
HIROSHIMA MATH. J.
6 (1976), 429-450

On the Oscillatory and Asymptotic Behavior

of Damped Differential Equations with

Retarded Argument

Y. G. SFICAS

(Received February 10, 1976)

0. Preliminaries

We deal here with the oscillatory and asymptotic behavior of n-th order
(n>l) retarded differential equations, which contain a damping term involving
the (n — l)-th derivative of the unknown function. The results are obtained in
two steps. In the first part of the paper we consider the simple damped differ-
ential equations with retarded argument

= 0

and

(**)

for which the following assumptions are made :
(i) The function σ: [ί0, oo)ι->R is continuously differentiable and such

that

σ(t) ^ t for every t ^ ί0

σ'(i) ^ 0 for every t Ξ> ί0

lim σ(ί) = oo
f->00

(ii) g: [ί0, oo)»-»[0, oo) is continuous and not identically zero for all large
t.

(iii) The function φ: Rι-»R is continuous, y¥z^=>yφ(y)>^ and it is
strongly superlinear in the sense that it is nondecreasing and

Γ00 dv , f~°° dv\ / . < oo and \ /. < oo
J φ(y) J φ(y)φ(y)

Note: Condition (iii) implies that

(1) lim MZI = oo = lim
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(iv) r: [r0, oo)ι-»(0, oo) is continuous
For (*) we give some general oscillation results not only for the case where the
condition

Γw - -
holds, but also for some cases in which this condition fails. As far as we know,
the only result concerning the oscillatory and asymptotic behavior of all solutions

of (*) is that of Sevelo and Varech ([6], Theorem 1) in which condition (Ct)
is assumed. We also classify all solutions of (**) with respect to their oscillatory
character and to their behavior as f-»oo, in the case where (CΊ) is assumed.

In the second part we give a comparison lemma, which is a modification of a
related lemma due to Staikos and the author ([9], Lemma 1) concerning differ-
ential equations without damping terms. This lemma can be used in order to
extend the results which are derived in the first part of the paper to more general
differential equations. As an application, we give general oscillation results con-
cerning damped differential equations of the form:

(***) cw'-'w+eα ^"-^oHpwnxtxo]) = o
These results include as special cases the above mentioned result of Sevelo and
Varech as well as a result due to Naito ([5], Theorem 1) and, in particular, for

r(f)= 1> ζ?(A J;) = 0, the related results concerning the retarded differential equation
without damping terms

(Cf. [3] and [7]).
In what follows, we consider only such solutions of the equations (*), (**)

and (***) which are defined for all large t. The oscillatory character is considered
in the usual sense, i.e., a continuous function defined for all large t is called
oscillatory if it has no last zero, otherwise it is called nonoscillatory.

1. Oscillatory and asymptotic behavior of the equations (*) and (**)

In order to obtain our results for (*) and (**) we need the following lemmas
the first of which is a unified adaptation of two lemmas due to Kiguradze ([1]
and [2]).

LEMMA 1. Let u be a positive v-times continuously differentiable function
on an interval [α, oo). 7/w ( v ) is of constant sign and not identically zero for
all large /, then there exist a tu^.a and an integer /, 0 ^ / ^ v with v - f / odd if

w ( v ) = 0> v+' even / / w ( v ) ^ 0 and such that for every t^tu
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/>0=>w< f c>(0>0 (fc = 0, 1, ...,/-!)

and

I ^ v-l^(-l)l+kuW(t)>Q (k = /, /+!,..., v-1)

LEMMA 2. Let u be a (y—\)-times (v>l) continuously dijferentiable func-

tion on an interval [α, oo). Let also m(f) be a positive function on [α, oo) such

that the function mu(v~l>> is continuously differentiable on [α, oo). Suppose

moreover that for every t^.a we have

tι(0>0

δ[m(f)u(v~l\i)~\' ^ 0 and not identically zero for all large t

where δ= -f 1. Then there exists a constant K>0 such that

where

m*(ί) = max m(9)

PROOF. By Lemma 1 there exist an integer /, 0 ^ / ^ v — 1, with ί + v — l even

for δ = + \ and / 4- v — 1 odd for <5 = — 1 and some tu ̂  a such that for every t ̂  iu

/>0=>w<*>(0>0 (

(2) and

/ ^ v-l=>(-i) l+*u^(0>0 (k •= /,

Applying Taylor's formula we get

-

and consequently for every 5^ίu we have

Hence there exist ^ ̂ ία and Kj >0 such that

(3) w(//2) ^ X1ί
ίwίί>(ί/2) for every ί

Again by Taylor's formula
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and consequently, by (2), for every t^tu we have

2v-/-i(v _ / _ i ) !

