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Introduction

Let X be a real Banach space and (<S, 2", μ) a finite nonnegative complete
measure space. For a general Banach space X, a /^-continuous vector measure
v: Σ^X of finite variation need not be the indefinite Bochner integral of its
derivative unless the values are suitably chosen. The purpose of this paper is to
introduce a notion of generalized derivative which can be defined for any vector
measure that is μ-continuous and of finite variation and investigate basic properties
of the generalized derivatives.

The fundamental theorem of calculus for vector measures (called commonly
the Radon-Nikodym theorem) need not be valid for all types of integrals. It is
a notable pathology that the Bochner integral does not mimic the Lebesgue
integral with regard to the fundamental theorem. In this connection various
types of integrals which include the Bochner integral have been introduced
through the duality theory by Birkhoff, Dunford, GeΓfand, Pettis and Phillips;
and the Radon-Nikodym theorems have been established in the respective senses.
Although each integral definition has its own features, the most general one among
them is that of GeΓfand and the so-called Dunford-Pettis theorem is regarded
as the associated fundamental theorem for vector measures with values in dual
Banach spaces. Our notion of generalized derivative is also based on the GeΓfand
integration theory.

Various examples of vector measures with values in nonreflexive Banach
spaces such as L*(μ) and L°°(μ) suggest that to an arbitrary vector measure only
the differentiation in the sense of the weak*-topology of X (viewed as a subspace
of its second dual unless X is a dual Banach space) may be applied. Indeed, if
v is a measure on Σ with values in a dual Banach space not possessing the Radon-
Nikodym property, only the local boundedness of the set {v(E)/μ(E): EeΣ} may
be assumed, namely: There exists a sequence {Sn: n = 0, 1, 2,...} such that
μ(So) = 0, μ(Sn)>0 (n^l) , S = \J™=0Sn and {v(£)/μ(£): EeΣ, EeSn} is bounded
for each n^ 1. Therefore, only the relative weak*-compactness is applied to find
the derivative and the derivative (supposing it is defined) is to possess only the
weak*-measurability. The Dunford-Pettis theorem may apply to X-valued
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measures since they can be embedded into its second dual. But in most cases

the dual of a nonreflexive Banach space is not separable hence, depending upon

the choice of separable subspaces of X*, their theorem would furnish with "un-

countably" many (weak*-) derivatives for a single measure. This suggests

that, in order to avoid this difficult situation, the derivative ought to be defined

as a multi-valued function, rather than a single-valued function.

In virtue of the above-mentioned, we shall employ "multi-valued" derivatives

defined in the following way: First let v be an X*-valued, μ-continuous measure

v of finite variation and Π a family of suitably chosen finite partitions of S on

which a partial order is defined as follows: for π l 5 π2eΠ we write πί^π2 iff

every set in πί is represented as a union of some sets in π 2 . Now for πeΠ we

write /π(s) = Σ£eπ(v(E)//ι(E))χ£(s) and define the multi-valued function φv: S-»

2X* by

Φv(s) = Γ\πeΠ cδσ {/As): n' ^ π}, seS,

where coσ \_W~\ denotes the weak*-closed convex hull of a set W. We then call

φv the generalized derivative of the X*-valued measure v. If X has no preduals

and v is an X-valued μ-continuous measure of finite variation, then v is viewed

as an Z**-valued measure and the generalized derivative φv is defined as an X**-

valued function in the same way as above. Our notion of generalized derivative

is therefore a generalization of the weak*-derivative for vector measures. Given

an X-valued, μ-continuous measure v of finite variation, it is proved that φv is

defined μ-a.e. on S. The function φv may lie in the second dual of X and is perhaps

genuinely multi-valued unless X is the dual of another separable Banach space.

However, it will be shown that such multi-valued derivative φv can be treated

through a certain equivalence relation for weak*-measurable functions as if it were

single-valued, and still possesses characteristic properties of the "derivative" of v.

Basic to this type of derivative is the fact that the fundamental theorem of calculus

holds between v and selection of φv in the sense of the GeΓfand integral.

In 1968, Rieffel established a general Radon-Nikodym theorem for the

Bochner integral. Since then important progress has been made in the study

of Banach spaces with the Radon-Nikodym property. In fact, this class of spaces

plays an important role in modern Banach space theory. Also it is noteworthy

that Stegall gave various types of characterizations of dual Banach spaces with

the Radon-Nikodym property. Moreover a wider class of Banach spaces (called

spaces with the weak Radon-Nikodym property) was introduced in 1979 by Musiat

and generalizations of the Radon-Nikodym theorem for the Bochner integral

have been investigated by Musiai, Rybakov, Uhl, Jr., and Kupka. For the results

as mentioned above we refer the reader to the distinguished survey of Diestel

and Uhl, Jr. [20]. These important works not only provide us with information

concerning exclusive classes of vector measures which are not Bochner differenti-
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able, but also suggest deeper problems as to when our generalized derivatives

become the Bochner derivative or else how our derivatives are related to the

integral representation of vector measures in the sense of Pettis.

In Section 1 a notion of multi-valued weak*-measurable function is introduced

and various integral definitions of scalarly measurable functions are discussed.

Moreover, some basic results concerning the GeΓfand integration will be given.

Section 2 is devoted to the investigation of weak*-closed convex hulls of

weak*-cluster points of bounded nets in dual Banach spaces. The main result

of this section plays an essential role in our argument.

The aim of Section 3 is to introduce the notion of generalized derivative for

general vector measures and examine basic properties of the generalized derivatives.

The results given in this section are closely related to the work of Kupka [13].

He gave general integral representation theorems for vector measures with the

help of the lifting theorem, while we base our argument on the relative weak*-

compactness of the suitable average ranges of vector measures only and it turns

out that more precise aspects of the Radon-Nikodym theorem for the GeΓfand

integral are found. The relations of our results to those of Kupka will be

discussed in detail at the end of the section.

Section 4 deals with a Lebesgue type space (denoted S£G{μ, X*)) of X*-

valued weak*-measurable functions. The space Jδ? jj(μ, X*) of Bochner integrable

functions on S is isometrically embedded in &G(μ, X*) and it is verified that the

class of all X*-valued μ-continuous vector measures of finite variation is isometri-

cally isomorphic to the space &G(μ, X*).

Section 5 continues with a series of definitions of Lebesgue type spaces

L%(μ, X*), l^q^co. The duals of the spaces Lg(μ, X), l ^ p ^ o o , of Bochner

integrable functions on S are characterized by means of LG(μ, X*), lrggrgoo.

Finally, Section 6 contains some applications of our results to the Bochner

and Pettis integrals and it will be shown that there is a striking contrast between

them. In this section we shall also make a few remarks on the relation of our

results to the recent works of Geitz [7] and Hashimoto [9], in which Pettis

integrable functions are discussed from the viewpoint of the sequential approxi-

mation of scalarly measurable functions by simple functions.

1. Vector integration of scalarly measurable functions

Throughout this paper the symbol X denotes an infinite dimensional real

Banach space; and the symbols X*, X** and X*** represent the dual space of X,

the second dual and the third dual space of X, respectively. We always identify

X with the image of the natural embedding of X into X**. For xeX and

x* e X* we write <x, x*> for the value x*(x) of the functional x* at x. However

when we focus our attention on the elements of X* we sometimes write <x*, x>
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for the pairing <x, x*> by regarding x as an element of X**. Given a subset

K of a Banach space X, we mean the convex hull and the convex closure of K

by co K and co K9 respectively. Moreover if W<=X*, coσ W denotes the weak*-

closure of co W.

Let xeX and x**eJf**. I f/ is an JSf*-valued function on a set S, we

write </, x**> and </, x> for the real-valued functions defined respectively by

</, ***> (5) = </(s), ***> and </, x> (5) = </(s), x>

for 5 e 5 . Likewise, given an X*-valued measure defined on a σ-field I1, we

denote by <v, x**> and <v, x> the real-valued measures <v( ), x**> and <v( ),

x>, respectively. The triplet (S, Σ, μ) stands for a finite, complete and nonnegative

measure space; and the symbol Σ+ denotes the set of all elements EeΣ with

positive measures. Moreover, for each EeΣ, we write Σ(E) = {E ΓϊF: FeΣ}

and call it the restriction of Σ to E.

