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1. Introduction

We are concerned with difference approximations to the initial value problem

for the one dimensional porous media equation described by

(1.1) vt = (vm)xx, ί e (0, + oo), xeR1 (m > 1)

with an initial value

(1.2) υ(0, x) = v°(x), xeR\

where v represents the density of an ideal gas flowing in a homogeneous porous

medium which occupies all of J?1. (1.1) is obtained by combining the equation

of state, conservation of mass and Darcy's law ([8]). Physically, υm~ί is the

pressure of the gas and (t/""1)* is the velocity. From the reason that the diffusion

rate of (1.1), mvm~γ vanishes at points where v = 0 because of m > l , (1.1) exhibits

an interesting phenomenon of the finite speed of propagation of disturbances.

In other words, when v°(x) has compact support, a solution v(t, x) of (1.1), (1.2)

has also compact support for any ί>0. As an example to illustrate this property,

we may show an explicit solution of (1.1) due to Barenblatt and Pattle ([3],

[10]). This is of the form

ί i f r i^Grr) 2 } 1 ^ υ for '*' -λ®* * - °'
(1.3) • V\t9 X) — I

[ 0 for |x| ^ λ(t)91 ^ 0,

where

Λ) A\t) = < —— \ΐ-j-ί)> tor ΐ έi u

{ m— 1 J

(see Figs. 1 and 2).

We note here that the solution (1.3) is not a classical solution for m^2, in

the sense that the trasition from the region of medium which contains gas (v>0)

to the one which does not (v = 0) is not smooth. The boundary, (1.4) in (1.3),

is called the interface.
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v(t,x)
0.437

.0.0

-6.0 -3.0 0.0 3.0 *
Fig. 1. Barenblatt-Pattle's solution (1.3) when m=2.

rlθ.0

Exact interface curves

5.0

-6.0 -3.0 0.0 3.0 6.0

Fig. 2. Interface curves \x\= λ(t) of Barenblatt-Pattle's solution
(1.4) when m=2.

From analytical point of views, the existence and uniqueness of weak solutions
of the problem (1.1), (1.2) were studied by many authors (for instance, [1], [7],
[9]). The determination of interface curves is also an important problem in
porous medium flow. When t;°(x)>0 on (al9 a2) and v°(x) = 0 on R1\(al9 a2),
the curves λ/jt) (j = l, 2) are governed by

(l 5) ~W* W = "" ( m /( m ~ 1 ) ) l ί m ^^,(o (a"1" *)*(*> x) U = 1» 2),

(1.6) ,̂.(0) = ^. 0 = 1,2).

It is proved in [6] that there exist tj e [0, + oo)(j = 1, 2) such that

= α, for fe[O,fJ],

is strictly monotone for t e (tj, + oo).
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The time tj is called the waiting time when an initially stationary interface begins

to move. The determination of the waiting time is interesting from both physical

and mathematical points of view. Aronson, Caffarelli and Kamin [2] estimated

the time tj for rather general initial functions. Suppose that the initial function

v°(x) is of the form

m ί (1 — 0)sin2jc + 0s in 4 x for * e ( —π, 0),

Γ-(ι?°)m-1 = I
/ w " 1 [ 0 for x£ξ(-π, 0),

where 0 e [0, 1]. If θ e ψ, 1/4], then tf = tξ = tm/(t- ^ w i t h tm = l/2(m +1). On

the other hand, if θ e (1/4, 1), then tJβ ^ tf = t% g tJ(l~-"^rwtefe l?"ts obtained

by solving the nonlinear equations βy* = v%y) and Ώφy = (v°(y))\ Thus, in the

case θ e (1/4, 1), tj can not be calculated. This motivates us to develop numerical

methods to determine interface curves which enable us to compute numerically

the waiting time.

