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1. Introduction

We are concerned with difference approximations to the initial value problem
for the one dimensional porous media equation described by

(1.1 v, = (v"),,, te(0, +00), xeR? (m>1)
with an initial value
(1.2) v(0, x) = v%(x), xeR!,

where v represents the density of an ideal gas flowing in a homogeneous porous
medium which occupies all of R!. (1.1) is obtained by combining the equation
of state, conservation of mass and Darcy’s law ([8]). Physically, v™! is the
pressure of the gas and (v™~1), is the velocity. From the reason that the diffusion
rate of (1.1), mv™~1 vanishes at points where v=0 because of m>1, (1.1) exhibits
an interesting phenomenon of the finite speed of propagation of disturbances.
In other words, when v°(x) has compact support, a solution (¢, x) of (1.1), (1.2)
has also compact support for any t>0. As an example to illustrate this property,
we may show an explicit solution of (1.1) due to Barenblatt and Pattle ([3],
[10]). This is of the form

,L{l {%)’}”(""” for |x| < A@),t20,

(1.3) o, x) =¢ )

0 for |x| = A@),t=0,
where
(1.4) 2t = {—ZL”’%”EE—”(HU}”“”“’ for ¢=0

(see Figs. 1 and 2).

We note here that the solution (1.3) is not a classical solution for m=2, in
the sense that the trasition from the region of medium which contains gas (v>0)
to the one which does not (v=0) is not smooth. The boundary, (1.4) in (1.3),
is called the interface.
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Fig. 1. Barenblatt-Pattle’s solution (1.3) when m=2.
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Fig. 2. Interface curves | x|=2(z) of Barenblatt-Pattle’s solution
(1.4) when m=2.

From analytical point of views, the existence and uniqueness of weak solutions
of the problem (1.1), (1.2) were studied by many authors (for instance, [1], [7],
[9]). The determination of interface curves is also an important problem in
porous medium flow. When v%(x)>0 on (a,, a,) and v°(x)=0 on R\(a,, a,),
the curves A,(t) (j=1, 2) are governed by

W8 LA = = (nfm—1D)limyy,, LX) (=1,2),
(1.6) A0 =a; (j=12).
It is proved in [6] that there exist t¥ € [0, + c0)(j=1, 2) such that

=a; for te[0, t}],

2O
is strictly monotone for te(tf, +0).
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The time ¢} is called the waiting time when an initially stationary interface begins
to move. The determination of the waiting time is interesting from both physical
and mathematical points of view. Aronson, Caffarelli and Kamin [2] estimated
the time ¢} for rather general initial functions. Suppose that the initial function
v9(x) is of the form

m (1—60)sin? x + Osin* x for xe(-m=,0),

(vO)"t =
-1 0 for xe&(—m,0),

where 0 e [0, 1]. 1f6€[0, 1/4], then tf =15 =1,/(1— 9) thh t,=1/2(m+1). On
the other hand; if 06(1/4 1), then ¢t,/B<tf= 1t <t (1= ‘H)J‘Where P is obtained
by solving the nonlinear equations By?=1°(y) and 28y=(v°(y)). -Thus, in the
case 0 €(1/4, 1), t} can not be calculated.  This motivates us to develop numerical
methods to determine interface curves which enable us-to compute numerically
the waiting time.

Meanwhile, numerical methods for (1.1), (1.2) have been investigated
([4], [5]). In particular, the difference scheme by Graveleau and Jamet [5]
(Graveleau-Jamet scheme) absorbs much interest, though they are not concerned
with numerical interfaces. We let briefly mention their method. It approximates
the following problem instead of (1.1), (1.2) by setting u=v""1:

(1.7) Uy = M+ ()
(1.8) u(0, %) = u(x) = ()",

The difference scheme is constructed based on splitting of the operator Au=
muu,.+ a(u,)? with a=m/(m—1) into two parts

(1.9) Pu = muu,,,
(1.10) Hu = a(u,)?.

In the neighborhood of interface curves, one may expect that the hyperbolic
term (1.10) in (1.7) is dominant rather than the parabolic term (1.9), because u
is sufficiently small there. However, as Graveleau-Jamet scheme includes an
artificial viscosity in approximating (1.10), it does not give good approximations
in realizing interface curves (Figs. 3 and 4).

In this paper, in order to construct a difference scheme which approximates
not only a solution but also interfaces, we present a scheme different from
Graveleau-Jamet scheme in approximating the hyperbolic equation

(1.11) u, = Hu.

Since the equation (1.11) reduces to the Burgers equation by differentiating it with
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Fig. 3. Numerical solution of Graveleau-Jamet scheme with
h=0.14309 when m=2.
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Fig. 4. Numerical interface curves when m=2.

respect to x, we apply the Rankine-Hugoniot jump condition so as to determine
interface curves. As will be shown, this method excludes numerical viscosities so

that numerical interface curves are realizable.