1.1. Let X be a Banach space. We say that a function/: S-*X is simple if

there exist xl9...,xneX and El9...9EneΣ such that / = Σ ? = i xiXEt> where each

χ£. denotes the characteristic function of Et. A function / : S-+X is said to be

strongly μ-measurable if there exists a sequence (/„) of simple functions such that

lim,,^^ \\fn(s)—f(s)\\ = 0 μ-almost everywhere. We say that/ i s weakly measurable

if for each x* e X* the numerical function </, x*> is μ-measurable, and that /

is weakly integrable if </ x*> is μ-integrable for each x* eX*. One may intro-

duce more general notions: Let Γc=X*. A function / : S-*X is said to be Im-

measurable (resp. Γ-integrable), if </, Λ;*> is μ-measurable (resp. μ-integrable)

for each x* e Γ. Let X be a Banach space, / an Z*-valued function on 5, and let

X be viewed as the image under the natural embedding of X into X**. Then we

say that / is weak*-measurable (resp. weak*-integrable) if it is X-measurable

(resp. X-integrable) in the above sense. Two functions / : S-+X and g: S-+X

are said to be Γ-equivalent, provided that </, x*> = <#, x*> μ-a.e. for each x* e

Γ. If in particular/: S->X and g: S-*X are X*-equivalent, we say t h a t / a n d g

are weakly equivalent. Likewise, if/: S->X* and g: S->X* are X-equivalent,

/ and g are said to be weak*-equivalent. The space of all X*-valued, weak*-

integrable functions is denoted by ©(5, Σ, μ, X*)9 or simply (5(μ, X*). The space

(5(μ, X*) is a vector space under the usual addition and scalar multiplication.

REMARK. In contrast with the strong measurability, the notion of scalar

measurability as mentioned above does not assume the existence of approximate

sequence of simple functions. For instance, the weak*-measurability of an

X*-valued function / does not necessarily imply the existence of a sequence (/„)

of X*-valued simple functions such that </„, *>-></, x> μ-a.e. for each xeX

(where the null set on which the convergence does not hold may vary with x)

unless the Banach space X or else the base measure space (5, Σ9 μ) is suitably
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chosen. In fact, even a weakly measurable function does not necessarily have

an approximate sequence of simple functions when the base measure space is

not perfect. It is an interesting problem in connection with the weak Radon-

Nikodym property for Banach spaces to investigate such sequential approximation

of weakly measurable functions by simple functions. For the results in this

direction we refer to the recent works of Geitz [7] and Hashimoto [9].

We now state the following fact which is basic to the definition of GeΓfand

integral.

LEMMA 1.1. // a function / : S^>X* is weak*-ίntegrable over S, then to

each EeΣ there corresponds a constant M(E)^0 such that

(1.1) ( Kf(s\ x>\dμ S M(E)\\x\\ for xeX.
JE

The proof is obtained by applying the uniform boundedness theorem. See

Gel'fand [8].

We then give the definition of Gel'fand integral of a weak*-integrable function.

Let/: S-+X* be weak*-integrable over S and for each EeΣ, set

(1.2) Mf(E) = sup j j £ |</(s), x>\dμ: \\x\\ S if, EeΣ.

The set function Mf(>): Γ->[0, oo) is monotone and countably subadditive.

Moreover Lemma 1.1 states that for each EeΣ the mapping χι-> \ </(s), x>dμ
JE

defines a continuous linear functional v(£) on X such that ||v(E)|| ^Mf(E). Hence

v(£) e X* for £ e Σ and we have

<v(£), x> = ( </(s), x>dμ xeX and EeΣ.
JE

As is easily seen, the set function v( ) Σ-+X* is countably additive with respect

to the weak*-topology of X*. But it should be noted (Example 4 in [3], p. 53)

that v need not be norm-countably additive. Now given an E e Σ the value v(£)

is called the GeΓfand integral (or simply the G-integraΐ) of/over E and is denoted

as

v(E) = (G) - [ fdμ.
JE

For every pair/, g e Qΰ(μ, X*),f and g provide the same G-integral v(E) for every

EeΣ iff/and g are weak*-equivalent.

REMARK. Let X be an arbitrary Banach space and suppose that a function

/ : S->X is weakly integrable over S. Then Lemma 1.1 states that for each

EeΣ there is a v(E) e X** such that <v(£), x*> = ί </(s), x*ydμ for every x* e X*.
J E
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If in particular all of v(£)'s are determined in the original space X, the function /
is said to be Pettis integrable over S. There is a notable difference between the
GeΓfand integral and the Pettis integral; the absolute continuity in the sense of
Saks. In fact, an indefinite G-integral need not be absolutely continuous in the
sense of Saks, while any indefinite Pettis integral is absolutely continuous in
that sense.

1.2. In this paper multi-valued functions play an important role in the
discussion of the generalized derivatives of vector measures. Let X be a Banach
space. By a multi-valued function φ from S into X we mean a mapping φ:
S-+2X; and a selection of φ means a single-valued function/: S-*X such that
f(s)eφ(s) for seS. For multi-valued functions as mentioned above, one may
introduce natural notions of measurability as well as integrability. A multi-
valued function φ: S->2** is said to be weak*-measurable (resp. weak*-integrable
over S) if

(i) any pair of selections of φ are weak*-equivalent to each other; and
(ii) there is a selection f of φ such that </, x> is μ-measurable (resp. μ-

integrable over S) for xeX.
If φ is a multi-valued function from S into X, the weak measurability and weak
integrability are defined in a similar manner.

Given a pair of Z-valued (resp. JΓ*-valued) functions / and g on S, we usually
identify / with g if f—g μ-a.e. on S. In this sense every single-valued function
may be regarded as a multi-valued function as mentioned above. However a
multi-valued, weakly measurable (resp. weak*-measurable) function should mean
a function φ: S-+2X (resp. φ: S->2X*) with the property that φ has at least two
selections /, g such that / and g are weakly equivalent (resp. weak*-equivalent),
but for some ε o >0 the outer measure of the set {seS: ||/(s) — g(s)\\ ^ε0} is
positive. In what follows, a function φ: S->2* is said to be essentially single-
valued if for any pair of selections f,gofφ we have f(s)=g(s) μ-a.e.

1.3. Let Π be the set of all finite disjoint collections π = {£ls..., En} of
elements of Σ+. Let l<jp<oo and v: Σ^X a vector measure such that v(£) = 0
whenever μ(£) = 0. By the p-variation of v we mean a mapping |v|p( ) Σ->
[0, oo] denned by

|v|,(£) = supπe77 {ΣAeπ \\<Λ Π E)\\PJμ{A Π E)^γiP

for EeΣ, where we use the convention that ||v(£)||/μ(£) = 0 whenever μ(£) = 0.
If p=l, the 1-variation of v is defined to be a mapping M^ ): Σ-^O, oo]

which assigns to each EeΣ the value

Henceforth, \v\1 is written as |v| and is simply called the variation of v. If |v| is
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finite, v is said to be of finite variation; and if |v| is σ-finite, we say that v is of σ-
finite variation. For lgp<oo, we denote by Vp(μ9 X) the space of all vector
measures v: Σ-+X such that ||v||p= |v|p(S)< oo. Moreover, F°°(μ, X) stands for
the space of all vector measures v: Σ->X with M ^ i n f {fc>0: ||v(£)||^fcμ(E)
for E eΣ} < oo.

Let l ^ p < o o . We denote by &B(μ, X) the space of all X-valued strongly
μ-measurable functions /such that ||/( )ll eLp(/ί); hence in particular &B(μ, X)
is the space of all Jf-valued Bochner integrable functions on S. In this paper the
Bochner integral of fe J?B(μ9 X) over E e Σ is written as

v(E) = (B) - \ fdμ.
JE

Given a pair/, g in ££p

B{μ, X), we say that/is equivalent to g if f(s) = g(s) μ-a.e.
on S; and we write L£(μ, X) for the space of all equivalence classes in J^ζ(μ, X).
If X and μ are fixed, we sometimes write «£?g and LP

B for Jδfg(μ, X) and Lg(μ, X),
respectively. The space L£(μ, X) is a Banach space under the norm ||/| | =

(f ll/(s)llpdμ))1/P where fef and fe Lg(μ, X). It is well-known ([3], Theorem 1

on page 98) that L£(μ, X)* = L|(μ, X*) where p'1 + q~ι = 1, iff X* has the Radon-
Nikodym property with respect to μ. Moreover the space of all Z-valued strongly
μ-measurable functions f on S with ||/( )|| eL°°(μ) is denoted by J^β(μ, X);
and we write L£(μ, X) for the space all equivalence classes in Jδfβ(μ, X). The
space LJ(μ, X) is a Banach space under the norm | |/ | |oo = e s s s u Pses ll/(s)ll» fe

fe L£(μ, X). Thus the dual space of Lg(μ, X) is no longer represented as
Lebesgue type spaces of strongly μ-measurable functions on S. We then quote
the following result which is originally due to Bochner and Taylor [1].

THEOREM 1.2. Let lg Jp<oo and p~1 + ̂ " 1 = l. Then Lg(μ, X)* is iso-
metrically isomorphic to Vq(μ, X*) under the correspondence between Te
Lp

B(μ, X)* andveV«(μ, X) defined by

dv for fef and feLB(μ,X).