Meanwhile, numerical methods for (1.1), (1.2) have been investigated

([4], [5]). In particular, the difference scheme by Graveleau and Jamet [5]

(Graveleau-Jamet scheme) absorbs much interest, though they are not concerned

with numerical interfaces. We let briefly mention their method. It approximates

the following problem instead of (1.1), (1.2) by setting u = vm~1:

(1.7) ut = muuxx + n ^ 1 (ux)
2,

(1.8) u(0, x) = u°(x) = (v°(x))m-K

The difference scheme is constructed based on splitting of the operator Λu =

muuxx + a(ux)
2 with a = m/(m — 1) into two parts

(1.9) Pu = muuxx,

(1.10) Hu = a(ux)
2.

In the neighborhood of interface curves, one may expect that the hyperbolic

term (1.10) in (1.7) is dominant rather than the parabolic term (1.9), because u

is sufficiently small there. However, as Graveleau-Jamet scheme includes an

artificial viscosity in approximating (1.10), it does not give good approximations

in realizing interface curves (Figs. 3 and 4).

In this paper, in order to construct a difference scheme which approximates

not only a solution but also interfaces, we present a scheme different from

Graveleau-Jamet scheme in approximating the hyperbolic equation

(1.11) ut = Hu.

Since the equation (1.11) reduces to the Burgers equation by differentiating it with
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0.437

-6.0 -3.0 0.0 3.0 x

Fig. 3. Numerical solution of Graveleau-Jamet scheme with
Λ=0.14309 when m=2.

10.0

Graveleau-Jamet scheme
Our scheme

5.0
t

-6.0 -3.0 0.0 3.0 6.0

Fig. 4. Numerical interface curves when m—2.

respect to x, we apply the Rankine-Hugoniot jump condition so as to determine
interface curves. As will be shown, this method excludes numerical viscosities so
that numerical interface curves are realizable.

In Sections 3-5, we obtain stability and convergence of our scheme, following
the argument by Graveleau and Jamet (Theorems 4.1 and 7.2 in [5]). Unfor-
tunately, we have not been able to prove the convergence of numerical interface
curves. Finally it is shown in Section 6 that some numerical solutions give good
profiles to the exact ones as well as interface curves (Figs. 4 and 5).

Acknowledgement. The authors are grateful for the discussion with T.
Nagai in the development of this work.
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v(t, x)
0.437

.0.0

-6.0 -3.0 0.0 3.0 x
Fig. 5. Numerical solution of our scheme with &=0.125 when m—2.

2. Difference schemes

Let h be a positive number and {tn} be an increasing sequence. This sequence

will be determined later. We denote by w?(^0) the difference approximation for

the solution of (1.7), (1.8) at (ί, x) = (tn9 ih)9 where n(^0) and i are integers. For

un.9 let /„ and rn be points such that

for all ih e , rn)

and un

Ln*09 u%n*0 with Ln = [/n//i] + l, Rn= ~{[-rn//i] + l}, where [x] means

the greatest integer not exceeding x. We may define a numerical left (resp.

right) interface curve by piecewise-linearly interpolating points (tn9 Zπ)

(resp. (ίM, rπ)). We introduce a piecewise linear function uj(x) constructed by

(2.1)

Here we construct a difference approximation for (1.7) with the initial value

at t = tn9 u(tn9 x) = ul(x). First we determine the sequence {tn} as follows: Let

us consider the equation (1.7) in the absence of the parabolic term Pu9 so that,

putting w = uχ9 we obtain

(2.2) w, = a(w*)x ( ί > α

which is called the Burgers equation. The initial value at t — tn is

for all θe [0,1] and ie{Ln,..., Rn-1}9

for all 0 e [ O , l ] ,

un

h(Rnh + θ(rn - RM = (1 - 0)«Sn for all θ e [0, 1],

for all x
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(2.3) w(tn, x) = w»(x) = (ul(x))x.

