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1. Introduction

In this paper, we shall study the limits of potentials on R" along rays issuing
from the origin. It is known that if U4 is the Newtonian potential of a measure
1 with finite energy, then lim,_,  U4(r&) =0 for a. e. &£ with [£|=1 (see N. S. Landkof
[2; Theorem 1.217). We shall deal with the Riesz potential U% of ordera, 0<a<
n, of a measure p whose energy may not be finite, and give an improvement of
the above result (Theorem 1).

We shall then consider the functions of the form

F(x) = §|x—yla-"b»lﬂ/pf(y)dy,

where a>0, =0, p>1, ap+f<n and fe LP(R"). In special cases, e.g. in the
case where a=1, =0 and 1 <p<n, M. Ohtsuka showed that lim,_  F(r¢)=0
for a.e. & with |&]=1 ([5; Theorems 9.6 and 9.12, Example 1 given after Theorem
3.217). This result will be improved in Theorem 2.

Finally we shall be concerned with locally p-precise functions on R*. We
say that a function u is locally p-precise on R" if u is p-precise on any bounded
open set in R"; for p-precise functions, see [7]. We also refer to [5; Chap.
IV]. Let 1<p<n and u be a locally p-precise function on R” such that

g}grad ulPlx|-8dx < oo

for some non-negative number f smaller than n—p. Then we shall show in
Theorem 3 that there are a constant ¢ and a set EcI'={¢ e R"; |{|=1} such that

limu(ré) = c if ¢el—E
and
C,(E)=0 if p=<2,
C,-{E)=0 forany e with O<e<p if p>2,

where C,(E) is the Riesz capacity of E of order y. If, in addition, u is a Riesz
potential of a non-negative measure with finite energy, then ¢=0 (cf. [5; Theorem
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10.18]).

2. Preliminaries

Let R* be the n-dimensional Euclidean space (n=2) with points x, y, etc.
and let o be a number such that 0<a<n. For a non-negative (Radon) measure
u, the Riesz potential of u of order a is defined by

VL) = (e ylrducy)
The Riesz capacity of a Borel set Ec<R" of order « is defined by

C,(E) = sup u(R"),

where the supremum is taken over all non-negative measures pu such that S,
(the support of y)cE and U;<1o0n S,. By the definition of Riesz capacity and
a maximum principle, we have

LeEMMA |. Let u be a non-negative measure on R" and let O<a<n.
Set E={xeR"; Uk(x)=1}. Then

C.(E) < Mu(R"),
where M=1if a<2 and M=2""% if a>2.

Let I<p<oo. We denote by LP(R") the class of all measurable functions
fon R" such that

11, ={{, 1A 17dx} "< oo

We denote by L{,.(R") the class of all measurable functions f on R" such that
S | f(x)|Pdx < oo for any compact set K = R".

) We now let 1<p<n. A set EcR" is said to be p-exceptional if there is a
non-negative function fe LP(R") such that Slx—yll‘"f(y)dy=oo for any xeE.

If a property is true on R" except for a p-exceptional set, then we say that this
property is true p-a.e. on R". We note that if u and v are locally p-precise
functions on R" such that u=v a.e. on R", then u=v p-a.e. on R". Furthermore.
if u is a locally p-precise function on R”, then |grad u| is defined a.e. on R" and
belongs to L{,.(R"). For these facts, see Ohtsuka [5; Chap. IV].

3. Radial limits of potentials of measures

We first show
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THEOREM 1. Let O0<a<n and let u be a non-negative measure such that

(1 g(l+|x|)°“"du(x) <.

Then there is a Borel set EcI such that C(E)=0 and

imU*(r&) =0  if ¢el—E.

RemARrk 1. Condition (1) is equivalent to Uk # 0.

ProoF oF THEOREM 1. We decompose U4 as U, + U,, where

U (x) = S Ix — yl*=rdp(y),

lx=ylzlx|/2

U = = sy

Ix=yl<lx|/2

First we shall show that U,(x)—0 as |x|—co. Let [x|=r2, r>1. If |x—y|=
Ix|/2, then |x—y|=(1+]y)/5. 1If, in addition, 1+|y|<r, then |x—y|2r?/22
(r/2)(1+1yD). Hence

v (5 )" fas o rauoy s pherdun),

1+]y]
which tends to zero as r— oo.