Thus

(4) M<*>(;/2) ^ K2t
v-l-l\u<y-V(t)\ "'?' forevery t ̂

where K2 = ^l2v~l"i(v-l-\)\.
Combining the inequalities (3) and (4) we obtain

where K = l/K1K2.

Note. If the function m is nondecreasing, then, obviously, (5) takes the form

.i* for every , fc ,,

LEMMA 3. Consider the differential equation (*) subject to the conditions
(i)-(iv). 77ten we have the following :

a) //(CJ /ι0/ds, then for every nonoscillatory solution x of(*) we have

for all large t

b) If for every T^t0

(C2) J°°*(ί, T)Λ = oo, R(ί, D

then for every nonoscillatory solution x o/(*) w/ίft lim x(ί)^0 we have
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x(ί)x(π-1)(ί)>0 for all large t

(c) //

°° dt
— -r < oo and for some k > 1

= αo,

then for every nonoscillatory solution x o/(*) wiί/i lim x(i)7*0 we
f-κ»

x(Ox(Λ"1)(0>0 >r all large t

PROOF. Let x be a nonoscillatory solution of (*). Without loss of generality
we suppose that x(ί)>0 for every t^t0, since the substitution x= — u transforms
(*) into an equation of the same form subject to similar assumptions. Next, by
(i), we choose some tί ^ί0 such that

x[σ(0]>0 f°Γ every * ̂  'i

Thus, in all cases a)-c) we have

(6) [KOx^-^CO]' ^ 0 for every t ̂  tί

Moreover, since g(t) is not identically zero for all large ί, the same holds for

IXOx*"'1^)]' and consequently the function r(0x(n~1}(0 is positive or negative
for all large ί. Thus, since r(ί)>0 for every ί^ί0>

 we must have x(π""1)(0>0
or x(w~1>(0<0 for all large t.

We shall prove that the assumption

x(«-υ(ί)<o for all large t

leads to a contradiction in all cases a)-c), provided that in cases b) and c) we have
lim x(0^0. To do this we suppose that for some t2 ̂  t^ we have
ί-*oo

(7) χ("-1)(0<0 for every t ^ t2

By (6), integrating from ί2 to t^t2 we get

and consequently

n-^(t2)- for every t ^ t2

Integrating again from t2 to t^t2, we obtain
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-*<»-2>(/)+:c<»-2>(f2)^ -ι (/2)jc<"-»(r2)f' -fi
J ί 2 J*W

and consequently condition (Cj) implies

lim x(π~2)(ί) = -oo
r-»oo

which contradicts the positivity of x. This contradiction proves a).
To prove b) we remark that the assumption lim x(t) Φ 0 implies the existence

ί-»oo

of a constant L > 0 such that

Ξ> L for every ί ̂  t2

This, by (*), leads to the inequality

(8) [r(t)x(n~l\t)~]' + g(i)L ^ ° for

By (8), integrating from t2 to t^t2 we get

0
J ί 2

and consequently

-xί"-1)^) ^ L^' 0(θ)dθ)/r(0 for every ί ̂  ί2

Using this inequality and condition (C2) we obtain again the contradiction

lim x<w-2>(f) = -oo
f -KX>

To prove c) we rewrite (*) as follows :

(9) [Γ(/)ac(--i)(/)]'. + ̂ ( / ) m j c [ σ ( / ) / 2 ] =0, / ^ /2

and we remark that (1) and lim x(i)7^0 imply the existence of some t3^.t2 and of
ί-*oo

a positive constant Lv such that

^L for every / > /3~ 1 .