It is already known that for small t — tn(>0) the solution w(t, x) of (2.2) consists

of constant states 0, w"(ίM + 0), wn(Lnh + 0)9..., wπ(Λπ/ι-f 0), 0, which are separated

by shock waves and are connected by rarefaction waves. More precisely, if

wn(ih — 0)<wn(ih + 0) for some i e {LΛ,..., Rn}, w has a shock on the line

(2.4) ytf) = ίh- a(wn(ih-0) + w»(ift + 0)) (*-*„).

This is well known as the Rankine-Hugoniot jump condition. If wn(jh — 0)>

wn(jh + 0) for some je{Ln,..., Rn}, w has a rarefaction wave which connects two

states wn(jh — 0) and .wn(jh + 0) on the wedge determined by two characteristics

(2.5) zn(t) - jh - 2awn{β -0) (t- tn) and z/2(0 = jk - 2aw*(jk + 0) (* - O .

It is clear that w(ί, x) has shocks on two lines

(2.6) yln(t) = ln- aw\ln + 0) (ί - ίn) and yrn(t) = rπ - αw»(rn - 0) (t - Q.

Under the above consideration we take the variable time step kn+ί as the

largest number of k satisfying the following two conditions:

i) The lines y/ί), z ; i (ί), zJ2(t), yln(t) and yrn(t) do not intersect each other on

(tn, ίn + /c)and

j 1 ^ , , ) - ih\ ̂  h, \zjs(tn + k) — jΛ| ^ Λ, (5 = 1, 2),

1 \yιn(tn + k) - /J g Λ, lΛn(ίM + fc) - rj ^ Λ

n) k S j
which indicates that k π + 1 tends to zero as /i->0.

Along this way, we define the sequence {tn} by

(2.8) tn+ί = tn + kn+1 ( n ^ 0 ) ,

and put T00 = limn_>00 ίn.

Thus, integrating the solution w(ί, x) with respect to x, we obtain the dif-

ference approximation to the solution of (1.11).

We next construct the difference scheme for the nonlinear parabolic equation

ut — Fu by modifying Graveleau-Jamet scheme in the neighborhood of interface

curves. Let μn+ί be some positive integer and kn+1 = kn+ίlμn+ί (see (3.9)).

Suppose w? are known for all ί e Z, where Z denotes the set of integers.

Step 1: Compute

Λ + 1 = yιn(tn+1)> rn+! = yrn(tH+ 0

(2.9) { ih
j + 1 o \ w(tn+ux)dx for all ie{Ln+ί9..., Rn+ί},
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where Ln+i = [/π+i/ft] + l and Rn+1 = —{[-rn+1/fc] + l}. ' These are computed

by numerically solving ut = Hu.

Step 2: Compute μn+ί intermediate functions u ! I + 1 » p ( l ^ r ^ μ Λ + 1 ) by the

relations

(2.10)

Ur)i (0 ^ r g μn+1 - 1)

for all ie{Ln+ι + 1,..., i£ π + 1 —1},

j for all ieZ\{Ln+ί9...9 Rn+1}9

where

Step 3: Put

(2.11) W}+1 = u?+1>»»+i for all i e Z .

Thus, it turns out that u?+ 1 can be computed by u^ for all i e Z.

3. Stability

By the difference approximations w? + 1 ' Γ (0<rgμ n + 1 ) computed in Steps 1

and 2, let us introduce piecewise linear functions Mj5+1»r(x) defined by the similar

way to (2.1), replacing /„, rn and u\ by /„+15 r n + 1 and wϋ+1>r, respectively.

To show the stability of the scheme consisting of (2.9)-(2.11) (Steps 1-3),

we impose Condition A on the initial value and then show two lemmas.

CONDITION A. i) u°(x) = (v°(x))m~1 is a continuous function satisfying

u°(x) > 0 on (al9 a2),

ii) There exist constants Cj(j = O, 1, 2, 3) such that

(3.2)

where || Iloo = B' IiL-'CR1) a n d ^ ( / ) denotes the total variation of/(x).

We first take

to = 0, Jo = aί9 r0 = a2 and M? = u°(ih).