For a positive integer k, we set

Iyle"du(y).

ak=g
2kt glp|<2k+2

Since Y 2 ,a,< o0 by our assumption, there is a sequence {b,} of positive numbers
such that lim,_, b, =00 and ¥ & a.b,<o0. Set

E, = {xeR"; 2% < |x| < 2¢*1, Uy(x) = 1/b,}

for each positive integer k. If x € E,, then |x— y|<|x|/2 implies 2~ ! <|y| < 2k*2,
S0 thatg [x—yl*~"du(y)= bz'. Hence we have by Lemma 1

2k-1<|y|<2k+2

CuB) = 2, | du(y) S 2*ayb 200,

2k-1<|y|<2k*2
Denote by E, the set of all points ¢ € I' such that ré € E, for some r>0. Then
Ca(Ek) é 2—k("-a)Ca(Ek)

for each positive integer k. Setting E= %, Ui E,, we see that C,(E)=0 and
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lim,_, U,(ré)=0 for éeI'—E. Thus E is the required exceptional set.

REMARK 2. Theorem 1 is the best possible as to the size of the exceptional
set; in fact, for a Borel set EcI” with C(E)=0, there is a non-negative measure
u such that U400 and limsup,, U4(ré)=oo0 for every £€ E. To show this
fact, we set E={j¢; ¢cE and j is a positive integer} and note that C,(E)=0.
Hence there is a non-negative measure u such that U4 # oo but U%(x)= oo for each
xeE. Clearly, limsup,_ ,U%ré)= o for each ¢ eE.

4. Radial limits of potentials of measures with density

The following two lemmas can be proved in the same manner as Lemmas
4 and S in [4] with slight modifications (also cf. [1; Lemma 4.3] for Lemma 2).

LEMMA 2 (¢f. [4; Lemma 4]). Let « and p be positive numbers such that
l<p=2and ap<n. Let f be a non-negative function in LP(R") and set

E = {xern {x—yprrody 2 1}
Then there is a constant M >0 independent of f such that
C.,(E) = M| flI}.

LEmMMA 3 (¢f. [4; Lemma 5]). Let a, p and ¢ be. positive numbers such that
p>2 and e<ap<n. For a positive number r and a non-negative function f in
LP(R"), we set

E={xers| |x—ylrfouyz ).
lyl<r
Then there is a constant M >0 independent of r and f such that
Cop-E) = Mré| fI}.
We now show

THEOREM 2. Let a, B and p be numbers such that >0, =0, p>1 and
ap+pB<n. For a non-negative function f in LP(R"), we set

F(x) = S|x—y|a-"|y|ﬂ/vf<y)dy.

Then there is a Borel set E<I such that

limF(ré) =0 for each &(el—E,
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Co(E) =0 if p£2
and
Cop-E)=0 foranyewith O0<e<ap if p>2.

Proor. We decompose F as F; +F,, where

Fi = =yl ()

[x=ylzlxl/2

Fa = X — Y= y18/f ()dy .

Ix=yl<|x|/2

Since |x—y|=]x|/2 implies |y]| <3|x— y|, we have by Holder’s inequality

Fi(x) < 3007 [x— yl=+#10=1f ()dy

Ix=ylz|x|/2
, 1/p’
< 3ﬂ/p{g |x — y|p"(athip= n)dy} ”f”p,
[x=ylzlx|/2

where 1/p+1/p'=1. Since p'(a+ f/p—n)< —n, this implies that F,(x) tends to
zero as |x|— oo.
For a positive integer k, we set

E, = {xeR"; 2¥ < |x| < 2¥*1, Fy(x) 2 24(=pth=mir},

As in the proof of Theorem 1, we see that for x € E,

( = ylerylPInf ()dy 2 2erta-mip,
2k-t<|yl <2kt

Hence we have by Lemmas 2 and 3

Cap-{B) < M2+ 228=20-0) Y1Pf(y)rdy

2k-1<|y|<2k+2

< M22(ﬁ+e)2k(n-—ap+s)g f(y)de

J2k-1<|y|<2ktd
for some constant M >0 independent of k and &, where e=0if p<2 and O<e<ap
if p>2. Set
E, = {¢el;récE, forsome r>0}.
Then
Cup-oE) S 27K—ortoC,,_ (E))
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< M220+0 fyrdy.

Jak-t1<py|<ak+2
Consequently if we put E=n%, U E, then C,,_(E)=0 and lim,_ , F,(ré)
=0 for (eI —E. Thus the theorem is proved.

ReEMARK 3. Theorem 2 is also valid in case p=1 and a+B=<n on account
of Theorem 1.

