K(A)/IM(CII,:) = h-)_(- l(’/”C‘(‘ra wa)) .
Therefore
h;l(mC"(T’ Wa)) = ([X3 QK(A)L(A)]K(A)/Iu'(ca,r))/(lu(ca,t)/lv’(Ca,t))9
= Coker ®(mc.(t, w,)) by Lemma 15.3 and Lemma 15.5,
= Coker®, by (16.8),

where [v'] =qxh4(, . =mpda, v). This equation and (16.9-10) complete the proof
of the theorem.

Chapter V. The enumeration of cross sections of sphere bundles and
the enumeration of embeddings of complex projective spaces

§17. The fourth stage Postnikov factorization of p: BO(n—1)— BO(n)

The third stage Postnikov factorization of the universal S*~!-bundle p:
BO(n—1)—BO(n) is constructed in §7 (cf. also [22, §6]) and is given as follows:

BO(n—1) 22T

e I

“E 2, K(Z,,n+1)
p lpl
“BO(n) X Ly(Z,n) —s K(Z,, 1)=K.
Here ¢: n,(K(Z,, 1))=Z,—Aut(Z) is a non-trivial homomorphism, L4Z, n)
—K(Z,, 1)=K is the fiber bundle constructed in (1.1), p,: E—~BO(n) is the twisted
principal fibration with classifying map W, p,: T—E is the principal fibration with
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classifying map p, and g, is an (n+ 1)-equivalence.

This section is continued from §7. Hence, we use A instead of Agg(,-1)
and the other notations in § 7 will be used freely if no confusion can arise.
We can assume that g,: BO(n—1)—Tis a fibration. Then its fiber F’ satisfies

0 i<n

n(F’) =
n(S™1) i n+l.

Now, 7, (F)=mr,,,(S" !)=Z,, and the generator of H""(F'; Z,)=2Z, is trans-
gressive in the fibration q,: BO(n—1)—»T. Let 6 € H" %(T; Z,) denote the trans-
gression image and let

p3:H_)T

be the principal fibration with classifying map o: T->K(Z,, n+2). Then gq,:
BO(n—1)-T admits a lifting q;: BO(n—1)->H. Moreover, q; becomes an (n
+ 2)-equivalence.

To characterize the map o: T—K(Z,, n+2), we prepare two lemmas.

LemmMa 17.1. (cf. [28, Lemma 3.3]). Let n>5. For the homomorphisms
H*(BO(n—1); Z;) <3 HXE; Z,) 22 HX(T; Z,),

the following two conditions hold:
(a) Kerp¥oKerg?* in dimension n+2.
(b) g% is surjective in dimension n+2.

Proor. By (7.4), there is an isomorphism
u*: H"*2(E; Z,) n Ker g% =
H™2(QuL4(Z, n)x x BO(n—1); Z,) n Kers* n Kert,.

By Lemma 6.2, any element x € H""2(QgL4(Z, n)x ¢ BO(n—1); Z,) is described
uniquely in the form

x = a¥b+Me;n¥ws +en¥w,w, +e3n¥wd)+6,Sq%Ankw, +esSq3A.

If x e Kers*, then b=0. Since 7,S¢*=_Sq’t, and 1, is an H*(BO(n); Z,)-homo-
morphism by [19, § 3], there are relations

Tl(ingw:%) = W,W3, Tl(ing(WZWI)) = W,WyW,,

T(niwd) = wowi, 18D = SqPw, = w,ws,
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7,((Sq22) (3w,)) = (Sq?w,)w, = w,wow,,
by the equality 7,(A)=w, in § 7 and the formula of Wu. Hence we have
H"+2(QKL¢(Z, n)XKBO(n— 1); Zz) n Kers* n Kerfl = Zz+Zz,

generated by {Anfw;+Sq3A, An¥w,w, +(Sq21)(n%w,)}. Since A lies in the image
of the mod 2 reduction p, of H* }(QxL4(Z, n) x x BO(n—1); Z) by the definition
in § 6, it follows that 0= p, f,A, which is equal to Sq* 1+ An¥w, from [4] and [16],
(cf. (12.3)). Therefore we have a relation

(17.2) Sqli = An%w,.
The relation (17.2) and (7.5) yield two relations
u*Sq'p = Sq'p*p = Sq'(Aniw, +Sq*2) = infw;+Sq34,
w*pptwy) = (An¥w,+Sq*nfw, = Aniw,w, +(Sq>2) (n3w,).
Therefore we have
H"*2(E; Z,) n Kerq% = Z,+Z, generated by {Sq'p, pp¥w,}.

This and the equation p¥p=0 imply the statement (a). The statement (b) follows
from the fact that p* is surjective and p=p,q;.

Let
my: QK(Zy, n+ )xT— T

be the action of the fiber QK(Z,, n+1) of the principal fibration p,: T—»E and
let

v=my(lxq,): QK(Z,, n+1)xBO(n—1) — T.
Then this map v gives rise to the commutative diagram of fibrations

QK(Z,, n+1)x BO(n—1) = T

(17.3) l Jh
BO(n—1) —% , E.