LEMMA 3.1. Assume Condition A. Then it holds that for all h>0 and
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(3.3) 0 < «ϊ+i.o(χ) g Co on (ZB+ u rn+1)

(3.4) » H x ) = 0β«ί 1 \( l 1 + i . f . + i);

(3.5) ll(«X+1 ° ) J L ^ c i ;

(3.6) H(«I+1 ° )J l i£C a ;

(3.7) n(«ϋ+1 °),)^C 3;

(3.8) ll(«X+1 0-«»/fen+,lli ^ βCiQ,

LEMMA 3.2. (7nί/er Condition A, let h>0 and fcn+1>0 satisfy

(3.9) 2mC0(ίίn+1lh
2) g 1 /orαί/ « ^ 0.

77ien un

h

+1>r+1(x) (n^O; O g r g μ B + 1 - l ) sαίis/> ίfte estimates (3.3)-(3.7) in wfticΛ

Mπ+i,o a r e replaced by ul+1 r+1 and

(3.10) IKnί^ ^ - ^ ^ O/^+illi^mCoCa for all n^O.

The proofs of Lemmas 3.1 and 3.2 will be shown in Section 5.
The stability of the scheme (2.9)—(2.11) easily follows from these lemmas.

THEOREM 3.1. Assume Condition A, and let h and ίcn+ί (n^O) satisfy (3.9).
Then u^x) (n^O) satisfy the estimates (3.3)-(3.7) in which ul+ί>° are replaced
by u\ and

(3.11) \\(un

h

+ί-uβlK+thSmCoCs + aC^ for all n ^ 0.

Moreover,

(3.12) lim^oo /„ = -oo and lim,,.^ rn = +oo,

and

(3.13) T 0 0 =+cx).

PROOF. The estimates (3.3)-(3.7) with M5J+1'° = MJ; follows from Lemmas

3.1 and 3.2. By (3.8) and (3.10), we have

which yields (3.11).
We prove (3.12). We put

= limM_>00 rn.



Numerical approximations for a porous media equation 281

Since {/„} (resp. {rn}) is a strictly monotone decreasing (resp. increasing) se-

quence, it suffices to show that the following three cases do not occur:

Case (a) /^ > - oo and r^ < + oo

Case (b) la0> —oo and r^ = + oo

Case (c) / O o = " ~ 0 0 and r o o < + o o .

In Case (a) there exists an integer N such that

(3.14)

and

(3.15)

which mean

(3.16)

(RN + ί)h^rx

Ln = LN and

•ΐ)h

>rn

Rn

^ 'oo < '

>RNh

= RN

n<LNh

for all π ̂

for all n ̂  I

Taking the properties (3.14)—(3.16) into consideration, we find from (2.9)-(2.11)

that

(3.17) uln^uϊN and un

Rn ^ u£N for all n ̂  N (see (5.1)-(5.5)).

From the determination of fen+1, it follows that

(3.18) feπ+1^fcj for all n ̂  0,

where

fc = mm {(L^-kWaCJ, (r.-RJOKfiaCί), Jh},

and that by (3.16)

(3.19) fc* ^ fcjf for all n^N.

Then, by using (2.6), (2.9) and (3.17)-(3.19), we obtain

(3.20) ln+ι - ln = - a{ulJ(Lnh-ln)}kn+ί g - a(uN

LJh)k% < 0,

(3.21) r π + 1 - r, = fl{ulil/(rll-llIIΛ)}fcll+1 ^ a(μljh)k% > 0 for all n ̂  JV,

which contradict the fact that ln+1 — ln and r π + x — rn tend to zero as n->oo.

In Case (b), let N be an integer satisfying (3.14). From the definition of rn

we may have

0<r π + 1 -rn^h/29

which means that there exists a subsequence {rΠv} of {rn} such that

|rΠv - Rnv\ > ft/2 for all v.