In Sections 3-5, we obtain stability and convergence of our scheme, following
the argument by Graveleau and Jamet (Theorems 4.1 and 7.2 in [5]). Unfor-
tunately, we have not been able to prove the convergence of numerical interface
curves. Finally it is shown in Section 6 that some numerical solutions give good

profiles to the exact ones as well as interface curves (Figs. 4 and 5).

Acknowledgement. The authors are grateful for the discussion with T.

Nagai in the development of this work.
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Fig. 5. Numerical solution of our scheme with #=0.125 when m=2.

2. Difference schemes

Let h be a positive number and {t,} be an increasing sequence. This sequence
will be determined later. We denote by u?(=0) the difference approximation for
the solution of (1.7), (1.8) at (¢, x)=(t,, ih), where n(=0) and i are integers. For
u”, let I, and r, be points such that

ul' =0 for all ihe R'\(l,, r,)

and u} =0, u} %0 with L,=[l,/h]+1, R,=—{[—r,/h]+1}, where [x] means
the greatest integer not exceeding x. We may define a numerical left (resp.
right) interface curve by piecewise-linearly interpolating points (t,, 1) (n=0)
(resp. (t,, ). We introduce a piecewise linear function u}(x) constructed by
(ul(ih+0h) = (1—0u} + Our,,

forall 6e€[0,1] and ie{L,,...,R,—1},

2.1) ¢ uj(l,+6(L,h—1)) = Ou}, forall 6€e[0, 1],
ul(R,h+6(r,— R,h) = (1 —6)u, for all 6e[0, 1],
L ul(x) =0 for all xe R\(l,, r,).

Here we construct a difference approximation for (1.7) with the initial value
at t=t,, u(t,, x)=uj(x). First we determine the sequence {t,} as follows: Let
us consider the equation (1.7) in the absence of the parabolic term Pu, so that,
putting w=u_, we obtain

22 we=a(w?),  (>1,),

which is called the Burgers equation. The initial value at t=t, is
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(2.3) W(ty, X) = w'(x) = (Uf(x))

It is already known that for small ¢t —t,(>0) the solution w(t, x) of (2.2) consists
of constant states 0, w"(l,+0), w*(L,h+0),..., w,(R,h +0), 0, which are separated
by shock waves and are connected by rarefaction waves. More precisely, if
wi(ih—0)<w"(ih +0) for some i€ {L,,..., R,}, w has a shock on the line

(2.4) y{t) = ih — a(w"(ih—0) + w(ih+0))(t—1,).

This is well known as the Rankine-Hugoniot jump copdition. If wr(jh—0)>
wn(jh+0) for some je {L,,..., R,}, w has a rarefaction wave which connects two
states w*(jh—0) and w"(jh+0) on the wedge determined by two characteristics

(2.5)  zj)(H) = jh — 2aw"(jh—0)(t—1t,) and-z;,(t) = jh — 2aw"(jh+0)(t—t,).
It is clear that w(t, x) has shocks on two lines
2.6)  y, (=1, — aw'(l,+0)(t—1,) and y, () = r, — aw"(r,—0)(t—1,).

Under the above consideration we take the variable time step k,,, as the
largest number of k satisfying the following two conditions:

i) The lines y(1), z;1(?), z;2(¢), y,,(¢) and y, (t) do not intersect each other on
(t,, t,+k) and

|yi(tn+k) - lhl é h9 Izjs(tn+k) —Jhl § h’ (S = 1, 2)9

2.7)
'yl,.(tn"_k) - Inl é h9 Iyr,.(tn"_k) - nI :.—-<_ h,

ii) k</h,
which indicates that k,,, tends to zero as h—0.
Along this way, we define the sequence {t,} by

(28) tn+1 = tn + kn+1 (n g 0):

and put T, =1lim, t,.

Thus, integrating the solution w(t, x) with respect to x, we obtain the dif-
ference approximation to the solution of (1.11).

We next construct-the difference scheme for the nonlinear parabolic equation
u,= Pu by modifying Graveleau-Jamet scheme in the neighborhood of interface
curves. Let u,,, be some positive integer and &, , 1=kui1/ttn+1 (see (3.9)).

Suppose u} are known for all i € Z, where Z denotes the set of integers.

Step 1: Compute

ln+1 = yl,.(tn+1)’ i1 = yr,.(tn+1)’

2.9) in
uiti0 = S W(tys (> X)dx forall i€e{L,i15.--s Rus1}>
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where L,,;=[l,+1/h]+1 and R,, ;= —{[—r,+1/h]+1}. These are computed
by numerically solving u,=Hu.