Let μ be a finite positive measure on (5, Σ) and v :Σ-+X SL vector measure.
We say that v is μ-continuous if for every ε > 0 there is a positive number δ such
that |v|(£)<ε for EeΣ with μ(£)<<5. The μ-continuity of v is equivalent to the
property that v(E) = 0 for E e Σ with μ(£) = 0 if v is countably additive and of finite
variation.

For 1 <p< oo the definition of p-variation implies that

^ for EeΣ+.

Hence v is μ-continuous. However the definition of 1-variation of v does not
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yield the μ-continuity and V1(μ, X) is simply the space of X-valued vector measures

of finite variation. We then denote by V\(μ9 X) the subspace of V1(μ9 X) which

consists of vector measures in V1(μ9 X) that are μ-continuous. The space

V\(μ9 X*) is a closed linear subspace of the Banach space V1(μ9 X*) by Vitali-

Hahn-Saks' theorem. Moreover, it is easy to see that V*(p9 X*)<=V%β, X*)

for p> 1 since μ is finite.

Finally, we state an important lemma which will often be applied in the

sequel. Although this lemma is implicit in Musiat [14], we here give the com-

plete statement as well as its proof.

LEMMA 1.3. Let ΓaX*. If f: S-+X is μ-measurable, then there exists

a nonnegatίve measurable function φf with the following properties:

(1.3) For every x * e l * , |<x*,/(s)>| ^ φf(s)\\x*\\ μ-a.e.;

(1.4) φf(s) S \\f(s)\\r = sup {|<x*,/(s)>|: ||x*|| ^ 1, x*eΓ}μ-a.e. and

(1.5) if φr: S^[09 oo) is a measurable function satisfying (1.3) and (1.4)

(with φf replaced by φ')9 then φf(s) ^ φ'(s) μ-a.e..

PROOF. Let M(S, Σ9 μ) be the space of all μ-measurable, extended real valued

functions endowed with the usual partial ordering " g " (that is, f^g means that

f(s)Sθ(s) μ-a.e. on S). The space M(S9 Σ9 μ) forms a complete lattice with

respect to this partial ordering. Now consider the subset iV = {|<x*, / > | : ||x*|| ^

ί,x* eΓ} of μ-measurable functions. Since M(5, Σ, μ) is a complete lattice,

there exists a least upper bound φf in M(S, Σ9 μ) of N. This φf is the desired

function. In fact, it is clear from the definition of φf that (1.3) holds. Moreover,

it follows from Theorem IV. 11.6 of [6] that there exists a sequence (x*) with

x*eΓ and | |x* | |gl such that φf is a least upper bound of {|<x*,/>|: w^l}, i.e.,

ι^/(s) = suρ {|<x*, /(s)>|: n^l} μ-a.e. on S. Hence (1.4) holds. This means that

the least upper bound of N satisfies (1.4) automatically. It, thus, is clear that (1.5)

also holds. q. e. d.

2. Convex hulls of weak*-cluster points of bounded nets

Let (A, g ) be a directed set and let (xj, α e i ) be an arbitrary bounded net

in X*; and for each oceΛ, we denote Ka = c6σ {x%>: α'Ξ^α} by the weak*-closed

convex hull of {x^iα'^α}. Since each Ka is weak*-compact by Alaoglu's

theorem and {Ka: cc e A} is monotone nonincreasing with respect to the order ^ ,

we have K = ΓΛaeAKa^0 by the finite intersection property. On the other hand,

we consider the set W of all weak*-cluster points of the net (x*, α e i ) and let

χ = coσ W. The aim of this section is to establish the following result which is

of use for the discussion of our generalized derivatives.
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THEOREM 2.1. (1) Every extremal point of K is a weak*-cluster point
of the net (x*, α e A). Namely, if the set of all extremal points of K is denoted
by ext K then ext Kcz W. (2) The set K coincides with K.

To prove the above theorem we need the following lemma.

LEMMA 2.2. The net (x*, oc e A) converges in X* to an element x* in the sense
of the weak*-topology iff K = {x$}.

PROOF. Suppose that K contains two distinct points x$ and xf. Then by
the separation theorem one finds an element xoeX and real numbers c l 9 c2

such that <xo»*o><ci<c2<<xo>*?>. P u t U(xξ) = {x* eX*: <x0, **> S c,}
and U(xf) = {x*eX*: <x0, x*>^c2}. Then U(xξ) Π U(xf) = 0, and U(xξ) and
U(xf) are weak*-closed convex neighborhoods of x$ and xf, respectively. Since
x$ is a weak*-limit of (Λ;*, αe A), there is a n α o e i such that x* e U(xξ) for every
α^α 0 . It, thus, follows that KaaU(x$) for α^α 0 , and KaU(x$). This is a
contradiction, and so we must have x$ = xf and K = {x*}. To show the converse,
suppose that x* does not converge to xξ in the weak*-topology. Then one can
choose an element xoeX and a positive number ε0 so that for every oceA there
may exist a n α ' ^ α (α'e A) satisfying

(2.1) |<x0, x*,} - <x0, xj>| ^ ε0 > 0

Let B be the set of all such a' eA. Then B is a cofinal subset of A and (x|, jβ e 5)
forms a subnet of (x*, αe^4). Therefore, by Alaoglu's theorem, there exists a
subnet (y*, yeΓ) of (x*, βeB) such that y* converges to some element y$ in
X* in the sense of the weak*-toρology. Let φ: Γ-+B be any mapping with the
following properties;

(i) for every γ eΓ, ^* = xj ( y ); and
(ii) for every βoeB there exists yoeΓ such that y^y0 implies φ(y)^β0.

Let Kf = ΓΛγeΓcδσ {y*>: y'^y}. Then we infer from the necessity part of this
lemma that K' = {yξ}. We then demonstrate that j * = ̂ o To this end, let α
be any element in A. Then there exists βoeB with β0 ^ α. Hence, by use of (ii),
one finds γoeΓ such that y^γ0 implies φ(γ)^β0, so that {y*: y^yo}^^*'- β^
βo}^{x*'Όc'^(x}^Ka. Therefore we have K / cδo σ {j*: y^yo}aKΰί. Since
α is arbitrary, we obtain K'czK = {xξ}. So, x* = y* and j*-^x* in the weak*-
topology. But this contradicts (2.1), and it follows that x*-*x* in the weak*-
topology of X*. q. e. d.

PROOF OF THEOREM 2.1. (1): To show that ext Kcz W, suppose the contrary
and let xJeextX— W. Then there exist xoeX, ε o >0 and oc0eA such that
|<x0, x^> —<x0, x*>|^ε o >0 for every α^α 0 . We then take two sets H1 =
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{x*eX*:<x0, x*>^<x0, *?> + ε0} and H 2 = {x*eX*: <x0,

ε0}. Then H1ϊ\H2 = 0 and x*eHι\jH2 for α ^ α 0 . Also, both Hx and H2

intersect {x*} in such a way that {α: x*e//J, i = l, 2 are cofinal subsets of A

In fact, suppose that {x*: α^α1}c=H1 for some OC^OCQ. Then KaίczH1 and so

KdHi9 which contradicts x$0Hί. Hence Hi intersects {x£} cofinally. Like-

wise, H2 contains cofinally a subset of {x£} Let α ^ α 0 , Aa = Hί Π {x£: α'^α},

and let BΛ = H2 Π {x£: α'^α}. It is obvious that AaΦ0, BΛΦ0 and cόσv4αn

cό"<τBα = 0 for every oceA with α ^ α 0 . Since both A and £ are relatively weak*-

compact, we obtain the relation

(2.2) Ka = cδσ (Aa U £ α ) = co (cδσ Aa U cδσ Ba).

Moreover, the following holds:

(2.3) K = Γ\aeA Ka = co ((Λα e Λ 55- Λα) U (Λ α e A δ

In fact, let x* e co ((ΓλaeA cδσ Aa) u (Γ\aeA cbσ BJ). Then there exist y* e

ΓΛaeA cόσ α̂» z * e ^aeA Co*7 ̂ α a n < i c Ξ [0, 1] such that x* = cy* + (1 — c)z*. Hence

we infer from (2.2) that x*eAa with αeα 0 , so that x*e Γ\aeAKa = K. To get

the converse inclusion, let x* e Γ\aeA KΛ. Then it follows from (2.2) that for every

cue A with α ̂  α0 there exist y * e coσ ^4α, z* e coσβα and cα e [0, 1] such that x* =

cay*+(l — cα)z*. Since all of (cα), (y*) and (z*) form bounded nets, one can

choose subnets (cy, yeΓ), (y*, yeΓ) and (z*,yeΓ), a number ce[0, 1], and

elements y*, z*eX* such that cy->c in [0, 1], y*-+y* and z*->z* in the weak*-

topology of X*. Hence we observe that y* e Γ\aeA cδσ Aa and z* G Λαe>ι coσ Ba.

It, thus, follows that x* = cy * + (1 - c)z* e co ((Aα e A cδσ AΛ) U (Π α e A coσ Bα)). Now,

using the relation (2.3), we conclude that xξ e co ((Γ\aeA cδσ Aa) U (Λα e Acδσ Bα)).