By this inequality, (9) leads to

(10) WO*'""1 W+Lι0(0*l>(0/2] ^ o, ί ̂  ί3

Applying Lemma 2 with v = n — 1 and m(ί)=l, by (10) and (7) we derive the in-
equality
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(11) lr(t)x<n-l\t)γ + KL{g(t)σn-2(t)x<n-2\t)£Q, t ^ f 3

By (11), x°'~2)(0 is obviously a positive solution of the linear second order or-
dinary differential equation

= 0, , £ ,,

where X0= -[KO^"'1^)]'-^^!^11"2^)^)^11"2^), f^a Since, by (11),

y(i) ^ 0 for every t ^ f 3

the functions r and gx9 where

are obviously subject to the conditions

dt
r(t)

foo
oo and for some k > 1, \ gx(l)hk(i)dί = oo

Thus, applying a result due to Moore ([4], Theorem 2) we conclude that all solu-
tions of (12) are oscillatory. But this is a contradiction, since x<"~2) is a non-
oscillatory solution of (12). This contradiction proves c).

THEOREM 1. Consider the differential equation (*) subject to the conditions
(i)-(iv) and

(C4) θ(t) -d9 = °° for every

where r*(ί)= max
%£B£t

Then:

α) under condition (Cx) every solution 0/(*) is for n even oscillatory and
for n odd either oscillatory or tending monotonically to zero as ί-»oo together
with its first n — 2 derivatives.

β) under condition (C2) or (C3) every solution of (*) is either oscillatory or
tending monotonically to zero as ί-»oo together with its first n — 2 derivatives.

Note: In the case where the function r is nondecreasing, condition (C4)
can be replaced by

(C4)*
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PROOF OF THE THEOREM. Let x be a nonoscillatory solution of (*) with

lim x(ί)τ£θ. As in the proof of Lemma 3, we assume, without loss of generality,

that tί ^ tQ is chosen so that

x[σ(ί)]>0 for every t ^ tt

This, by (*) and (ii), (iii) implies that

[r(t)χ(n~~ί)(t)']' ^ 0 for every t ^ tί

where this function is not identically zero for all large t.

Now, under one of the conditions (Cί)-{C3) we have, by Lemma 3,

χ("-1>(0>0 for all large t

Without loss of generality we assume that

x( f l~1)(0>0 for every t ̂  tl

By Lemma 1 there exists some ί2 = *ι suςh that

x'(0>° or x'(t)<0 for every t ^ ί2

and consequently we have to examine the following two cases:

Case 1. x'>0 on [ί2, oo). Let z be the function defined by the formula

ΓΠ^ z(t\ = — ΓrΓ/)jc(

V ) V / ^̂  L v*/

We obviously have

(14) z(ί) ̂  0 for every ί ̂

By (13), for every ί^ί2, we get

Since the functions <p and x are nondecreasing and the function r(t)x(n~1 }(ί)

is nonincreasing, we obtain
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ι [g(/)] -,-2

for every f^/ 2 . Thus applying Lemma 2 with u = x', m = r, v = n — 1 and σ(ί)
in place of ί, we have

for every ί^ί3, where ί3^ί2 is chosen properly. By this inequality, integrating
from ί3 to t^t3 and taking into account (iii) and (C4) we obtain lim z(t) = ao,

f->00

which contradicts (14).

2. x'<0 on [ί2, oo). In this case we consider the function w defined
by the formula

(15) W(t) = -[KOxt

We obviously have

(16) w(ί) ^ 0 for every t ̂  ί2

By (15) for every ί^r2, we get

Moreover, since lim x(ί) =^ 0, there exists a positive constant c such that
ί-*oo

ί/>(x[σ(ί)]) ^ c for every t ̂  ί2

Thus, by applying Lemma 2 with w = — x' = |x'|, m = r, v = n~l and σ(t) in place
of ί, we finally obtain
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for every t^t3, where ί3^ί2 *s chosen properly. This last inequality, by (C4)
and the fact that the solution x is bounded, leads to lim w(ί)=oo, which con-

f-»00

tradicts (16).
We have proved by now, that for every nonoscillatory solution x of (*)

lim x(ί) = 0 and consequently x(t)x'(i)<Q for all large t. If condition (C}) is
f-*00

satisfied, then x(t)x(n~l)(t)>Q for all large t and consequently n must be odd.
Moreover, as it is easy to see, lim x(0 = 0 implies that lim x(ί)(ί) = 0 for all