Putting
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kt = min {(LNh- IJHAaCd, hKSaCJ,

we have

Kv + ι ^ k% for all nv ^ JV.

Hence it follows

(3.22) ίΠv + 1 - lnv g - a(uijh)k% < 0 for all n v ^ N,

which is a contradiction. Similarly we can show that Case (c) also does not

occur. Thus (3.12) is shown. Finally we show (3.13). By (2.6) and (2.9) we

have

'o - U i = Σ?«o(Z|-/i+i) ^ aCt ΣUo ki+ί = aCxTH + l9

which leads to (3.13) by (3.12). Thus Theorem 3.1 is proved.

4. Convergence

In this section we show the convergence of difference approximations u1+x

to the exact solution u(t9 x). We first introduce definitions of weak solutions of

the problems (1.1), (1.2) and (1.7), (1.8).

DEFINITION 1. A function v(x, ί ) ^ 0 defined on Jf = {(t, x)e(0, oo)x I?1}

is a weak solution of the problem (1.1), (1.2) if υ eC°(JF) Π L°°(<?r), (vm)x e L°

ι?(0, x) = t;°(x)and

(4.1) f υφtdxdt = ί {vm)xφxdxdt for all φ

DEFINITION 2. A function u(t, x ) ^ 0 defined on Jf7 is a weak solution of

the problem (1.7), (1.8) if u e C % # ) n L°°(^), ux e L°°(^), w(0, x) = u°(x) and

(4.2) { uφtdxdt = ί {muuxφx + (m-a) (ux)
2φ}dxdt for all φ

To state convergence theorems, we extend the region of definition of the

difference approximations un. computed by (2.9)—(2.11) to the region {(t, x)e

[0, Γ J x R1} in a way that

ulu x) = ιιj!(x) for all ί e [ίn, ίB + 1) and n ^ 0.

Then we have

THEOREM 4.1. Assume Condition A, and let {h} be the sequence which tends

to zero, and assume that the stability condition (3.9) holds for each h and kn+ί

(n^O). Then there exist a subsequence {h*} of {h} and a function U with the

following properties.
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i) Ue C ° ( J T ) n L°°(^), Ux e L°

ii) 1/(0, x) = u°(x) for all xeR1;

iii) As h'-+0,

(4.3) Htt Λ ' - t/ | lL-(G)^*O,

(4.4) IKII,,), " UX\\LP(G) — * 0 (1 £ j> < + oo),

where G is any bounded subdomain of Jf.

iv) C/ ΪS 0 vveαfc solution of the problem (1.7), (1.8).

PROOF. By following Graveleau and Jamet (Theorem 6.1 in [5]), the prop-

erties i), ii) and iii) can be proved. We only note here that the estimates obtained

in Theorem 3.1 play an important role in proving these properties.

We now show the property iv). For this end, it suffices to prove that U

satisfies the integral relation (4.2). In the following, let h take the value belonging

to the extracted subsequence. From (2.9)-(2.11) we have

Let φe@(jf). Multiplying both sides by hkn+1φ? and summing for all ieZ

and n ^ O ; we have by summation by parts

(4.5) -Σn,ihkn+ίuri(Φt1-Φ'!)lkn+i =Λh + Bh

with φ? = φ(tn, ih)9 where Λh and Bh are represented by

(4.6) Λ = Σ M , ί ^ M + 1 φ

and

(4.7) Bh =

respectively. In order to show that U satisfies the integral relation (4.2), we

prepare the following Lemmas 4.1-4.4, and then obtain the theorem. We first

define ύn

h(x) by

un

h(ih + θh) = (1 -0)iι? + θu«i+1 for all i e Z and θ e [0, 1),

and then define ύh(t9 x) by

uh(t, x) = un

h(x) for all - r e f c tn+i) and n ^ 0.

LEMMA 4.1. It holds that

(4.8) | |β Λ - M J | Γ W - > 0 as h —-+ 0,
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(4.9) |Σ.,ι hkm+1uJ+1(Φri-Φf)IK*ί - \ ΰhΦ,dxdt\ > 0 as h • 0,

(4.10) f ΰkφtdxdt > ί Uφ,dxdt as h > 0.