In virtue of this and the hypothesis x%φH1[)H2 (hence x$$ΞΓ\aeAcόσAa

U Γ\ΛeA cόσ Bα), we can take c e (0, 1), j * e Λα 6 A cδσ ^ α and z* e Λα e Λ cόσ Ba

so that xj = cj* + (l-c)z*. But xJeextK; hence (2.3) yields that xj=<y* = z*.

This contradicts the definitions of y* and z* since j ;*^z* . Thus extXcPΓ.

(2): First we prove that KcK. To this end, it is sufficient to show that Wcz

K. Let x* be any element of W. Then one can choose a subnet (yj[, βeB) of

(x*, oceA) so that j | ^ x * in the weak*-topology of X*. Hence Lemma 2.2

shows that {x*} = ΓΛβeBcόσ {yp: β'^β}. On the other hand, we see from the

definition of {j>|: βeB} that to each cue A there corresponds a β0 e B such that

{y*β: β*βo}c:{χ*.: α'^α). So, {x^czco* {j*: β^βo}czcδ° {x*: α'^α} = Kα.

Since α is arbitrary, we have x*e Γ\aeAKΛ = K. Thus WaK, To show the

converse inclusion KczK, it suffices to show with the aid of the Krein-Milman's

Theorem that extKczW. But this has already been proved in the first step (1).

q. e. d.
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3. Generalized derivatives of vector measures

In this section we introduce a notion of "multi-valued" generalized derivative

of a vector measure and investigate some basic properties of the generalized

derivatives. There are two distinct cases for defining such derivatives: Let X

be a Banach space. If v is X*-valued, the generalized derivative φy is defined

as a possibly multi-valued function with values in the same space X*. While

the generalized derivative φv of an X-valued measure is a possibly multi-valued

function on S whose range may lie in the second dual X**. In any case our

notion of generalized derivative is understood to be a generalization of the so-called

weak*-derivative for vector measures.

3.1. Let 77 be a family of finite disjoint collections π = {Eu..., En} of Σ+

such that \J1}==ίEi = S. In what follows, a finite disjoint collection π as mentioned

above is generically called a Σ+-partition of S. On the family 77 a partial order

" ^ " is defined in the following way: for π 1 ? π 2 e77 we write πί^n2 iff every set

in πx is represented as a union of some sets in π 2 . Employing this partial order

the system (77, :g) forms a directed set, and if xneX for πeΠ then (xπ, πe77)

forms a net in X.

The set, ΣΠ9 of elements of Σ+ which constitute the family 77 is in general a

proper (and even "very small") subset of Σ+. Accordingly, it is necessary to

require that Σπ consists of sufficiently many elements so that the family 77 may

induce "well-behaved" derivatives. In this section we are concerned with families

of Σ+-partitions of S satisfying condition (77) as mentioned below. Let 77 be a

family of Σ+-partitions of S. We say that 77 satisfies condition (77) if:

(77) for every g e L\μ) we have limπeJI0π(s) = g(s) μ-a.e.,

where gn is the simple function defined by

9n(s) = Σneπ (\E 9 dμlμ{E)^χE{s) for s e S.

Condition (77) is closely related to the existence theorem for the Lebesgue

points of Bochner integrable functions. See Lemma 6.2 below. Moreover,

given a lifting p for μ, the family 7Tp of all p(Σ+)-partitions of S endowed with the

partial order as mentioned above does always satisfy condition (77). See Section

3.3. In fact, the class of those families defined through liftings for μ will play an

important role in later arguments.

Let X be a Banach space and 77 a family of Σ+-partitions of S satisfying

condition (77). First we define the generalized derivatives of X*-valued measures.

Let ve Vl(μ, X*). We write φ for the Radon-Nikodym derivative d\v\/dμ and,

for each πe77, we define a simple function fπ: S-+X* by

(3.1) Λ ( 5 ) = Σ £ C T ( v ( % ® ω s ) for 5 6 5.
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T h e n \\fπ(s)\\^ΣEen(\y\(E)/μ(E))χE(s) = xl/π(s) f o r seS a n d c o n d i t i o n (H) y i e l d s

that there exists a null set No such that

(3.2) lim supπ | |/π(5)|| ^ φ(s) < oo for s e S - No

Therefore we infer with the aid of Alaoglu's theorem that

(3.3) ίΛπeΠδόσ {fπ,(s):πf^π}Φ0 for seS-N0.

We then define a set-valued function φv: S-+2X* by

\πeΠcόσ {/πΌ0' π' ^ π}, seS - No,
(3.4) φv(s) = ,

{0}, seN0.

The function φv as defined above is understood to be a generalized weak*-de-

rivative of v. In fact, let seS — N0, No being the μ-null set which appeared in

(3.2). Then Lemma 2.2 yields that φv(s) is a singleton set iff limπ fπ(s) exists in

the sense of the weak*-topology of X*; and if φv(s) is a singleton set for a.e.

seS, φv is the weak*-derivative of v in the usual sense. Although φv is in general

genuinely multi-valued μ-a.e. on S, we call φv the Π-generalίzed derivative of

the X*-valued measure v. (If Π is fixed, we sometimes eliminate Π and simply

call the (generalized) derivative of v since it will cause no confusion.)

We next suppose that the original Banach space X has no preduals and

define the derivatives of Z-valued measures. Let v e FJ(μ, X). Then v can be

viewed as a vector measure belonging to Vl(μ, X**) since F£(μ, X) is isometrically

embedded in FJ(μ, X**). Hence, one can define a set-valued function φv:

S-+2X** by (3.4), where the convex closure is taken with respect to the weak*-

topology of X**. This multi-valued function φv is in general properly X**-

valued. In fact, it will be shown in Section 6 that if φv is the i7p-derivative of v

(p being a lifting for μ) and φv(s) intersects X for a.e. seS then φv gives a Bochner

derivative of v. However it is interesting to note that the J7p-derivative φv does

not necessarily contain the Pettis derivative of v even if v is represented as the

indefinite Pettis integral of an X-valued weakly measurable function on S. For

more detailed argument concerning this problem, see the forthcoming paper [10].

Therefore, in the following, we are mainly concerned with vector measures

which take their values in dual Banach spaces.

3.2. In order to investigate the properties of the generalized derivatives

as defined above, we need the following lemmas which are derived from Theorem

2.1.

LEMMA 3.1. Assume that Π satisfies condition (H). Let veFj(μ,

φv the generalized derivative defined by (3.4), and φ = d\v\/dμ the Radon-

Nikodym derivative of |v| with respect to μ. Then we have the relation



GeΓfand integrals and generalized derivatives of vector measures 313

||/(s)|| £ιKs), seS-N0,

for every selection f of φy, where No is the null set which appeared in (3.2).

PROOF. Let {/π: πe Π} be a family of simple functions defined for v by

(3.1). Then (3.2) holds. Now given seS — N0 choose an arbitrary weak*-

cluster point /(s) of the net (/π(s), neΠ). Then (3.2) yields that | | / ( s ) | | ^ ( s )

for seS — N0. Therefore, Alaoglu's theorem and Theorem 2.1 together imply

that for each s e S — No we have ||/(s)|| Sφ(s) for f(s) e φv(s). q. e. d.

LEMMA 3.2. Assume that Π satisfies condition (H). Let veFJ(μ, X*)

and f any selection of φv. Then f is weak*-integrable over S and V(JE) = (G) —

f(s)dμforEeΣ.

PROOF. Fix any xeX. Put gx = d(y, x}/dμ. Let seS — N0 and /(s) any

weak*-cluster point of the net (/π(s), π e Π). By virtue of condition (H) there

exists a null set Nx such that gx(s) = limπ </π(s), x> for s eS — Nx. Hence we have

(3.5) </(s), x> = limπ </π(S), x> = gx(s) for seS- (JV0 U Nx).

The relation (3.5) holds for every element of the weak*-closed convex hull of such

weak*-cluster points /(s). Therefore Theorem 2.1 implies that (3.5) holds for

every /(s) e φv(s), and so / is weak*-integrable and v is represented as the in-

definite G-integral of/. q. e. d.

The above lemma suggests that we may treat φv as if it were a single-valued

function. Since the G-integral (G)—\ fdμ does not depend upon the choice
Γ Γ

of selection / of φv9 we sometimes write (G) — \ φv(s)dμ for the value (G) — \ fdμ.
JE JE

Our generalized derivative depends upon the choice of family Π of I^-partitions,

though Lemma 3.2 states that a selection of the ϋ-derivative of v is weak*-equi-

valent to any selection of another derivative, say Π'-derivative of v, so far as both

Π and Π' satisfy condition (H). In this sense it is not so essential from our point

of view to discuss the difference between generalized derivatives associated with

distinct families of 2^-partitions.