REMARK. The following examples show that in the case where the condition
(CJ fails, while one of the conditions (C2) or (C3) is satisfied, we may have non-
oscillatory solutions x of (*) with limx(0 = 0 and x(t)x(n~l\t)<Q for all large

ί-*oo

t. The same examples also show that condition (C2) may hold in cases where
(CJ and (C3) fail as well as that condition (C3) may hold in cases where (C2)
fails.

EXAMPLE 1 . Consider the differential equation

(17) [ί2x']' + (l/ί2 sin2 I/Ox3 =0, t >1

This equation admits the positive solution x(ί) = s inl/f , t>l for which we have

x'(0 = -l/ί 2 cosl/f<0. We observe that condition (C2) is satisfied since for
every T > 1 we have

Γ( l/θ 2 s i
iι

sin
lim
ί-+oo /

while the conditions (CJ and (C3) fail. It is also easy to see that condition (C4),
and in particular (C4)*, is satisfied and consequently, by Theorem 1, every solu-
tion x of (17) is oscillatory or such that lim χ(ί) = 0.

f-KX>

EXAMPLE 2. The differential equation

(18) [ί5x///]/ + 6ί2x2sgnx = 0, ί > 0

admits x(t) = l/t, ί>0asa solution for which x'" = — 6/ί4<0. It is easy to verify
that conditions (CΣ) and (C2) fail, while condition (C3) is satisfied for fe = 5/4.
Since moreover condition (C4)* is also satisfied, by Theorem 1, every solution
x of (18) is oscillatory or such that

lim x(ί) = lim x'(t) = lim x"(ί) = 0
ί-*00 f-K» ί->00

THEOREM 2. Consider the differential equation (**) subject to the condi-
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tions (i)-(iv), (CJ, (C4) and

(C5) for every

= + 00

77?e?ι et ery solution x 0/(**) satisfies exactly one of the following:
(α) x /s oscillatory
(β) x and its first n — 2 derivatives tend monotonically to zero as t-+co
(y) It holds

lim r(t)x<n-l\t) = oo and lim x&(t) = 00 (i = 0, 1,..., n-2)
t-+<x> ί-»oo

or

lim rO)**""1^) = -oo and lim x(ί>(ί) = -oo (/ = 0, 1,..., n-2)
f-κX> f-»oo

Moreover, (β) occurs only in the case of even n.

PROOF. Let x be a nonoscillatory solution of (**) with lim x(t)^0. As in
f-KX>

the proof of Theorem 1, we assume, without loss of generality, that for some tt

^ ί0 it holds

*[<KO] > 0 for every ί ̂  ίA

Using (**), (ϋ) and (iii), it is easy to see that for some ί2 = Ί we nave x(""
or x ( w~1 }<0 on [r2, oo). Thus, we have the following two cases:

Case I. χί"~1>>0 on [ί2, oo). By [r(0x("~1)(0]' ^0, t ̂  ί2, we get

^"1^) and consequently

(/) ^ r(/2)x<«-1)(/2)-i for every / ̂  /2

This, by (Ct), implies that lim x("~2)(ί) = oo and hence
ί-*oo

lim χ(')(ί) = oo (i = 0, 1,..., n-2)
ί-^oo

Taking /3 ̂  ί2 such that

x^>(ί) > 0 for every ί ̂  ί3

and applying Taylor's formula we obtain
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for some f*, t/2^t*^t, and every t^2t3 = t4. Thus,

"1 C-^Γ
== 2"-1 («-!)! /•(/*) = 2"-1 (n-l)l r*(t)

for every / g; /4

and consequently there exists some t5 ̂  ί4 such that

(19) x[σ(f)] £ Γ - for

where c = x( n~ l )(ί3)r(ί3)/2n- x (n - 1) ! .

Now, from equation (**) integrating from ts to t^t5 and using (19) and

(C5) it is easy to see that

lim r(0x(π~1}(0 = oo
r-»oo

Hence the solution x satisfies (γ).