Step 2: Compute u,,, intermediate functions u**:"(1<r=<p,,,) by the
relations

(uprtrtt— by [k o= (Puur*tr), (O S 7 < pyyg — 1)
forall ie{L,,,+1,..., R,.;—1},

(2.10)

up or = w0 uily = ukl® (LS r S paw),

upthr =0 (=7 = ppey) forall i€ Z\{L,4y5--s Rus1}s
where

(Pyu*tr); = muf*br(uiilr —2ul*tbr +uft ) [ 12,
Step 3: Put

(2.11) ultl = ypthsns forall ieZ.

Thus, it turns out that u}*! can be computed by u% for all ie Z.

3.- Stability

. By the difference approximations u?*L7(0<r=<u,,,) computed in Steps 1
and 2, let us introduce piecewise linear functions u7*1:*(x) defined by the similar
way to (2.1), replacing I, r, and u} by I, {, 1,4+ and u3*L", respectively.

To show the stability of the scheme consisting of (2.9)-(2.11) (Steps 1-3),
we impose Condition A on the initial value and then show two lemmas.

CoNDITION A. 1) u%(x)=(1°(x))""! is a continuous function satisfying
u%(x) >0 on (a4, a,),

(3.1) v
u%(x) =0 on R'\(ay, ay);
ii) There exist constants C,(j=0, 1, 2, 3) such that
“uolloo =< COa "uolloo = Cl;

(3.2)
V(®) £ G V(u3) = G,

where || - ||, = - [lL=r1y and V(f) denotes the total variation of f(x).
We first take
to=0, ly=ay, ro=a, and u® = u(ih).

LemMMA 3.1. Assume Condition A. Then it holds that for all h>0 and
n=0, '
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(3.3) 0 <up™tox) = Co on (Lsys Tasd) s
(3.4 upttox) =0 on R\(Lysy, Tnsy) s
(3.5 il = Cys

(3.6) 3"l = Co;

(3.7 V((uptt0),) = Cs;

(3.3 I(up* 0 —up)/kysqlly < aCyCo,
where || - | =1 - | L1cro)-

LeMMA 3.2. Under Condition A, let h>0 and k, ., >0 satisfy
3.9 2mCo(k,.1/h) <1 forall n=0.

Then ultt"*(x) (n=20; 0=<r=pu,,,—1) satisfy the estimates (3.3)<(3.7) in which
ul*1.9 gre replaced by u}*1:"*! and

(3.10) IQugttrtt — uprtn)fky, Il S mCoCs forall nz0.

The proofs of Lemmas 3.1 and 3.2 will be shown in Section 5.
The stability of the scheme (2.9)—(2.11) easily follows from these lemmas.

THEOREM 3.1. Assume Condition A, and let h and k,,, (n=0) satisfy (3.9).
Then u}(x) (n=0) satisfy the estimates (3.3)~(3.7) in which u}*1:° are replaced
by u} and

(3.11) @ptt — uB)/ky 1)y £ mCoCs + aC,C, forall nz=0.
Moreover,

(3.12) lim, o, 1l,= —©0 and lim, ,r,= +o0,

and

(3.13) T, = + 0.

Proor. The estimates (3.3)-(3.7) with u}*1.9=y? follows from Lemmas
3.1 and 3.2. By (3.8) and (3.10), we have
i+t — up)/kpsills S (U ptns 1)2',‘26'-1'|(“2+1"H"”Z“")/Enﬂlh
+ i*t® — up)/kys1lly S mCoCs + aCyC,,

which yields (3.11).
We prove (3.12). We put

Iy =lim,,q 1, Foo = lim, e #pe
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Since {I,} (resp. {r,}) is a strictly monotone decreasing (resp. increasing) se-
quence, it suffices to show that the following three cases do not occur:

Case(a) l,>—o and r,<+o0;

Case(b) l,>—0o0 and r,=+o0;

Case(c) l,=-—o0 and r, <+ 0.

In Case (a) there exists an integer N such that

(3.14) (Ly—Dh=1,<1, < Lyh

and

(3.15) (Ry+Dh =zr, >r,> Ryh forall n= N,
which mean

(3.16) L,=Ly and R,=Ry forall n=N.