REMARK. In connection with the Remark before Lemma 1.1, it is interesting

to consider the approximation problem for the generalized derivative φv by means

of simple functions. Applying the recent results of Hashimoto [9], we obtain the

following

PROPOSITION, (i) IfX* has the weak Radon-Nίkodym property, then there

is a sequence (πM) of partitions of S such that </πn, *>-•</, x> μ-a.e. for any

xeX and any selection f of φv, where the null set on which the convergenece
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does not hold may vary with x and /. (ii) // the base measure space (S, Σ, μ)
is separable (i.e., Σ is generated by a denumerable number of subsets of S),
then the same conclusion as in (i) is valid.

We are now in a position to state the main theorem of this section.

THEOREM 3.3. Let v e Vι£μ, X*). Let Π be a family of Σ+-partitions of S
satisfying (H) and φv the Π-generalized derivative of v. Then for every selection
f of φv there exists a μ-null set Nf such that \\f(s)\\ =\//(s)for seS — Nf. More-
over, | |/( )ll is μ-integrable and

M(£)= \\f(s)\\dμ for EeΣ.
JE

PROOF. Let /be any selection of φv. Then/is weak*-measurable by Lemma
3.2, and so Lemma 1.3 implies that there exists the greatest lower bound \j/f of the
family of μ-measurable functions ψ' with the following properties:

(3.6) for every xeX, \(f(s), x}\ g ψ'(s)\\x\\ μ-a.e., and

(3.7) Ms)£\\f(s)\\ μ-a.e..

From this and Lemma 3.1 it follows that x//f(s)^\\f(s)\\^\l/(s) μ-a.e.. But we
infer from Proposition 1 in Musiai [14] that ψf(s) = φ(s) μ-a.e., and so there
exists a null set Nf such that

(3.8) φ(s) = ||/(s)|| for s e S - Nf. q.e.d.

REMARKS. 1) Given a vector measure v e V\(μ, X*) and a family Π of
^-partitions satisfying (if), we have defined a generalized derivative φv by
taking weak*-cluster points of the bounded nets (fπ(s)), seS. Hence the values
φv(s) are subsets of X* which possibly span infinite-dimensional subspaces of X*.

2) As mentioned in Section 3.1, the generalized derivative φv of an X-
valued measure v e Vl(μ, X) may be properly X**-valued and it turns out that the
indefinite G-integral v of an X**-valued function on S is X-valued. This phe-
nomenon is in contrast to the definition of Dunford integral since the indefinite
Dunford integral of an X-valued function is in general Z**-valued.

3.3. In this subsection we discuss generalized derivatives defined by means
of liftings for μ. Since (S, Σ, μ) is a finite nonnegative complete measure space,
there is a lifting p for μ that is a mapping p:Σ^Σ with the following properties
(hereafter called the lifting properties): (i) χE = χp ( £ ) μ-a.e. (ii) χE = χF μ-a.e. implies
that p(E) = p(F); (iii) p(φ) = φ, p(S) = S; (iv) p(E 0F) = p(E) n p(F); and (v)
p(E\J F) = p(E)[j ρ(F). See Dinculeanu's book [4] for the detailed argument.
Let Πp be the family of all ^-partitions π = {£ l5..., En} such that £ iep(I1 +)(i.e.,
p(£ f)=E t e Σ+ for 1 <Ξ i <; n and 5 = \j % t Et). Then one gets a directed set (17P, ^ )
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by defining on the family Πp the partial order as mentioned at the beginning of

this section.

Now it is seen from the lifting properties (i)-(v) that for every g e L*(μ) we

have limπ e i I gπ(s) = g(s) μ-a.e. on S. Hence Πp satisfies condition (H) and all

of the results obtained so far can be restated in terms of Πp. In particular, the

representation theorem for general vector measures due to Tulcea-Tulcea [11]

is obtained from Lemma 3.2 in the following form (cf. [4], Theorem 5 in §13):

COROLLARY 3.4. Let v e F*(μ, X*)9 P any lifting for μ, and let φv be the

Up-generalized derivative of v. Then v(E) = (G) — \ φv(s)dμ for EeΣ.
J E

In Theorem 3.3 we have assumed the existence of a family Π satisfying (H).

However, the lifting theorem yields that there is at least one lifting for μ and the

family Πp which is defined through a lifting p and satisfies (if). In fact, if we

employ such a particular family Πp then we obtain stronger conclusions than

those of Theorem 3.3.

THEOREM 3.5. Let vsV\{μ, X*)9 p a lifting for μ, and let φv be the Up-

generalized derivative of v. Then there is a μ-null set Np such that φv(s) is a

singleton set {/(s)} and

( 3 . 9 ) l i m π e i 7 p | | / π ( s ) | | = | | / ( s ) | | = ψ(s) for seS- Np.

Moreover |v|(£) = [ \\f(s)\\dμfor EeΣ.
JE

In order to prove this theorem we cite the following well-known result (see

for instance [13]):

LEMMA 3.6. Let φ: S->R be μ-measurable and essentially bounded over

S and p(φ) the lifting for φ. Then limπφπ(s) — p{φ)(s) for seS and the

convergence is uniform on S. In particular ]imπφn(s) = φ(s) μ-a.e. on S.

PROOF OF THEOREM 3.5. In view of Theorem 3.3 and the fact that Πp

satisfies (ff), it is sufficient to show that (3.9) holds. First it is seen that there

exist sequences (SM)£L0 in Σ and (MΠ)^=1 in (0, oo) such that {Sn: n^O} is a disjoint

family, p(Sn) = S n f o r n ^ l , μ(S0) = 0, μ(Sn)>0 for n ^ l , S = W£=o SH9 and ||v(£)|| S

Mnμ(E) for EeΣ(Sn) and n ^ l . Fix any xeX. Let gx denote the Radon-

Nikodym derivative d<v, x}/dμ of the scalar-valued measure <v, x> and let g° =

Σ?=i p(9x' XsJ- Then we infer with the aid of Lemma 3.6 that limπ </π(s), x> =

#2(s) holds uniformly for seSn and n ^ l , and so the above convergence is valid

pointwise on S — So. In view of this we show that φv(s) is a singleton set {/(s)}

for s e S — So. Let s e S — So and/(s) any weak*-cluster point of the net (fπ(s))πeΠ.

Then </(5),x> = l im π </ π (s),x>=^(s) for xeX. Hence <g(s\ x}=g°x(s) for
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every xeX and every element g(s) of the weak*-closed convex hull of weak*-

cluster points of (fπ(s)). Therefore Theorem 2.1 implies that </(s), x>=#$(s)

for x e X and f(s) e φv(s). But this means that φv(s) can not contain two distinct

points. Next Theorem 3.3 states that for every selection/ of φv there is a μ-null

set Nn such that

(3.10) | | / ( 5 ) | | = ψ(s) = (d\v\ldμ)(s) f o r s ε S - N
p

On the other hand, if seS— So and /(s) an arbitrary weak*-cluster point of the

net (fπ(s), π e 77p), then we have

\<f(s), *>l = \g°M\ = «tnπ e Π p |</π(s), x>| ^ ||x||liminfπei7

Therefore, we get | |/(s)||^liminfπ ||/π(s)|| for seS-S0. Combining this with

(3.2) as well as (3.10) we obtain

limπ e / 7 p ||/π(s)|| = ||/(5)|| = φ(s) for seS- (So U Np).

Now the set Np = S0\J ftp is the desired μ-null set for (3.9). q. e. d.

REMARK. Given a lifting p for μ the i7p-generalized derivative φv may be

called a function of type p in the sense of Kupka; and conversely, every function

of type p in the sense of Kupka is regarded as a selection of φv. This means that

our notion of generlized derivative involves that of Kupka. On the other hand,

Theorem 3.3 states that every selection of a 77-generalized derivative φv is strongly

X-integrable in the sense of Kupka. It should be noted that a i7-generalized

derivative φ v is obtained without the lifting theorem and various properties of

φv can be investigated in a rather elementary way.

4. Characterization of the space V](μ9 X*)

Let X* be the dual of a Banach space X and (S, Σ, μ) a finite, complete and

nonnegative measure space. In this section we introduce a Lebesgue type space

of weak*-integrable functions that characterizes the space Vι

c(μ, X*) and then

establish a generalized Radon-Nikodym theorem for general vector measures.

We begin with the following.

DEFINITION 4.1. Given a function /e©(μ, X*), let Mf{ )\ Σ->[0, oo) be

the set function defined by (1.2). We denote by |Mj|(5) the total variation of

Mf( ); and we write |My|(5)= + oo if the total variation is infinite.