LEMMA 4.2. For arbitrary integers yn (nίΐl) satisfying Og ^gμ,,
let u[y\t, x) be the function defined by

forallθe[0, ί) and n^0,wherey=(yuy2,...,yn,...). Then

(4.11) max, ||«i») - l/||L-(β) — • 0 as h — • 0,

(4.12) max, ||(«ί»>), - UJLnG) ^0 as h ^0 (

where G is any bounded subdomain of Jf.

LEMMA 4.3. Let

(4.13) Ch = - Σ n hkn+1(Uμn+1) ΣW1 CΣ?="t

+i;f+

(4.14)

where

wΐίft

ί r if r^μn9

[ μw i/ r > μn.

Then it follows that

(4.15) \Ah-Ch\—>0 as A > 0,

(4.16) | C Λ - D Λ | — * 0 as h—•> 0,

(4.17) DΛ > - ( {mUUxφx + m(Ux)
2φ}dxdt as h > 0.

LEMMA 4.4. Lei

(4.18) ^ = Σ M ^ « + i Σ f = w Γ > ( ^ ? ) 2 ^ ,

and

(4.19) FΛ = Σn \]n+i^ a((uh)xyφdxdt.
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Then

(4.20) \Bk-Ek\ >0 as h > 0,

(4.21) \Eh-Fh\—>0 as A —> 0,

(4.22) Fh > [ a(Ux)
2φdxdt as h > 0.

Following the argument by Graveleau and Jamet (see the proof of Theorem

7.2 in [5]), we obtain

THEOREM 4.2. Assume Condition A. Let {h} be the sequence which tends

to zero, and assume that the stability condition (3.9) holds for each h and ίcn+ί

(n^O). Then (uΛ)1 / ( m - 1 ) converges uniformly in any bounded subdomain of

3tif to the unique weak solution v o/(l.l)-(1.2).

5. Proofs of Lemmas

5.1. Proof of Lemma 3.1

In the initial value problem (2.2), (2.3) it can be shown by the conservation
Γ00

law that \ w(t, x)dx is independent of t. Using this fact we can write M? + 1 ' °
J-αo

as follows:

Case (i) When either yi(kn+1)<ih or z f l(kw + 1)^z ί 2(fcn + 1)<z/ι holds for

some ie{Ln9...,RH-l}9

(5.1) urι>° = u>! + a(δu>!)2kn+1',

Case (ii) When either y^+^^ih or ι7i^z ί l(kπ + 1)^z i 2(fcw +i) holds for

some ze{Ln+l,...,£„},

(5.2) uruo = u? + a(δuU)2K+u

Case (iii) When zn(kn+ x )< ih <zi2(kn+1) holds for some i e {Ln9..., Rn},

(5.3) U? + 1 ° = M?;

Case (iv) At the points (tn + 1 , Ln+1 h) and (tn+1, Rn+1 h)

lV'0 if Ln+ί = Ln,
(5.4) itί ,

( L f e / ) 5 if L M + 1 = L n - l ,

where δuΐn = uiJ(Lnh-ln), and

" i t 1 ' 0 Ίf
(5.5) Jti ,

(Rn+ih-rn+1)δu»Rn if Rn+ί=Rn+U



286 Kenji TOMOEDA and Masayasu MIMURA

where δun

Rn= -uRJ(rn-Rnh). Now let us show (3.3). From (5.1) and (5.2) we

have

0 < u1} ̂  w?+1'° ^ uni +hδuϊ = un

i+1 S Co (Case (i)),

0 < uj ^ w?+1'° = Mf_i + (h-haδu^1kn+1)δun

i.ί ^ w?_t ^ C o (Case (ii))

Here we used the inequality δun

t ^ 0 (resp. δu^-ί gO) in Case (i) (resp. Case (ii)).