REMARK 4. Leta>0, p>1and ap<n. Let E be a Borel set in I' such that
C,,(E)=0if p=2 and C,,. (E)=0 for some ¢>0 with ap+e<n if p<2. Then
there is a non-negative function fe L?(R") such that lim supﬁwglré —y|* " f(y)dy=

oo for every € E. To see this fact, setting E={j¢; € E and j is a positive
integer}, we note that C,,(E)=0 if p=2 and C,,, (E)=0if p<2. In view of a
result of B. Fuglede [1], there is a non-negative function f in LP(R") such that

S|x—y|“‘”f(y)dy=oo for every xe E. This shows that lim sup,_,wglré-—yl“‘“
|y|#/? f(y)dy= oo for any £ € E and any number f.

5. Radial limits of locally p-precise functions
THEOREM 3. Let ff and p be numbers such that $=0, p>1 and f+p<n.
Let u be a locally p-precise function on R" such that
glgrad ulP|x|"Pdx < o0.
Then there is a constant ¢ such that lim,_, ju(ré)=c except for & in a Borel set
EcT such that C(E)=0if p<2 and C,_(E)=0 for any ¢ with O<e<p if p>2.

To show Theorem 3, we shall establish the following integral representation
of u.

LemMMA 4 (¢f. [S; Theorem 9.11], [3; Theorem 4.1]). Let B, p and u be as
in Theorem 3. Then there are constants ¢, and c', such that

z 0 -y Ou
Jcljglgaxj(lx—yv ) S dyte  (n23),
u(x) =

;L 0 _ ou , _
Icll_;lg“é’;c;‘(l()glx J’|)7y7_())dy+cz (n=2)

holds for p-a.e. xe R". Here c, and ¢ are the constants determined by A|x|*~"
=c716 if n=3 and Adlog|x|=c! d if n=2, where 4 is the Laplacian and
is the Dirac measure.

Proor. We shall prove only the case n=>3 because the case n=2 is similarly
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proved. Put

—_ S ~_a__ — 2-n _a_u__
Gu(0) = 1 3 |t (lx—yl* ) (r)ay.

Since p'(1—n)+PBp’/p< —n, we see that glx—yll‘”lgrad uldye L},(R"). Con-

sequently G,e L{,.(R"). We shall show that 4(u—G,)=0 in the sense of dis-
tribution. Let ¢ be any infinitely differentiable function with compact support.
Then we have by using Fubini’s theorem

jGucoa00aax = e, 3 QB (x—yi2n dpeods)ay

3 au ___a_ —_ 2-n
P R L R A £

0y
= &(Ou (_ -y 09
‘cl,glgay,( it gt >dy
= gu(y)Afp(y)dy,

which implies that A(u — G,)=0. According to Weyl's lemma, there is a harmonic
function h such that

) h(x) = u(x)— G, (x)

holds for a.e. xe R". If we use the following two lemmas, we see that /1 is con-
stant and (2) holds for p-a.e. x € R".

LEmMMA 5 (cf. [5; Lemma 9.16]). Let  and p be numbers such that B<n
and p=1. Let h be a harmonic function on R", and assume that Slgrad h|p

|x|"8dx <o0. Then h is constant.

ProoOF. Since dh/0x; is harmonic on R" for each j=1, 2,..., n, we have

‘ oh
0x;

()] = e

s iy 9

é C’nr(ﬁ—")/ll{s lgrad hlplyl'ﬂdy}l/p —0

as r— oo, where c, and c, are constants depending only on n. Thus dh/dx;=0
on R" for each j, so that h is constant.

The proof of the following lemma will be given in the next section.
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LEMMA 6. Let 8 and p be as in Theorem 3. For an integer j, 1< j<n,
and a function fe LP(R"), we set

Fox) = (S22 oty dy

Then F is locally p-precise on R" and
(lerad Fieixi-sax < Mif,

where M is a constant independent of f.

Proor oF THEOREM 3. By Lemma 4, there are constants c¢,, c, and a p-
exceptional set E, = R" such that for xe R"—E,

N, o ( xj—y; Ou .
u(x) clj};lg 5=y" oy, dy+c,.

According to [1], C,(E;)=0 if p<2 and C,_(E,)=0 for any & with 0O<e<p
if p>2. Set

E,={¢el;récE, forsome r=1}.
By Theorem 2 there is a Borel set E, = I" such that
!i_r’rologlré—yll‘"lgrad uldy =0  if ¢el—E,
and
CAE)=0  if p=2,
C,-(E;) =0 foranyewithO<e<p if p>2.
It is easy to check that E, U E, is the required exceptional set.