The functional \Mf\( ) defines an extended real-valued functional on the linear

space (S(μ, X*). L e t / g e ©(μ, X*). If \Mf\(S)<oo and g is weak*-equivalent

to / then \Mf\(S) <oo and \Mf\(S) = \Mg\(S). Moreover, \Mf\(S) = \Mg\(S)
iff / is weak*-equivalent to g. This fact leads us to the following definition.
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DEFINITION 4.2. The space seG(μ, X*) is defined to be the subspace of
(5(μ, X*) which consists of all elements / with |Λf/|(S)<oo. LG(μ, X*) is the
space of weak*-equivalence classes in S£G{μ, X*). We write / for the generic
element of LG(μ, X*). If X* and μ are fixed, we sometimes write ££G and LG for
<eG(μ, X*) and LG(μ9 X*), respectively.

Let /, g e (δ(μ, X*). If/ is weak*-equivalent to g and / e S^G, then # e «£?£.
Note that every pair/, # in <£G defines the same G-integral v(E) for E e l iff both
/and # belong to the same weak*-equivalence class feLG. Therefore, to every
/in LG and every EeΣ, there corresponds a unique G-integral v(£) in such a way
that v is the idefinite G-integral of every element / in /. Accordingly, v is said to
be the indefinite integral of/. Moreover, LG forms a linear space in a natural
way. We then set

(4.1) 11/11̂ 1 = 1^1(5) for fej and feUG.

In virtue of the remarks after Definition 4.1, it is seen that the functional || ||G>1

is well-defined as a real-valued functional on LG and gives a norm on LG. We
then discuss the relation of the GeΓfand integral to the Bochner integral. First
we need the following proposition.

PROPOSITION 4.3. Given an feSeG, let v(E)=(G)-\ fdμ for EeΣ and
J E

ψf the function defined for f through (3.6) and (3.7). Then we have

for EeΣ.

Consequently ve V*(μ9 X*) and φg = d\v\/dμ a.e. for every g ef.

PROOF. If EeΣ, then we have |<v(£),x>|^( \<f(s),xy\dμ£\\x\\[ ψ(s)dμ =

\\x\\ \v\(E) for xeX, where the last inequality follows from Musiat [14], Proposi-

tion 1. Hence \v\(E)^Mf(E)^{ ψf(s)dμ = \v\(E) for each EeΣ, so that we

have \v\(E) = \Mf\(E) = f φf(s)dμ for each EeΣ. q.e.d.
J E

Now let fe 3?\(μ, X*) and g e (£>(μ, X*). If g is weak*-equivalent to /,

then (G)-ί g(s)dμ = (B)Λ f{s)dμ and geSeG, and so fe&G and |M,|(S) =
r JE JE

\ ||/(s)||dμ=|l/Hi from the above proposition. This means that J ^ C J ^
and that Lι

B(μ, X*) is embedded isometrically and isomorphically in LG(μ, X*).
It is well-known as the Bochner theorem that/e ££\ iff /is strongly μ-measurable
and ||/( )ll is μ-integrable over S. However, it should be noted that ||/( )li
need not be μ-measurable even if /(•) is Pettis integrable. See Pettis [15],
Example 9.1. As will be seen in later sections, the generalized derivative of an
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arbitrary vector measure in F*(μ, X*) can be treated within the framework of the

space <£G. This means that <£G is in general much larger than the space £g\.

Theorem 3.5 and Proposition 4.3 together imply the following.

PROPOSITION 4.4. Any weak*-equivalence class fe LG contains at least one

element f such that | |/( )ll *5 ^-measurable.

PROPOSITION 4.5. The space LG is a Banach space under the norm || ||G>1.

PROOF. It has already been observed that LG is a normed space. Hence

it remains to prove that LG is complete. Let (/„) be a sequence in i f G such that

| M / m _ / n | ( S ) ^ 0 as m, n->oo and write vn(E) = (G)-\ fndμ for EeΣ. Then

\Mfm-fn\(S)=\\vm-vn\\1 = \vm-vn\(S)->0 as m, n->oo by Proposition 4.3. On

the other hand, F*(μ, X*) is a Banach space with norm || v|| x = |v|(5), so that there

exists veVKμ, X*) such that ||vΛ — v||i—>0 as m, n-»oo. We now observe that

there exists a weak*-integrable function / such that v(E)=(G)-\ fdμ for EeΣ

by Corollary 3.4. Then we have fe SeG since { |<x, f}\dμS \\x\\ \v\(E) for x 6 X
JE

and £ e Γ ; and thus |M / n _ / | (S)= | | v w — vl^-^0 as n ^ oo. q.e.d.

THEOREM 4.6. Lei Γ: LG{μ, X*)-+Vx

c(μ, X*) be defined by the relation Tf=

v for feLG(μ9 X*), where v is the indefinite G-integral off. Then T gives an

isometric isomorphism between LG(μ, X*) and FJ(μ, X*).

PROOF. In virtue of Proposition 4.3 it suffices to show that Tis onto. But

the proof is involved in that of Proposition 4.5. q. e. d.

Theorem 4.6 is rewritten in the following form:

THEOREM 4.7 (The generalized Radon-Nikodym theorem). Let v be an

X*-valued measure on Σ. Then v e F*(μ, X*) if and only if there exists a weak*-

integrable function f: S-+X* such that (i) there is an element JeLG with fef;

(ii) v is the indefinite GeVfand integral off; and (iii) we have |v|(£)=\ ||/(s)||dμ

for EeΣ.

5. Characterization of the dual spaces of L%(μ9 X)9 l^

In addition to the spaces J?G(μ, X*) and L^(μ, X*) other Lebesgue type spaces

can be defined: Let 1 < q < oo. The space &G(μ, X*) is the subspace of (5(μ, X*)

which consists of all elements / with \Mf\q(S)<co; and L&(μ, X*) denotes the

space of weak*-equivalence classes in &G(μ, X*). Let q = oo. The space &G(μ,

X*) is the subspace of (5(μ, X*) which consists of those elements / such that

| |/( )ll i s essentially bounded on 5; and Lg(μ, X*) is the space of weak*-equi-
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valence classes in Ĵ oCμ, X*). In this section we discuss the relationship between
the spaces Vq(μ, X*) and L£(μ, X*) and characterize the dual spaces of the
spaces LJ(μ, X). We first show the following result which extends Proposition
4.3.

PROPOSITION 5.1. Let lgp<oo. Given an /ejδfg, let v(£)=(G)-\ fdμ

for EeΣ and φ = d\v\/dμ. Then \v\p(E)P = \Mf\p(Ey = { φ(sydμ for EeΣ

Therefore, φg = φ μ-a.e. for every g e /

PROOF. Let 1 ̂ p<oo, fesep

G, xeX, and EeΣ. Then |<v(£), x>|^

\E \<f(s), x>\dμ^ \\x\\ J£ ψf(s)dμ^ \\x\\ \v\(E) by Proposition 4.3. Therefore |v(£)|

lMf{E)^ [ φf(s)^ Iv|(£) and so \v\p(Ey g \Mf\p(Ey ^ [ φ(Sydμ^ \v\p(Ey, where
JE JE /r \i/p

= |v|. Let φ = dλ/dμ; then it is easy to verify that |v|p(£) = ί\ φ(sydμ) for
every £e2\ We then demonstrate that \v\p(E) = \λ\p(E) for EeΣ. Since it
is obvious that |v|p^|A|p, we will show that |v|p^|A|p. Given an ε>0 there exists
a finite partition {Ek: k = l,...,n} with E = \Jl=1Ek and we have

(5.1) \λ\p(Ey - β/2

Moreover, for each fc^l, there exists a partition {£fcfI : ί = l,..., /J of Ek satisfying

(5.2) . \v\(Eky ^ (ΣS^

Combining (5.1) and (5.2), we have

\λ\p(E)P - ε < Σ ϊ - i (ΣS^

Hence we obtain |A|p(£)^|v|p(£) for each EeΣ. Consequently, \V\P(E)P^

\Mf\p(Ey^Eφf(sydμ = ̂ Eh(sydμ^\v\p(Ey for every EeΣ, and \V\P(E)P =

\Mf\p(Ey = { φf(s)Pdμ for every EeS. q. e. d.

PROPOSITION 5.2. Let 1 ̂  p < oo. Tften L£(μ, Z*) = {/ e L&μ, Z*): ||/(-) || e

LP(μ) and \Mf\p(Ey= f ||/(5)||^μ for EeΣ and some fef}.
J E

PROOF. Let F be the space of those elements/in L^(μ, X*) with the property

that ||/( )l|eL'(μ) and \Mf\(E)={ ||/(s)||dμ for EeΣ and some fef. We

shall show that Lg(μ, X*) = F. Let fe F and / an element of/ such that || /( ) || e

LP(μ) and |M/|(E) = ί \\f(s)\\dμ for EeΣ. Then for every xeX we have

|<x, y}\dμ^ \\x\\ J £ ||/(s)|Mμ^ ||x||μ(£)i/*(^ | |/(s) | |^μ) 1 / P for EeΣ. Hence
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MjiEϊ^μHEfl* [ Uίsψdμ)1" for EeΣ, so that Mf(Eyiμ(E)P-^[ \\f(sψdμ
J E J E

for every EeΣ. Therefore, we have

\Mf\p(Ey^{ h*dμ for EeΣ.
J E

Hence \Mf\p(S) <oo and so/eLg(μ, X*). This means that FczLG(μ, X*). To
prove the reverse inclusion, let fe LG(μ, X*). It is easy to see that J?G(μ, X*)
c: j^£(μ, X*) for p^ 1. Hence, if v is the indefinite Gel'fand integral of/ and/0

is any selection of φp

x (p being a lifting for μ), then Theorem 3.5 yields that ||/0( )|| e

L*(μ) and |v|(JE) = \ ||/0(s)||dμ for every EeΣ. Moreover, it is seen from the
JE

proof of Proposition 5.1 that ||/0( )ll e M r i and |v|p(£) = |M / o |p(£) =

Y^ q.e.d.