In Case (iii) it is obvious that (3.3) holds. Since 3wjfn>0, δuRn<0, Ln+1h —

ln+ί^Lnh — ln and Rn+ίh — rn+ι^Rnh — rni (3.3) also holds in Case (iv). Hence

(3.3) can be proved. Next (3.4) can be shown by the following properties:

(5.6) w(tn+l9 x)-=0 for x

(5.7) [n+l w(tn+19 x)dx = (Γ n w(ίπ, jί)dx = 0,

where w(ί, x) is the solution of the initial value problem (2.2), (2.3). (5.7) is given

by the conservation law.

Let us show (3.5). It follows from (2.9) that

f(i+l)Λ

(5.8) δuruo = . w(ίn + 1, x)dxlh ( ie{L π + 1 ) . . . , Rn+ι - 1}),
. - . J. ih

(5.9)

and

(5.10)

= - \ n + 1 w(/n + l f x)dxl(rn+ί-Rn+ίh).

Then we have

because | |w(ίπ + 1, )IL^I|w(ίM, )lloo^^i Hence (3.5) is proved. Since the

entropy condition yields the property

it follows

'°)Jli = (LH+1h-ln+ί)\δui£{°\

\w(tn+u x)]dx ^
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which leads to (3.6). Since w{tn, x) is piecewise constant with respect to x, the

solution w(t, x ) ( ί π ^ ί ^ ί n + i ) consists of constant states 0, w(ίM, Zn+0), w(ίn,

Lnh+0),..., w(tn, Rnh+Q), 0, which are separated by shock waves and are con-

nected by rarefaction waves. Hence

which implies (3.7).

Finally we show (3.8). For this end it suffices toprove that (3.8) holds in

the following cases:

Case (a) L n + 1 = Lπ - 1 and Rn + 1 = Rn + 1;

Case (b) Ln+i=Ln-l and Rn+, = J?Λ;

Case(c) Ln+1=Ln and Rn+ι=Rn + ίι

Case(d) L r t + 1 = X n and Rn+ι=Rn.

We now show (3.8) in Case (a). For simplicity we write ui+1' ° as u"_+1 and

let

(5.11) <i

(5.12) <i

Then it holds that

(5.13)

-«SJ + K

Σf--Γ,| (I«7+1-«7I +-l«

l»S:x - «*J (rn-Rnh)

ι«u (/.-
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By using (5.1H5.5) we have from (5.13)

{(rn-Rnh)(Rn+1h-rn)

( r B + ί - R u + 1 h ) ( r B + 1 - R

Λ-/ B + 1 ) + (Lnh-ln)}(ln-ln+1)\δul\

{(rn+1-Rn+1h) + (rn-

C^δuiXLJi-K) + aC1 Σ f

aC1\δu»RJ(.rn-Rnh)

which is the desired inequality (3.8).

Similarly (3.8) can be shown as in Cases (b), (c) and (d), and hence we omit

the proofs. Thus, Lemma 3.1 is proved.

5.2. Proof of Lemma 3.2

For simplicity we write u,"+1 r as uf. From (2.10) it follows that

uj + 1 = ( l - 2 Λ m u ϊ K + Λmuίw?+1 + λmuW-i ( i e {Ln + 1 + 1,..., Rn+1 - 1}),

0 < «TΛ, = "ZtV.0 ^ Co
and

0 < ι4V+1 = nKh 0 ^ Co,

where λ=kn+ί/h2. Since the stability condition (3.9) gives l-2/Lmu5^O, we

have

0 < MJ+ 1 ^ max(MΪ, ιιj+ l f u j . .^ ^ Co (ie{Ln+ί + l,...,Rn+ί - 1}).

Hence (3.3) holds with u2+ 1 ° = uΓ

A

+1.