Case 2. x ("~1)<0 on [ί2, oo). By considering the functions z x = — z
and wi = — w, respectively, in place of the functions z and w of the proof of Theo-
rem 1 and using Lemma 2, we obtain the desired contradictions.

The proof of the theorem is now obvious.

2. Further oscillation results

LEMMA 4. (Comparison principle). Let the differential equations

(E) [s(ί)x<--1)(0]' + β(ί, x< -»(t)) + F(t, x<τ0(ί)>,.. , x("-1)<τn_1(ί)>)

= 0, ί ̂  f o

= 0

where

μf, V j αr^ positive integers O' = 0, 1,..., n — 1), αnί? ^r, r belong to certain function
classes &, &. Let also that for any T^ί0, gZtT and rZtT denote the functions

defined by
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- F(t' *<τo(0>. . z ( "- 1 ) <τ n _ ι ω>)" " '

If P is a pro positional function with domain a function class & and

t? = { X E £ : x is a solution o f ( E ) } 9

^g,r = { X G & x is a solution of (Egtr)}

then

and

(V c e y7) - P(x) =» (3 Γ ^ f 0)0X>T e ̂  and r,§ Γ

imply

(Vx e ̂ )P(x)

PROOF. If the conclusion is false, then for some z e^ we have ~P(z) and

consequently for some T^t0, gZtT e ̂  and rZ)Γ e ̂ . Thus

But z is obviously a solution of the differential equation (Egx Ttfz τ), i.e., z

and consequently P(z)is true, which is a contradiction.

Next we give applications of Lemma 4 in order to extend Theorem 1 to

differential equations of the form (***). It is obvious that parallel arguments can

be used in order to extend Theorem 2 to differential equations of the form

In addition to (i) we suppose that

( I ) p: [f0, oo)ι-»(0, oo) is continuous

(II) F: xRπ-»R is continuous, nondecreasing and such that

y φ 0 =» yF(y) > 0

(HI) s: [ί0, oo)»->(0, oo) is continuous

(IV) Q: [ί0, oo)x RH-»R is continuous and such that
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(V) There exists a continuous function qί : [ί0? oo)^[0, oo) such that

y ---

To obtain our results, we also need the following lemma.

LEMMA 5. Let u be as in Lemma 2 with δ= +1. Then there exists a posi-

tive constant K such that

(20) u(t) ̂  Kt*-2^-2& = KRv(t} for all large t

PROOF. It is obvious that lim - ̂ J~ exists in R* (R* is the extended real
f->00 *

line). Thus we have the following two cases:

Case 1. lim^~-<oo. In this case there exists a K{>0 such that
f-»oo t

u(i) ^ KjΓ" 2 for every t ^ a

Since moreover

Γ wk - \2°'mis} Ξ KI for every t -2a

it is obvious that

i t ,/n
-~- for every t ^ 2a

where K = Kl/K2.

Case 2. lim^^-=oo. In this case we obviously have lim w(v~2)(0 = 00.
f-^oo* ί-*oo

But, we also have O^lim m(0x(v~1)(0<0° an<i consequently there exists L x >0
f-»00

such that

T
t> a-

Thus

(21) w< v - 2 >(/)-w< v - 2 ) (α) ^ L j - r for every / ^ a
J a ?n(\r)
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which implies that

ΓsfJr-
If now t^a is such that u ( ί )(f)>0 for every t^tί (i = 0, 1,..., v — 1) (cf. Lemma

1), then by Taylor's formula we get

w(^ι) + ί α - / ι ) + + (ί-r1)
v-2 for every t ^ t l

and consequently, using (21),

which, by (22), easily leads to (20).