The following result gives a refinement of the representation theorem for the
dual spaces of L£(μ, X) due to Bochner and Taylor.

THEOREM 5.3. Let l g / x o o . Then L£(μ, X)* = LG(μ, X*), where ί/p +
l/q = l if p>l and q = co if p=l.

PROOF. Let l^p<co and l/p + l/q = l (or q = oo if p=l). In view of
Theorem 1.2, it is sufficient to show that Vq(μ9 X*) is isometrically isomorphic to
LG(μ, X*). First we consider the case p = 1 and let/e Lg(μ, X*). Then by virtue
of Propositions 5.1 and 5.2 one finds a n / o e / such that ||/0( )|| eL^μ) and

|v|(£) = |M/|(JE)=f \\fo(s)\\dμ9 where v is the indefinite Gel'fand integral of f0.
J E r

Also, we see from the proof of Proposition 4.3 that ||v(£)|| ̂ M / o ( £ ) ^ \ xl/fo(s)dμ
S\v\(E) for every EeΣ. Noting that suP f ; e I ||v(£)||/μ(E) = sup£eI |v|(£)/μ(£),
we have ||/||G,oo = sup£^M/o(£)/μ(£)=||v||oo. Next, let l<p<co, 1/p + l/q^l,
and JeLG(μ, X*). Then by Proposition 5.2 there exists an element foej such

that ||/o(s)||eL«(μ) and |v|β(£)« = |M / |(£)«=( ψf(s)«dμ for each EeΣ, where
J E ^

v denotes the indefinite Gel'fand integral of f0. Hence ||/||G>β = lv|β(S)= ||v\\q.
Consequently Lq(μ, X*) is isometrically embedded in Vq(μ, X*) for l<q^co.
To prove that Lq(μ, X*) is isometrically isomorphic to Vq(μ, X*), let
veVq(μ, X*). Since Vq(μ, X*) c= V\(μ9 X*) as mentioned before Lemma 1.3,
Theorem 3.5 yields that there exists an fe ©(μ, X*) such that ||/( )ll e L 1 ^ ) and
|v|(£)=\ \\f(s)\\dμ for each EeΣ; and by an argument similar to the proof of

JE r

Proposition 5.2 we have |v| (£)« = \ ||/(s)||qdμ for each EeΣ. Now let / be the
weak*-equivalence class in (5(μ, X*) containing /. Then fe Lg(μ, X*) and
ll/llG)4=|v|β(S)=||v||a. q.e.d.
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The next result is a counterpart of Theorem 5.3.

PROPOSITION 5.4. L^(μ, X*) is isometrically embedded in L£(μ, X*).

PROOF. Let fe L\μ, X*). Then, by Theorem 4.7, we can choose an element

fef such that ||/( )ll e L 1 ^ ) and | | / | | G 1 = ( \\f(s)\\dμ. Also the real-valued
Js

function </(•)> #(•)> is μ-integrable for every g e £?cβ(μ, X). We then define a

linear functional T over Jδff(μ, X) by Tg = { </, #>dμ for g e J£?£(μ, X). Then

we have \Tg\£ J s !</(*), 0(s)>|d/*^ J s H/(5)ΐ I l0(*)l l^ ll/lkillβΊL for each
g eL%(μ9 X), and so | |Γ| | ^ | |/ | |G,i To show the reverse inequality, let v be the

indefinite GeΓfand integral of/. Then we get |v|(S)= |I/IIG,I by Theorem 4.7.

Let g = ΣUiXkXεk>
 w h e r e 11**11̂ 1 (fe=l, 2,...) and Ei{]Ej = 0 (iΦj). Then

| | 0 | L ^ 1 and Σ?=i <v(£λ X|> = J s < Σ ϊ = i xkχEkJ>dμ=Tg^ \\T\\. Taking ap-

propriate suprema yields that |v |(S)^ | |T| | , which show that | |/ | |G > 1 ^ ||T\\. q.e. d.

6. Applications to Bochner and Pettis integrals

Let X be a Banach space that has no preduals and let v be an X-valued measure

belonging to FJ(μ, X). If v is the indefinite Bochner integral of an X-valued,

strongly μ-measurable function/on 5, we cal l/a Bochner derivative of v. Like-

wise, if v is the indefinite Pettis integral of an X-valued, weakly μ-measurable

function g on S, we call g a Pettis derivative of v. The aim of this section is to

discuss Bochner and Pettis derivatives of vector measures from the point of view

of our generalized derivatives. In this section we are concerned with the appli-

cations of generalized derivatives defined through liftings for μ to those typical

derivatives. Let p be any lifting for μ, Πp the family of all p(Σ+)-partitions of

S, and φv the ilp-generalized derivative as mentioned in Section 3.3. We shall

see that any Bochner derivative of v is regarded as a selection of φV9 while φv

never contains a Pettis derivative as its selection; and this phenomenon will be

discussed to some extent in the latter half of this section.

In what follows, we sometimes regard the i7p-generalized derivative φv as

an (X**-valued) single-valued function for convenience in notation, since φv(s)

is a singleton set for a.e. seS by Theorem 3.5.

LEMMA 6.1. Let ve Vl(μ, X), p a lifting for μ, and let φv be the up-gener-

alized derivative of v. Suppose that v(Σ) is separable and φv(s)eX μ-a.e. on S.

Then φv is Bochner integrable and gives a Bochner derivative ofv.

PROOF. Let Xo be the closed linear span of v^Γ). Then Xo is separable.

Now given a πeΠp let/π be defined by (3.1). T h e n / π ( s ) e Z 0 for seS and we

see in the same way as in the proof of Theorem 3.5 that there is a μ-null set So
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such that weak*-limπei7p/π(s) = 0v(s) for seS-So. But this means that φv(s) is

a weak limit in X of (/π(s)) since φv(s) e X, and so φv(s) belongs to the separable

closed subspace Xo for a.e. seS. From this it follows that φv is essentially

separably-valued. Moreover, it is clear that φv is weakly measurable. Hence

φv is strongly μ-measurable by the Pettis measurability theorem. On the other

hand, ||0v( )ll *s μ-integrable by Theorem 3.5. Therefore the Pettis theorem

implies that φv is Bochner integrable over S and the GeΓfand integral of φv turns

out to be the Bochner integral. In other words, φv gives a Bochner derivative

of v. q. e. d.

LEMMA 6.2. Let f be an X-valued, Bochner integrable function on S and

77 a family of Σ+-partitions of S satisfying (H). Then we have

(6.1) l i m π | | / π ( s ) - / ( s ) | | = 0 μ-a.e..

PROOF. Since / is essentially separably-valued, there exists a μ-null set No

such that/(S — No) is separable. Let {xn: n ^ l } be a dense subset of f(S — N0)

and put gn(s)=\\f(s)-xn\\ for seS and n ^ l . Then gneLι(μ) for all n ^ l

since fe &l{μ, X). Therefore condition (H) implies that for each n ̂  1 there is

a μ-null set Nn such that the convergence

(6.2) limπg»π(s) = g"(s)

holds for s e S - NH. Set N = \J £= t Nn. Then μ(N) = 0 and (6.2) holds for s e S -

JV and ng: 1. Now let ε > 0 and seS — N. First we observe that gn(s)= ||/(s) —

xn\\ <ε/2 for some n^ 1. Hence, if πe77 and seE for some Eeπ then we have

(\B 11/(0 -f(s)\\μ(dt))lμ(E) ^ Q £ | |/(0 - xn\\μ(di))lμ{E)

+ (^E gn(s)μ(dt)yμ(E) < g»(s) + ε/2; and so

UM -/(5)|| ^ Σ

< gn

π(s) + ε/2

for every π e 77. From this it follows that

limsupπ ||/π(s) -/( s ) | | ^ lim,flf»(s) + ε/2

= gfw(s) + ε/2 < ε.

Since ε is arbitrary, we obtain the convergence (6.1) for s e S—N. q. e. d.

We now state the main theorem of this section.