Taking the properties (3.14)-(3.16) into consideration, we find from (2.9)-(2.11)
that

3.17)  up,=ul, and u}, = uf, for all n = N (see (5.1)~(5.5)).
From the determination of k, 4, it follows that
(3.18) kyyo1 = kX forall n=0,
where
k¥ = min {(L,h—1,)/(4aCy), (r,— R,h)/(4aCy), \/R},
and that by (3.16)
3.19) k¥ = k% forall n=N.
Then, by using (2.6), (2.9) and (3.17)—(3.19), we obtain
(320) lyyy — b= — aful (Lh— 1)} knsy = — a(ul[WKE <O,
(3.21) ru4q — 1y = a{up, [(r,— R}k, = a(uf,/h)k¥ >0 forall n= N,

which contradict the fact that I,,,—1, and r,,; —r, tend to zero as n—oo.
In Case (b), let N be an integer satisfying (3.14). From the definition of r,
we may have

0<7y41— 1S h/2,
which means that there exists a subsequence {r, } of {r,} such that
|rn, — R, | > h/2  forall v.
Putting
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k% = min {(Lyh—1y)/(4aC,), h/(8aC,), \/h},
we have
ky, 1 2 k¥ forall n, = N.
Hence it follows
(3.22) byyt1 — L, £ —a(ui /Wk% <0  forall n, 2N,

which is a contradiction. Similarly we can show that Case (c) also does not
occur. Thus (3.12) is shown. Finally we show (3.13). By (2.6) and (2.9) we
have

lo—bliyy=2ko(i=liy) £aCy Yo kiyy = aC T4y,

which leads to (3.13) by (3.12). Thus Theorem 3.1 is proved.

4, Convergence

In this section we show the convergence of difference approximations u”*!
to the exact solution u(t, x). We first introduce definitions of weak solutions of
the problems (1.1), (1.2) and (1.7), (1.8).

DeFINITION 1. A function o(x, £)=0 defined on # ={(t, x)e (0, ) x R'}
is a weak solution of the problem (1.1), (1.2) if v € C°(s#) n L2(s#), (™), € L*(#),
v(0, x)=0v%x) and S

4.1) gv¢>,dxdt - g(v"‘)xqﬁxdxdt forall ¢ e D(#).

DerFINITION 2. A function u(t, x)=0 defined on & is a weak solution of
the problem (1.7), (1.8) if-'u € C°(s#) N L=(+#), u, € L*(s#), u(0, x)=u"(x) and

4.2) Suqb,dxdt = g {muu.¢p, + (m—a)(u,)?¢}dxdt forall ¢e2(#).

To state convergence theorems, we extend the region of definition of the
difference approximations u” computed by (2.9)-(2.11) to the region {(z, x)e
[0, T,,)x R'} in a way that

uy(t, x) = ul(x) forall te[t,, t,,) and n = 0.
Then we have

THEOREM 4.1. Assume Condition A, and-let {h} be the sequence which tends
to zero, and assume that the stability condition (3.9) holds for each h and k,,,
(n=0). Then there exist a subsequence {h’} of {h} and a function U with the
following properties.
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i) UeC%s#)nL*(H#), U,eL™(#);
i) U0, x) =u%x)  forall xeR!;
iii) As h'-0,
4.3) lup — Ull=@ — 0,
4.4) IWp)s = Uslloy—0 (1 = p < +),

where G is any bounded subdomain of 5.
iv) U is a weak solution of the problem (1.7), (1.8).

ProoF. By following Graveleau and Jamet (Theorem 6.1 in [5]), the prop-
erties i), ii) and iii) can be proved. We only note here that the estimates obtained
in Theorem 3.1 play an important role in proving these properties.

We now show the property iv). For this end, it suffices to prove that U
satisfies the integral relation (4.2). In the following, let 4 take the value belonging
to the extracted subsequence. From (2.9)-(2.11) we have

(' —ul) [kpiy = (1 Byyr) Thrgt™t (uprtrtt —gp+n) [,
+ (Ut —uf) [ Kysy.

Let ¢ € 2(#). MyultiplyiAng both sides by hk,,,¢? and summing for all ie Z
and n=0, we have by summation by parts

(4-5) - Zn,ihkn+1u'i'+1(¢?+1 —¢'i')/kn+1 = A, + B,

with ¢? = ¢(t,, ih), where A4, and B, are represented by

(4.6) Ay = i bk @71 g AT ng ™t (e Hr = ug o) [y}
and

(47) Bh = Zn,ihkn+1¢'il(u?+l’o_u?)/krﬁl,

respectively. In order to show that U satisfies the integral relation (4.2), we
prepare the following Lemmas 4.1-4.4, and then obtain the theorem. We first
define @}(x) by

@(ih+6h) = (1 —0)u? + Ou?r,, forall ieZand 0[O0, 1),
and then define i,(t, x) by
ayt, x) = ap(x)  forall te[t,t,+,)and n = 0.
LeEmMA 4.1. It holds that

(4.8) ), — upllp=ery— 0 as h— 0,



284 Kenji ToMoeDA and Masayasu MIMURA

(49) |0k @1 = @Dfkyss — | Dubidxdt) — 0 as h—s0,
(4.10) Sii,,d),dxdt — g Uddxdt as h—s 0.