We introduce, now, the following conditions in which q2(t) denotes the (non-

negative) function defined by

q 2(t) = inf Q(t,
y*0

and for any Ttίt0

/-,(/, Γ) = s(t) exp(('4ii?r^\ rf(Λ Γ) = max rt(B, T) (i = 1 , 2 )
V J r J ( y > '

(Hi) for every TSί0

f" Λ
) 7^

(H2) for every T^t0

(H3)for every T^t0

ί°° rf/'_. < oo and for some k > 1, {"σ11"2 (/)/>(/)**(/, Γ)Λ = oo,
J ^2 (*j ^ y J

where
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(//4) there exists a continuous and nondecreasing function f : Rι-»R such

that

y * o =>/oo > o

°° dv f~°° dv

and for every T^t0 and any c with \c\ sufficiently large

(J, Γ)
), Γ ) ) V J τ r?[σ(θ)]

where Rn(t, T) = f"
r

THEOREM 3. Consider the differential equation (***) subject to the condi-

tions (i), (I)-(V) and (H4). TYien
a) under condition (//Ί) et erj; solution o/(***) is/or n ez en oscillatory and

for n odd either oscillatory on tending monotonically to zero as t-+co together
with its first n — 2 derivatives.

b) under (H2) or (H3) every solution o/(***) is either oscillatory or tending
monotonically to zero as t-^co together with its first n — 2 derivatives.

Proof. Consider the differential equations (***) and

(23) [Kθ3?("~1)(0]' + fl'(0/(χW01])^'(^[<KO]) = 0

in place of (E) and (E9tr) respectively (cf. Lemma 4). Let & be the class of all
functions x defined on an interval [ίx, oo) and let P be such that

P(x) : x is oscillatory or lim x(t) = 0
f-KX>

Furthermore, let ̂  be the class of all nonnegative functions g defined on a half-
line [tg, oo) and & the class of all positive functions r defined on a half-line [ίr,
oo) such that

)̂ conditions (CJ and (C4) are satisfied

(respectively:

(Vrε^)(V0e^) conditions (C2) and (C4) are satisfied,

respectively:

(Vre^)(V#e^) conditions (C3) and (C4) are satisfied)

By Theorem 1, it is obvious that for any g e ̂  and r e ̂  and every solution
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y of (23), P(y) is satisfied. Moreover, if x is a solution of (***) for which P(x)

is not true, i.e. x is nonoscillatory and limx(ί)^0, then we have
f->αo

jc(ί)x(π"1)(0>0 or x(0x(n~1}(0 <0 for all large t.

To prove this, we suppose, without loss of generality, that for some t^tQ

we have

x[σ(0] > 0 for every t ^ Γ

If now ί*^Tis a root of x*""1^), then from equation (***) we get

IXOx^W^^o

and consequently there exists a maximal interval (ίί, φ containing ί* for which
we have

(24) [s(Ox(M~ 1}(0]' < 0 for every t E (t*, φ

Thus, by s(ί*)x("-1)(r*) = 0 and (24) we must have

s(0x("~ 1 >(0 < 0 for every t e (f *, φ

which, again by (24), implies that

lim 5(Ox(M"1}(0 < 0
'-':

By this last relation, taking into account the definition of t%9 it is easy to see that

ij = oo. Hence 5(r)x(n~1}(0 and consequently x("~1}(0 is of constant sign for
all large t.

Without loss of generality we suppose that

x ("- i )>0 or χ ί"- 1 ><0 on [T, oo)

Next we consider the functions

,rX)T

and the equation

<Vr.r«.r) C

It is easy to check, by conditions (ί/1)-(//3), that rIjT e ̂ . Hence, by apply-
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ing Lemma 3 to (Egx>τ>rχtT), we must have

jc<«-i)(f) > 0 for every t ;> T

Since moreover

t/jc.rCO*^"1^)]' < 0 for every t ^ T

by Lemma 5, we have that there exist K>0 and 7\ ̂  T with

*!>(/)] ^ #σ"-2(/)Γ ^ for every ί ̂

Thus, for every ί^Tί

which by (//4) implies that #x>τ e ̂ .
Now, applying Lemma 4, we conclude that all solutions of (***) are oscil-

latory or tending to zero as ί->oo.
The proof of the theorem is completed as that of Theorem 1.