THEOREM 6.3. Let ve FJ(μ, X), p a lifting for μ, and let φv be the Πp-
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generalized derivative ofv. Then the following are equivalent:

( i ) v is an indefinite Bochner integral;

(ii) φv(s)czX for μ-a.e. seS;

(iii) there exists a strongly μ-measurable function f: S-*X such that f is

X*-equivalent to φv viewed as a single-valued function;

(iv) every element EeΣ+ has a subset F such that FeΣ+ and there exists

a weakly compact convex subset KF of X** with the property that for each

x*eX*9 <0v(s), x * > ^ sup {<***, x*>: x*eKF} μ-a.e. on F.

PROOF. First assume that (i) holds and let / be a Bochner derivative of v.

Since Πp satisfies condition (H) as mentioned in Section 3.3, we infer from Lemma

6.2 that /(s)eφ v(s) for a.e. seS. This means that (ii) is satisfied. To prove

that (ii) implies (i), it suffices to show with the aid of Lemma 6.1 that v(Σ) is

relatively norm-compact. To this end, let {v(En): n = l, 2,...}czv(Σ), where we

may suppose that En e p(Σ+) for n ̂  1 without loss of generality. We shall show

that {v(En): n = l, 2,...} has a convergent subsequence. Let S0 = \J™=iEn9 Σo

the σ-field on So generated by {En: n = l, 2,...}; μo=μ\Σθ9 the restriction of μ

to Σo; vo = v I Σo, the restriction of v t o l 0 ; and let ρ0 =ρ \ Σo, the restriction of p

on Σo. Then ρ0 is a lifting for μo; ρo(Σ^) = p(Σ^)cip(Σ+); X0 = sp[v(Σ0)'] is a

separable Banach space; and v0 e F*(μ0, Xo). Therefore the /7po-generalized

derivative φVo of v0 is defined and φv(s)czφVo(s) μo-a.e. on So. Therefore φVo(s)aX

μo-a.e. on So by (ii). Since vo(Σo) is separable, we infer from Lemma 6.1 that there

exists a Bochner integrable function/ 0: S0-*X0 such that vo(E) = (B) — \ fodμo

JE

for every E e Γo. Since the range of an indefinite Bochner integral is relatively

norm-compact, so is vo(Γo). This vo(Γo) contains the original sequence {v(En):

n = l, 2,...}, which therefore has a convergent subsequence. Thus (i) is obtained.

It is easy to show with the aid of Lemma 6.2 that (i) implies (iii). Suppose then

that (iii) holds. Then the function / is a Pettis derivative of v that is strongly

μ-measurable. Therefore it is proved in the same way as in [3], Theorem IΠ.2.6

on page 71 that/becomes a Bochner derivative of v. This means that (i) follows

from (iii). In order to prove the equivalence between (iii) and (iv), we recall a

result due to Uhl, Jr. [20]. If (iii) holds then φv viewed as single-valued function

is Z*-equivalent to /, and so Theorem 1 in [20] implies that condition (iv) holds

for φv. Conversely, assume (iv) is satisfied. Then Theorem 1 of [20] again yields

that φv is Z*-equivalent to some strongly μ-measurable function g: S-+X*.

Hence v becomes the indefinite Bochner integral of g9 and it turns out that g(s) e

X for μ-a.e. seS. q.e.d.

COROLLARY 6.4. Let v e FJ(μ, X), p a lifting for μ, and let φv be the up-

generalized derivative ofv. If φv(s) intersects X for μ-a.e. seS, then φv gives a

Bochner derivative ofv and \imπeΠ pfn(s) = φy(s) in norm for μ-a.e. seS.
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PROOF. Let φv(s) e X for μ-a.e. seS. Then φv becomes a Bochner integrable

derivative of v by Theorem 6.3. Hence it follows from Lemma 6.2 that limπ/π(s) =

φv(s) holds in norm for μ-a.e. seS. q.e.d.

The above results suggest several points in the theory of Pettis integration:

Firstly the equivalence between conditions (i) and (ii) mentioned in Theorem 6.3

yields the following.

COROLLARY 6.5. Let ve V\{μ, X) and φv the Πp-generalized derivative of

v. If v has a Pettis derivative f: S-+X that is not Bochner integrable on each

EeΣ+, then f(s)<£φ£s) for a.e. seS.

The above proposition states that a Pettis derivative is not necessarily deter-

mined by the so-called average range of its indefinite Pettis integral. In other

words, a proper Pettis derivative is inaccessible in the sense of Kupka [13]; and

it seems to the authors that this fact makes it difficult to give any useful characteri-

zation of Pettis integrable functions. Extremely speaking, the definition of

Pettis integral might be of use for the well-shaped integral representation of vector

measures, rather than the differentiation theory for vector measures. Never-

theless, it is interesting to investigate as to when a selection of X**-valued

derivative φv is weak*-equivalent to some X-valued weakly measurable function.

Recently Geitz [7] has shown that if (S, Σ, μ) is a perfect measure space, then

a norm-bounded weakly integrable function/: S^X is Pettis integrable iff there

exists a sequence (/„) of X-valued simple functions on S such that

(6.3) </„, x*> > </, x*> μ-a.e. for each x* e X*,

where the null set (hereafter called the exceptional set) on which the convergence

(6.3) does not hold may vary with x*. Such sequential approximation property

for vector-valued functions is closely related to the weak Randon-Nikodym pro-

perty for Banach spaces. See Hashimoto [9], Section 4.

On the other hand, if the exceptional set for (6.3) is independent of x * e l *

then the function / is necessarily Bochner integrable over S. Combining this

fact with Theorem 6.3 and Corollary 6.5, we obtain the following result which

gives an aspect of the above results:

COROLLARY 6.6. Let f: S-^X be a Pettis integrable function, v: Σ-+X

the indefinite Pettis integral off, and let p be a lifting for μ. Let fπ, πeΠp,

be X-valued simple functions defined by (3.1). If there is a countable sequence

(πn) in Tip such that fn=fπn, n ^ l , satisfy (6.3) and the exceptional set for (6.3)

is independent of x * e l * , then f is Bochner integrable over S and φv(s) =

{/(s)} for μ-a.e. seS.

REMARKS. A more precise aspect of the above-mentioned conspicuous phen-
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omena (all of which show the contrast between the Bochner and Pettis integrals)
may be obtained by investigating the generalized derivatives of dual-Banach-
space-valued measures.

Let X be the dual of another Banach space Y, i.e. X= Y*, and let v e FJ(μ, X).
Then given a lifting p for μ two sorts of generalized derivatives are defined for v.
The first one is the X-valued, 77p-derivative φv defined by (3.4), i.e., φy(s) =
f^πeπ cδσ(X'Y) {fn'(s)' π ' ^ π} and the other one is the X**-valued derivative,
say <j>v9 of v viewed as the X**-valued measure, namely:

λ W = Λ , e D p c o ' ^ ϊ ) {/, ,( ί ) :π 'έπ} > for sεS.

Apparently, φv coincides on Y with φv μ-a.e. on S. Moreover, if φv(s)
intersects X for a.e. seS then φv is regarded as a Bochner derivative of v by
Corollary 6.4 and therefore coincides with φv. However φv is in general com-
pletely distinct from φv even if φv is viewed as an X**-valued function and v is
the indefinite Pettis integral of a weakly measurable function/: S-+X. In fact,
suppose that v is the indefinite Pettis integral of a function/: S-+X that is not
Bochner integrable on each EeΣ+. Then/(s)<£ φv(s) for μ-a.e. seS by Corollary
6.5. But, as mentioned in the proof of Lemma 6.1, limπe/7p/π(s) exists for μ-a.e.
seS in the sense of the weak*-topology of X and φv(s) = {/(s)} for μ-a.e. seS.
Thus φv(s) Π φv(s) = 0 for μ-a.e. seS.

Finally, as a simple consequence of the above observation, we get a specific
result which contrasts with Corollary 6.5.

PROPOSITION 6.7. Let veFJ(μ, X) and p a lifting for μ. Suppose that
X(=γ*) has the weak Radon-Nikodym property. Then the Π^derivative φv

gives a Pettis derivative ofv.

Added in Proof: After this paper was submitted for publication, the
authors were called their attention to the monograph of M. Sion entitled "A
theory of semigroup-valued measures" (Lect. Notes in Math., Springer-Verlag,
355 (1973)), in which a general theory of differentiation for semigroup-valued
measures is developed by using the concept of Vitali system. He introduced a
notion of "outer derivative" for general vector measures through a differentia-
tion basis and gave fundamental properties of such derivatives. Although his
approach is different from ours, his results are closely related to the present
work in some respects. For instance it is seen from Corollary 3.4 that an outer
derivative in the sense of Sion of ve V\{μ, X*) is weak*-equivalent to a 77-
generalized derivative of v if the Vitali system and the family Π of partitions
are defined through a lifting p. For details concerning the relations of our
results to the work of Sion, we shall publish them elsewhere.
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