LeEMMA 4.2. For arbitrary integers y, (n=1) satisfying 05y,<u, (n21),
let uY)(t, x) be the function defined by

U (ty+ 0k, 4 g, X) = uptt?n1(x)

for all 8e€[0, 1) and n=0, where y=(9;, V25.--s Yps---). Then
(4.11) max, |u{ — Ull=g—0 as h—>0,
(4.12) max, ), — Ulllpy—0 as h—0 (1 £ p < +0),
where G is any bounded subdomain of .

LeEMMA 4.3. Let
@13) Gy = = S by (U prs) gt [TRezi 22, {mugr(Gug1or)(57)

+ m(oul*tt )21,

[muﬁ.""”(uﬁ.”("’)xqu

Fn+t

(4.14) Dy = — 3, (1/ppsy) Zbmgr? S:'S

In+y
+ m{(uP™),}2¢1dxadt,
where ‘
6f:' = (f?+l —f:')/h and p(r) = (Prl’ Dr2s--+» prm'")

with

[ ro if rsm,

Prn = .
Mo B r>

Then it follows that

(4.15) |4, — Cyl —0 as h—0,

(4.16) |Ch — Dyl — 0 as h—0,

“4.17) D,— — S {mUU,¢, + m(U,)2p}dxdt as h— 0.
LEMMA 4.4. Let

(4.18) E, = X, hk, 281! a(ou) ey,

and

(4.19) F,=%, S, S, a((wy),)ddxdt.

n
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Then

(4.20) IB, — E,| — 0 as h—s0,
4.21) |E, — F,| — 0 as h—0,
(4.22) F,— S a(U 2¢dxdt as h—s 0.

Following the argument by Graveleau and Jamet (see the proof of Theorem
7.2 in [5]), we obtain

THEOREM 4.2. Assume Condition A. Let {h} be the sequence which tends
to zero, and assume that the stability condition (3.9) holds for each h and k., ,
(n=0). Then (u,)/™ 1V converges uniformly in any bounded subdomain of
S to the unique weak solution v of (1.1)~(1.2).

5. Proofs of Lemmas

5.1. Proof of Lemma 3.1

In the initial value problem (2.2), (2.3) it can be shown by the conservation

-]
law that S w(t, x)dx is independent of ¢. Using this fact we can write u}*1.0
=]

as follows:

Case (i) When either y(k,;,)<ih or z;;(k,,{)=<zi2(k,+,)<ih holds for
some i€ {L,,..., R,—1},

(5.1) uptto = u} + a(éuy)’kyy y;

Case (ii) When either y(k,,;)=ih or ih<z;(k,,{)=z;5(k,+,) holds for
some ie{L,+1,...,R,},

(52) u?+1’0 = u? + a(éu;‘—l)zkn+ls

Case (iii) When z;,(k, ) <ih<z;,(k,, ) holds for some i € {L,,..., R,},

(5.3) upth0 = uy;
Case (iv) At the points (¢,., L,+1h) and (¢, 1, R+ 1h)
u{:ho lf Ln+1 = Lm
(5.9 uptl:0 =
(Ln+ 1h_ln+ 1)5“?" lf Ln+1 = Ln -1,

where éu}, =u? [(L,h—1,), and

+1,0 i =
Uk, if Rye1 =R,
unt1,0 =

R

(5.5 L
(Rys th—r1y41)0uk, if Rye1=R,+1,



286 Kenji ToMOEDA and Masayasu MIMURA

where du} = —u% [(r,—R,h). Now let us show (3.3). From (5.1) and (5.2) we
have :

O<ul Sultt0sul + héul=up,, < Cy (Case (1)),

O<ufsup*t®=ul + (h+adul k,, )oul-y Sul, = Co (Case (ii))

Here we used the inequality ouy =0 (resp. duy-; £0) in Case (i) (resp. Case (ii)).

In Case (iii) it is obvious that (3.3) holds. Since du} >0, du}, <O, L, h—
lyy;2L,h—1, and R, h—r,,=R,h—r,, (3.3) also holds in Case (iv). Hence
(3.3) can be proved. Next (3.4) can be shown by the following properties:

(5'6) W(t"+1, x) =0 for xERl\(ln+19 rn+l)’

(5.7) S Wty 1, X)dx = S W(t,, X)dx = 0,
In+1 In
where w(, x) is the solution of the initial value problem (2.2), (2.3). (5.7) is given
by the conservation law.
Let us show (3.5). It follows from (2.9) that