Lets': BO(n—1)-QK(Z,, n+1) x BO(n—1) be the canonical cross section. Then
there is a relation

(17.4) vs' =~ q,.

By the method similar to [28, Corollary 3.4], we have the following
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LEMMA 17.5. The following sequence is exact for n>5:
0 — H"¥(T; Z,) 25 H""2(QK(Z,, n+1)x BO(n—1); Z,)
s HY(E; Z)),
where t; is the transgression associated with (17.3) (see [19, § 3]).

THEOREM 17.6. Let n>6. The transgression image a: T->K(Z,, n+2)
is characterized uniquely by the relation

vio = xwy+e xwl+Sqld xw,+8Sq?% x1,
where ¢/ € HY(K(Z,, n); Z,) is the fundamental class of K(Z,, n).

Proor. The element ¢ belongs to Kerg¥ n H**%(T; Z,). By Lemma 17.5
and (17.4), v* gives an isomorphism

(17.7) v¥: H"(T; Z,) n Kerq% = Kers'* n Ker1).

By the definition of 7/, 7',(¢’ x 1)=1(") holds, where t is the transgression of
p2: T—E, and t(:")=p because g, is the principal fibration with classifying map
p. Hence it follows

(17.8) 7, x 1) = p.

Any eclement xe H*"2(QK(Z,, n+1)x BO(n—1); Z,) is described in the form
x=1xa+e xwy+e’ x wi+e35q xwy+ e,Sq?¢' x 1, where ae H"*2(BO(n
—1); Z,) and ¢=0 or 1 for i=1, 2, 3,4. If xeKers'*, then a=0. Since p*
is a monomorphism in dimension n+ 3 on the assumption n> 6 by (7.4), it follows
that x e Kert} if and only if u*t,x=0. Now, 1} is an H*(E; Z,)-homomor-
phism and 7, satisfies the relation Sqit; =1,Sq‘ by [19, §3]. Therefore, using
the above facts and the relations (7.5), (17.2), (17.8) and the formula of Wu, we
have

p*ti( x wy) = (u¥p)w, = (Sq2)w, +Awi,
pi( x wi) = (Sq2)wi+Aw,wi,
w*T(Sqte x wy) = p*(Sq'p)w,) = (Sq'(Sq?A+Aiw,))w,
= (Sq3)w; +Awzwy,
w*t(Sq2d x 1) = (Sq3)w, +(Sq2A) (wy+wi) + A(waw, + wow} +w3).

These relations imply that H**2(QK(Z,, n+1)x BO(n—1); Z,) n Kers'* n Ker t)
=Z, generated by ¢ xw,+:xw}+Sq!’ xw;+Sq2% x1. This result and
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(17.7) complete the proof of Theorem 17.6.
Summing up the above arguments, we have

THEOREM 17.9. The fourth stage Postnikov factorization of the universal
S*=1-bundle p: BO(n—1)—BO(n) for n>6 is given as follows:
BO(n—1) 2 H
\\\ 92 J}Ps
LN “T < K(Z,,n+2)

\ |

“E 2, K(Z,, n+1)

11:1

BO(n) Y5 Ly(Z, n),

(17.10)

where p;: H-T is the principal fibration with classifying map ¢ which is
characterized by the relation in Theorem 17.6, q5: BO(n—1)—H is an (n+2)-
equivalence and the others give the third stage Postnikov factorization of p:
BO(n—1)—BO(n) constructed in Theorem 7.6.

We close this section by verifying the fact that the fourth stage Postnikov fac-
torization (17.10) of p: BO(n—1)— BO(n) is stable in the sense of § 16.
Choose a map

(17.11) c: (K(Z,, n)x BO(n), BO(n)) — (K(Z,, n+2), %)
so as to represent
c=dx(wy+wd)+Sql xw,+Sq%’ x1e H**2(K(Z,, n) x BO(n), BO(n); Z,)
and let
(17.12) d: (QgL4Z, n)x x BO(n), BO(n)) — (K(Z,, n+1), )
be the map of (8.1) which represents the element
d = In¥w,+Sq*Ae H™ ' (QyLy(Z, n) x x BO(n), BO(n); Z,).