REMARK 1. In the case where Q(t, x(n~l)(t)) = Q it is obvious that condition
(I) can be relaxed to

(I)* p: \_t0, oo)ι-*[0, oo) is continuous and not identically zero for all large
t.
Also, in the same case, we can take qί=Q = q2, which implies that

riO, T) = r2(ί, Γ) = s(t)

and consequently the conditions (//^-(//J take the forms

(#ι)*

(/f2)* for every T^t0

= oo

(H3)* for every T^t0

) ~7T < °° andf°r some k > 1? }σn~2(t)p(t)hk(t)dt = oo

where



Damped Differential Equations with Retarded Argument 447

h(t) =

(//4)* there exists a continuous and nondecreasing function f: R-»R

such that

y Φ 0 =Φ/GO > 0,

' τJ F(y)f(y)

and for every T2:t0 and any c with \c\ sufficiently large

where

Thus we have the following :

COROLLARY 1. Consider the differential equation

(27)

subject to the conditions (i), (I)*, (II), (III) and (H4)*.

77?<?n

a) under condition (Ht)* α// solutions of (27) are /or n eye/i oscillatory,

while for n odd are either oscillatory or tending monotonically to zero as f->oo

together with their first n — 2 derivatives.

b) under (H2)* or (H3)* every solution of (27) is either oscillatory or tend-

ing monotonically to zero as ί-»oo together with its first n — 2 derivatives.

Let us now consider in particular the case where the function p :

(28) p(t) = -̂  / ^ /,, t, > max{/0, 0}

is nonincreasing, when we obviously have that the function s satisfies (#ι)*.
B

Since, for some 9ί9 ~y~= ^i = ̂  an(l every ί ̂  71

wo
r

holds, by (28), we obtain
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ff(()/2
- 4

Thus (26) can be replaced by :
"for every Tϊϊί0 and any c with |c|g:l

Moreover, supposing that for any j8 : 0 < β ̂  1 the function

mi)) ' for | z |- ί l

oϊίJ) for | z | < ί l

satisfies (25) it is easy to see, by putting c = -τιτ, that (29) can be replaced by:

Γ°°
\ σn~2(f)p(i)dt = oo

Thus we obtain the following result, which is due to Sevelo and Varech ([6]
Th. 1)

COROLLARY 2. Consider the differential equation (27) subject to the conάi-
tions ;(i), (I)*, (II), (III),

s
(VI) the function p(i) = -^~, f>max{/ 0 , 0} is nondecreasing

and

(VIII) forany β: Q<β£l

Then, under the condition

σn-2(t)p(i)dt = oo

all solutions of (21) are for n even oscillatory, while for n odd are either oscil-
latory or tending monotonically to zero as f->oo together with their first n — 2
derivatives,
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REMARK 2. If s(0ΞU then the function rXtT, which is defined in the proof

of Theorem 3, is obviously nondecreasing. Hence,

,r(*) (f σn~2(Q)σ'($) ^Q

r / ϊ.τl>(θ)]

./ ^ Γ

and consequently (H4) can be replaced by:

(f/4)* there exists a continuous and nondecreasing function f: Rι->R
such that

yϊO =>/00 > 0,

dy ^

and for every T^f 0 and any c with \c\ sufficiently large

f(cRH[σ(t)9T-\y
= oo

Thus, we can easily derive the following theorem in which, (#ι)*, (H2)*,

denote the conditions (//O, (H2), (H3) respectively for s(r)^l.

THEOREM 4. Consider the differential equation

(30) x ίΛ)(0 + β(ί, ^""^αW + XO^WO]) = 0

subject to the conditions (i), (I), (II), (IV), (V) and (#4)*. Then

a) under condition (#1)* «// solutions of (30) are for n even oscillatory,

while for n odd are either oscillatory or tending monotonically to zero as ί-»oo

together with their first (n — 1) derivatives

b) under (H2)* or (#3)* euery solution of (30) is eiί/ier oscillatory or tend-

ing monotonically to zero as t->ao together with its first n — l derivatives.

This theorem extends and improves a recent result due to Naito ([5] Th. 1)

in several directions.

REMARK 3. We notice that we can also obtain, by using Theorem 1 and ap-

plying Lemma 4, oscillation results similar to those in [8] for differential equations

with retarded arguments of the form

ixox'"-1 w+cα χ(--i)ω)+xo^[ffo(θ],χ[ffι(θ],...,χ[o μω]) = o
We omit the details.
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