: (i+1)h B .
58)  durto = (" ity WA (€ (L Res — 1),

Ln+1h

(59) ) 5”?:4-11’0 = u'li::i'xo/(Ln+1h—1n+1) = Sl W(t,,+1, x)dx/(Ln+1h—In+1)

n+1
and

(5'10) 5”?(-:1-*,10 = - u;'{+1’0/(rn+l—;Rn+1h)

n+1

- S i W(t,,+1, x)dx/(r1|+1_R»1+1h)'

Rn+1

Then we have
Iau'i'+1’ol’ l5u;':+1;°|, Iéuﬁthol é Cl }(i=Ln+1,"-’ Rn+1_1)’

because |[W(t,r1s Mo S IW(t,, )l =C,. Hence (3.5) is proved. Since the
entropy condition yields the property

“W(tn-i—l’ ')"1 é "W(tn’ ')"1@
it follows
1@ 0 lly = (Lpsrh—Lps ) |0upr 0 + A|oug’ L0

+ oo AOUR L2 |+ 17y — Rps il |0ug 0

é g '?H 'w(tn-kl’ x)TIdx é ”w(tm “‘)"1 é C25 »

inat
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which leads to (3.6). Since w(t,, x) is piecewise constant with respect to x, the
solution w(t, x)(¢t,<t<t,,,) consists of constant states 0, w(t,, I,+0), w(t,,

L,h+0),...,w(t,, R,h+0), 0, which are separated by shock waves and are con-
nected by rarefaction waves. - Hence

V(w(tn+ 1 )) § V(w(tm ')) é C3:
which implies (3.7).
Finally we show (3.8).  For this end it suffices to_prove that (3.8) holds in
the following cases: ’

Case (a) Lty =L,—1 and R,.;=R,+1;
Case(b) L,,;=L,—1 and R,,,=R,;
Case (c) L,.,=1L, and R,,, =R,+1;
Case (d) L,.,=L, and R,.; =R,

We now show (3.8) in Case (a). For simplicity we write u"*!-0 as y"*! and
let

(5.11) upt = {1 = (= Lys {W)/BYuE L, + {(l— Ly (D[R},
(5.12) uptt = {(Rys th=ry)/hjuist + {1 — (Rys1h—ry)/h}ugl,.

Then it holds that

(5.13) N1Gup*t —up)/ kpeslly = Ll | (Lovsh—lnss)
+ (ufil 1wl ) — Lyssh)
+ (N + i —ul D(Lah—1,)
+ XRr) (™ —uf| +uld! —ulii DA
+ (lugl! —ug, | +|u; D (ry— Ry A)
+ (M + ki) D(Rusth— 1)
+ gt N (rr1 = Ros1)]/ (2K p11)
= [lufil | (Lyh—1ysy) + [ult (L= Lys 1 h)
+ fugtt —up | (L,h—1,)
+ 2R (Juit —uf| + ulf! —ul,Dh
+ luki! — uk,| (ra—Ryh)
+ [k R+ th =) + [ugl L | (r 1 = R]/(2K, 1 1)
= [lut; ) | (Loh =L o) + |uf, | (I, — Ly 1 h)
+ 23 Ry |uttt — utlh

+ IuR,.I(Rn+ lh_ rn) + ]uj'{t.l..ll(rn+1 —Rnh)]/(zkn+ 1)'
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By using (5.1)-(5.5) we have from (5.13)

Iyt —upd/knsilly £ {Lps th =Ly ) (Lah =1y y)
+ (Lyh—1,) (= Ly h)} 00,
+ 23X ke a(6uf)?ky s 1h
+ {(rs—R,D) (Ry s 1h—1y)
+ (Pns1 =Ry 1B) (Tos 1 — Ry} OUR,11/(2Ky 4 1)
= {Ln+ th—=lpsy) + (Lah = 1)} (= Ly )6l |
+ 23R} a(6up) ks ih
+ {(rn+1 = Ryps1h) + (r,— R1)} (1 1 — 1) 0UR,|1/(2Kn 4 1)
< aCyloup |(Lyh—1,) + aCy Y Rept |6utlh
+ aCy|6up | (r,—R,h)
< aC(Cy,

which is the desired inequality (3.8).
Similarly (3.8) can be shown as in Cases (b), (c) and (d), and hence we omit

the proofs. Thus, Lemma 3.1 is proved.