In Proposition 8.5, we show that the map d satisfies the condition (16.1)(a). In
the same way, it is easily seen that the map ¢ of (17.11) satisfies the condition
(16.1)(b) and so we have the following

LemMA 17.13. The composition of fibrations H-22, T -2z, E 21, BO(n)
of the fourth stage Postnikov factorization (17.10) is stable by the maps ¢ and d
of (17.11-12) in the sense (16.1).
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§18. The enumeration of cross sections of sphere bundles

Let n>6 and let £ be a real n-plane bundle over a CW-complex X of dimension
less than n+2. If £ has a non-zero cross section, cross (&) denotes the set of (free)
homotopy classes of non-zero cross sections of £. The space X is considered as
a BO(n)-space with classifying map £: X—BO(n). Then the relation

(18.1) cross (&) = [X, Hlgowm)

results from the argument similar to that of §9.
By Lemma 17.13, there are the four homomorphisms

0: H"1(X; Z) = [X, QkLy(Z, m]x — H"" (X Z)) = [X, K(Z,, n+1)],

@' H"%(X; Z) » HY(X ; Z,),
I': H(X; Z,) H"2*(X;Z,) =0,
I': H~Y(X; Z,) »H" (X Z,),

of (16.2) by taking the classifying map &: X—BO(n) for u, where Z is the local
system on X associated with £. Then, we have the following relations in the same
way as the proofs in §9 by using (17.11-12):

0(a) = Sq*pya+pyawy(§), O'(b) = Sq2p,b+prbw,(8),
I'(x) = x(wx(&)+w,(£)?) +(Sq' x)w, () + Sqx,
where p, is the mod 2 reduction and wy(§) is the i-th Stiefel-Whitney class of &.
Apply, now, Theorem D to the fourth stage Postnikov factorization (17.10)

of the universal S*~!-bundle p: BO(n—1)—BO(n). Then we have the following
theorem, which is an extension of Theorem B in §9.

THEOREM E. Let n>6 and let ¢ be a real n-plane bundle over a CW-
complex X of dimension less than n+2. If & admits a non-zero cross section,
then the set cross(&) of homotopy classes of non-zero cross sections of & is given

by
cross(&) = aE}gﬂﬂCoker O"1 x Coker @,.
Here
@i H-Y(X; Z) — H'*\(X; Z,), i=n—1,n,
r:H-4(X;z,) — H"\(X; Z,),

are the homomorphisms defined by
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O'(a) = Sq*pra+prawy(8),
I'(b) = Sq?b+Sq"bw,(&)+b(wo(&)+w,(8)?),

where Z is the local system on X associated with &, p, is the mod 2 reduction
and w(&) is the i-th Stiefel-Whitney class of &, and @,: Ker®* '—CokerI'
is the twisted secondary operation of (16.8).

§19. The enumeration of embeddings of complex projective spaces

[CP"<=R™] denotes the set of isotopy classes of embeddings of the n-dimen-
sional complex projective space CP" in the real m-space R™. Let (CP")* denote
the reduced symmetric product of CP" and let # denote the real line bundle as-
sociated with the double covering CP"x CP"—A—(CP")*. By A. Haefliger’s
theorem [5, Théoréme 1], the set [CP" < R*"~3] is equivalent to the set cross ((4n
—3)) for n>5. Hence we determine the cardinality of the set [CP"<R*"~3]
by studying the set cross((4n—3)n) and we have the following

THEOREM F. Let n>5 and let n#2"+25 (r>s>0). Then, the n-dimen-
sional complex projective space CP" is embedded in the real (4n—3)-space
R*"=3 and there are countably many distinct isotopy classes of embeddings of
CP" in R4n=3,

ProoF. The first half is shown for odd n in [9, Theorem 1.2] and for even
n in [25, Theorem 4.1.(2)], and so we concentrate ourselves on the investigation
of the cardinality of the set [CP"< R4"~3]=cross((4n—3)n).

Since the space (CP")* has the homotopy type of a (4n—2)-dimensional mani-
fold by [3, §2] and [26, Proposition 1.6], we have

[CP*cR4*"3] = U  Coker @*"~4 x Coker @,

aeKer@4n-3
by Theorem E, where
O41=3: H4=4((CP")¥; Z) — H4"=3(CP")*: Z,) = Z,.
Thus in order to prove the theorem, it is sufficient to show that H4"=4((CP")*;
Z) is countable.

Now, (CP")* has the homotopy type of an unorientable (4n —2)-dimensional
manifold with

m((CPY*) = Z,, H3(CPM)*; Z) =0, H*(CP")*; Z) = Z+Z,,

by [26, Proposition 1.6, Theorem 4.10 and Theorem 4.15]. By Poincaré duality
(cf. [17, p. 357]), we have
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H4"=#((CP")*; Z) = H,((CP"*; 2).
Further there is the universal coefficient theorem
0 — Ext(H3((CP™"*; Z), Z) —> H,((CP")*; Z) —>
Hom (H*((CP")*; Z), Z) — 0.
These relations imply
H4"=4((CPM*; Z2) = Z,
and we have Theorem F completely.

REMARK. By calculating more precisely, one can show that Coker @4"~4 =0
or Z, according as n is even or odd, and Coker I'=Coker ¢,=0.

For completeness’ sake, we mention the cardinality $#[CP"<R™] for m
>4n-—2, as follows:

(19.1) $#[CP"cR4"*1] =1, [29],
(19.2) $[CP"cR*"] =1, #[CP"cR*"']1=1X,, [7, Theorem 2.4],
(19.3) #$#[CP"<R4"2] =1, [26, Theorem 5.5(3)].
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