CoROLLARY. Let O<a<n and 1<p<n. Let u be a non-negative mea-
suresuch that \Uhdu<oo. Assume that U% is locally p-precise on R" and
Slgrad Uk|?|x|"Pdx < oo for some non-negative number B with f<n—p. Then

there is a Borel set EcI such that
!i_{l;U{:(ré) =0 for (el'—E
and
CE)=0 if p=2,

Cp-(E)=0  foranyewith O<e<p if p>2.
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This is an easy consequence of Theorem 3 and the following lemma.

LemMa 7 (cf. [5; Theorem 10.18]). LetO<a<mn and let u be a non-negative
measure such that \Ubdu<oo. Assume that lim,_ UYr&) is a constant ¢ for
a.e.éel’. Then ¢=0. -

6. Proof of Lemma 6

We may suppose that fis non-negative on R*. Noting that (14 |y|)1~"|y|f/Pe
L?(R"), p'=p/(p—1), we have

® fa+ 1011y s )y < oo
We set k,(x)=x,(x|?+&2)~"/2, £>0, and define
Fix) = {iex= ) yl#refdy
6.9 = fje.x=n )y
From (3) we see that F, e C*(R") and

e = ! SEL (=) y 19 (y)dy

x
for any i=1, 2,..., n. From the proof of [3; Lemma 3.2] we derive that
4) ID:G.ll, = Myl I

where D;=0/0x;, i=1,...,n, and M, is a constant independent of ¢ and f. On
the other hand

) 11x17#e DiF =G| 3 M| =L 7 gy,

We write x=R¢ and y=rn, where R=|[x| and r=|y|. Setting H(x)=g|1—(|y|/
|xB/?| |x —y|~"f(y)dy, we have by Holder’s inequality

H(x) < S:ll—(r/R)ﬂ/Plrn-l {SMI:II_R_?_E%)T’_}W,
X {S|n|=1 WJEL—"E%ITdS(n)}”"dr.

For simplicity, we set
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dS(n)

(6 IR.n)= Sm=1 [RE= 7™

This is independent of £ eI and
@) I(R, 1) = 0,|R? —r?|"!{max (R, n)}*7",

where ¢, is the area of I'. By (6),

® — P|ypn— r r f(rr])" ip
H(x)ggoﬂ (r/R)H'®| =1 I(R, r)!! {S|n|=1__lRé—rn|"dS(")} dr .

Using Minkowski’s inequality ([6; Appendix A.17), we have

{§ _ Hooras@} "= (T11- 1R 1R, e
&l=1 0

x B,,,,=lf(r11)"{g,§,=, ﬁ%iﬁr}ds(m]wdr

< R“-"VPS"”K(R, g(rdr,
[1])
where
1/p
o) = remid(  fompasm}
n|l=1

K(R, r) = R0=1Ippn=1/p' [(R, 1)|1 — (r[R)B/| .

Note that K(R, r) is homogeneous of degree —1, that is, K(AR, ir)=1"'K(R,
r) for >0 and that wK(], rr-'/?dr< oo on account of (7). Hence we can ap-
0

ply Appendix A.3 in [6] and obtain

gH(x)de - S:{S _ H(Rf)"dS(é)}R"“dR

< S:{S:K(R, r)g(r)dr}”dR

< M, g0yrdr = M1 113,
where M; is a constant independent of f. Therefore (4) and (5) give
(® I [x|7#/2D;F ||, £ M,M3 7| fll,+ DG I, < MIfll,,
where M = M, + M, M, 1/7,

Let N>0. We write F=F,; y+F, y, where
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F X =S jJ;,_,,y‘f__ Blpf d ,
() Iyls2n |x—y|" [y [P12f (y)dy

F X =S —XJ:X.L_ 18/ Ny
2 (%) yI>2N |x—=y|" Ly 1P2f(y )dy

From [3; Lemma 3.3] it follows that F y is locally p-precise on R" and for any i
Df  kle= DSy — DF,y in LARY) as - 0.
lyl<2N

Furthermore F,, is continuously differentiable on {xeR";|x|<N} and

D,.S (x;—y)|x=yl""yl#’? f(y)dy converges to D,F, y uniformly on {x e R";
Iy1>2N

|[x| <N} as e—0 for any i. Thus F is locally p-precise on R" and

HxI=#/*DiF ||, < M1 fll,,  i=1,2,...,m,

by (8) and Fatou’s lemma. These complete the proof of Lemma 6.
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