5.2. Proof of Lemma 3.2
For simplicity we write u**1:r as y”. From (2.10) it follows that

uitt = (1-2Amui)ui + Amuiui, o + Amujui_y (i€{Ly+y + 1., Ry — 1),

- +
0< uztnlu u"nilo é CO
and

0< ur+1 —_ un+l 0 < CO’

Rn+1 = YRp4

where A=k,,/h?. Since the stability condition (3.9) gives 1—2imu}=0, we
have

0 < uf*! < max(uf, ul4y, j-1) S Co (i€{Lpsy + 1,..., Ryyy — 1}).
Hence (3.3) holds with u}*1:0=y5+1,

Since u;*1=0 for all ie Z\{L,,,.--» Ry+1}, We have (3.4) with u}*1.0=
uitl, From (2.10) we obtain
(5.14)  ou*t = (upti—uitH/h

= Amuiou}_, + (1 —Amuj—Amus, )ou; + Amuj, 0u%,,
(ie{Ln-H. + 1’ n+1 2}):
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(5.15) oupl, = (Wl e —uL L )/h
= (1=Amuy,, +)0ul,,, + Amuy,, +10UL,, 415
(5.16) ouiyy, = up /[ (Lysih—lyy) = Oul,,,,
(5.17) OuRl -1 = (R, —uRL,-)/k
= (1-Amuk,,,-1)0uk,, -1 + Amuk,, 10Uk, . -2
and
(5.18) Ouill, = — uR L, [(rpe1— Ryih) = Oug,,,.
It is obvious to see that
16ui}t ), 16ugL | < Cy.
Since the stability condition (3.9) gives
1—Aimu} —Amuj,, 20 (ie{L,4; +1,....R, 41 —2}),
1—-Amuy,, .+ 20,
1—2mug,,,-120,
it follows from (5.14), (5.15) and (5.17) that
l6ui*'l £ Cy ({i€Lypsyses Ryry — 1)),
Thus (3.5) holds with u}*1-°=u%*!, From (5.14)-(5.18) we have
a5l = 185 (L sh =Dy 1)
+ Xt 6wt A + |SuR | (rar1 — Ruvrh)
< (0ul,, |(Lys1h—1lhiy)
+ |1 —Amuy,, +1)0ul,,, + Amul,, 10Ul 1k
+ X Repi=2  [Amuioui-y + (1 —Amuf—Amuf,,)ou} + Amut 0ul, |k
+ (1 —Amuky,, ,-1)0uk,, -1 + Amuy,, 10Uk, -2|h
+ [0uRpy | (Fnt1 — R 1h)
= [6u},,,|(Lyssh—lpry) + Zipi0 |0uf|h + 16Uk, ,|(as 1 — Ras1h)
= [(uh)ll1 = Cay

which is the desired inequality (3.6) with u}*1.0=u%*!. We now estimate
V((uy*1),). From (5.14)—(5.18) it follows that

(5.19)  [utt, — SuptL | = |6us,,, — Sup,,,

In+1

+ Amuy,, 1 (0uy,, —oul, , +1),
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(5.20)  |ougt:, — Suptl il = |(1—2Amul,, +1) (UL, ., —OUL,, +1)
-+ Amuy, 400U, v —OUL,, 42)ls
(5.21)  |oui*t — Suit}l = |Amui(dui—y — uf) + (1—2Amul, ) (duf—duiyy)
+ Amuly,(6ufy —0ulyy)l  ((€{Lpy1+1,..., Rpr1—3}),
(5.22)  [ouR}) -2 — OuRL —1| = |Amug, . —,(0uk,,,~3— Ouk,,,-2)
+ (1-2Amuy,,, ,-1)(6uk,, -2 —Ouk,,,-)I,
(5.23)  |ouR), —1 — OuR},| = |Ouk,,,~1—Ouk,,,
+ Amuy,,,-1(8uk, , -2 — Ouk, . -1)|.-

Using (5.19)—(5.23), we have

V(i) = 16uiy, | + 10u), — oufil |

In+1
+ ZRepHourtt — outll + |SuRL,
= 0w, | + |0uf,,, — dug,,,|
+ ZRepil )l [0uf — Sufyy| + |Ouk,,,|
= V((u}):) £ Cs,
and (3.7) holds with u3*1.9=ys*!l, Finally we show the estimate (3.10). From
(2.10) we have
It = w5 [kl = ZRepimdy (5 — ) R |1
= 2 Repil Imui(duf— oul-y)|

S mCoV((u})y) < mCoCs,
which completes the proof.
5.3. Proof of Lemma 4.1
It is clear that (4.9) holds. For all (¢, x) € # we have
Iﬁh(t; x) - uh(ts X)I é Supn {max (ui,.’ u;'ln)}
= sup, {max (|6uf | (L,h—1,), |6uk,| (r,—R,h))}
é Clh’
which immediately yields (4.8). Moreover, (4.10) follows from (4.3) and (4.8).
5.4. Proof of Lemma 4.2

Lemma 4.2 can be shown by the argument similar to Graveleau and
Jamet’s (see the proof of Lemma 6.3 in [5]).
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5.5. Proof of Lemma 4.3
From (4.6) and (2.10) we have
=2, Xt ka1 DT (1 s ) { g ™ mufhor (Sup ™ or — St )}
=Y akne1(1/pnsr) Zhng ™ {— @1, , . samultii outlyr
+ XRe 2 (rmul T — Pr mul ) Sult
+ Ok - 1muR T OUR )
=Cp+ Znkni1(1pnsr) Zpzgt  {— @1, w1multll Supilr

+ Ok,r - amuR D OuRi )
Then it holds that

(5.24) |4, — Cil = [ ¢llo4mhCiK,
where || - |, = - llL=(#) and K is a positive constant such that
(5.25) o, x)=0 for all (¢, x) e [K, o0) x R!.

Hence (4.15) follows from (5.24). Let

(Rn+1=1)h

= = S0 W) Sz

. [mugp(r))(ug'p(r)))xd,x
n+1

+ m{(u$P™) }2¢p]dxdt.
Then

(526)  ICy — Dl = {mC}ligulloh + MCoCilPrxllh + 1 Dutll on/B)
+ mCH(Idlloh + 1l on/B)}
X Yp{(Ror1—Dh — (Lys 1+ Dh}kyy g,

(5.27) |Dy—Dj| £ (MCoCylipell + mCilll)

X Zp{Lns1+Dh = Ly + roy — (Rt — DAYk, 4.
Since

[lh+1 — ayl £ aCK, |ryyq —ay] < aCikK,

|Lyt1h = st S h, |rpyy — Rypihl S h
for all n=0 such that ¢,,, <K, it follows from (5.26) and (5.27) that

|Cy — Dyl, IDy — Dyl — 0 as h—> 0.

Hence (4.16) holds. (4.17) can be easily shown by Lemma 4.2.
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5.6. Proof of Lemma 4.4

Let S%, S4 and S% be the sets of integers i for which (5.1), (5.2) and (5.3)
hold, respectively. Putting

By = 2 bk @7 (uit 0 —ul) [y,
and
E} = hkyyy ZRept a(6ul)?l,

we estimate |Bj— E%| in Cases (a), (b), (c) and (d) which are introduced in Section
5.1. In Case (a), by (5.1)-(5.5) we have

(5.28) B} = hk,y 1 {9}, (Lysih—1,4)0u} [Kyiy
+ ¢Fln+1(rn+1_Rn+1h)6u?§n/kn+1
+ Xiespadi(Oup)? + sy api(0ul_1)}.

Let S3 be the set of integers i satisfying i€ S% and i+1e S?\US% or satisfying
ieStand i+1€S% Then

(5-29) SRy 1(0ul)? = Ziesy P1(0ul)? + Tiesy ¢1-1(ul-1)?
+ Liess P1(0u})?
By (5.28) and (5.29) we have
(5.30) |Bi — Ejl = 9l o{(Lns th—lis 1) + (ras1—Rusr1W}Cih
+ hkyo {Ziesy ald? — 1] (Sul-1)* + Zicsy al@?I(6u?)?}
= 2a(|@] o Cehkysy + allpell C1Cobky oy
+ allpllo{ Ziesg (0ui)*}hkiys 1.
Since
Liesy (Bul)? < C1V((up),) = C,Cy,
it follows from (5.30) that
(5.31) |B} — Ejl £ aQC?l¢llo + CiCalldsllo + CiCslldll o)k s
Similary we can obtain (5.31) in Cases (b), (c) and (d). Hence
[By — Eil £ Ka(2CEl9lle, + C1Calldslle, + C1Csll@llo)h,

where K is a positive constant satisfying (5.25). Thus (4.20) follows. From
(4.18) and (4.19) we have
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|[En—Fyl = 2, S::“ {SIL

n

" a@)olds + {7 al@))?lgldx) e

+ 2o [0 agw 2191 - pldxar

< K{2aC3l|lloh + aCiCollidsll ol + il on/D}

which yields (4.21). (4.22) can be shown by using (4.4), and the proof is complete.

6. Numerical results.

In this section, we show some numerical results. Figs. 4 and 5 show that,
when an initial value v°(x) takes Barenblatt and Pattle’s solution at t=0, a nu-
merical solution of our scheme gives good profiles to the exact solution (1.3) as
well as interface curves (1.4). Moreover, we exemplify an initial function of the
form

m (1—06)sin?2 x+6sin* x for xe(—m=,0),

oym—1 —
(6.1) presal U 0 for x&(—m,0)

to calculate the waiting time. The numerical interface curves of solutions to
the problem (1.1), (1.2) when 0=0, 1/2 and 1 are drawn in Fig. 6. The detail
of numerical waiting time will be reported elsewhere.

t 9=160=1/26=0
0.8
0.4
0.0 T T T T T T T T X
-03 0.0 0.3

Fig. 6. Numerical right interface curves of our scheme with 2=0.03125
subject to the initial condition (6.1) when m=2.
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