Since uJ+ 1 = O for all ie Z\{Ln+u...9 Rn+1}, we have (3.4) with uR+1 ° =

MJ + 1 . From (2.10) we obtain

(5.14) & ι ϊ + 1 = ( « ϊ ί ί - t t ϊ + 1 ) / Λ

= λmur

iδur

i^ί + ( 1 — λmu\ — λmur

i+1)δuri + AmM5+1<5Mj+1

( i e { I ^ + 1 + ! , . . . , ! ? „ + ! - 2 } ) ,
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(5.15) δulW, = («ί+Λ1+i - «Ϊ.+Λ.)/*

= (l-λmur

Ln+i+1)δur

Ln+ι + λmur

Ln+ι+ιδur

Ln+i+1,

(5.16) 5«ϊ«, = uϊn\J(Ln+1h-ln+1) = a«ih+l,

(5.17)

and

(5.18) a C = - nfΛ./fr +i-Λ.+ iA) = *«*,.•,.

It is obvious to see that

Since the stability condition (3.9) gives

1 - λmu\ - λmuϊ+1 ^ 0 (ie{L,,+ 1 + 1,...,Λ,+ 1 - 2 } ) ,

it follows from (5.14), (5.15) and (5.17) that

IΛίϊ+H^ Ci ( { i e ΐ ί l + 1 , . . . , l l , + 1 - l } ) .

Thus (3.5) holds with uχ+1'°=u r

h

+1. From (5.14)-(5.18) we have

ικ«s+i)«ιii = ι««ί:+M(^.+iA-/.+i)

-AwMi,n+1+1)δi/i,n+ι + λmur

Ln+ι+1δur

Lntι+ι\h

\δuRn+ί\(rn+1-Rn+1h)

S)Ji ^ C2,

which is the desired inequality (3.6) with Mj+1 ° = «i+ 1. We now estimate
) From (5.14H5.18) it follows that

(5.19) |i«ϊ«, - δuftj = |5«ϊ.+1 - δu'Ln+i
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(5.20) |a«£i+1 - δufc1+1\ = \(l-2λmuίn+ι+1)(δuln+ι-δu'Ln+ι+1)

(5.21) \δuγι - δuΊtW = \λmui(δu!ί-i-δuf) + (l-2λmur

i+i)(δu ;-δu'i+i)

(5.22) |ί«K» ,-2

(5.23) \δu k+

n\^

Using (5.19M5.23), we have

ύ \δurlnj

i ) x ) g C3,

and (3.7) holds with «J+1 °=wJ+1. Finally we show the estimate (3.10). From
(2.10) we have

J) X ) g /MC0C3,

which completes the proof.

5.3. Proof of Lemma 4.1

It is clear that (4.9) holds. For all (ί, x) e 3ίf we have

\ΰh(t, x) - uh(t, x)\ g supn {max(u£n, un

RJ)

= sup, {max(\δuΊn\(Lnh-ln), \δu»RJ(rn-Rnh))}

ύ Cxh,

which immediately yields (4.8). Moreover, (4.10) follows from (4.3) and (4.8).

5.4. Proof of Lemma 4.2

Lemma 4.2 can be shown by the argument similar to Graveleau and
Jamet's (see the proof of Lemma 6.3 in [5]).
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5.5. Proof of Lemma 4.3

From (4.6) and (2.10) we have

= Ch + Σnkn+ί(llμn+1) ΣSS 1 " 1 {-Φi^.+

Then it holds that

(5.24) | Λ - Ch\ g B

where || 110, = || IL-(# ) and JK is a positive constant such that

(5.25) φ{t, x) = 0 for all (ί, x) e [ίC, oo) x «».

Hence (4.15) follows from (5.24). Let

D'h = - Σ . (1/A. M) Σ ^ 1

Then

(5.26) \Ch - D'h\ S

(5.27) \Dh-D'h\ g (mCoCillφJL + mCf

Since

|A.+1Λ — l»+il ^ Λ, | r , + 1 - K . + 1 Λ | g Λ

for all n^O such that tn+1^K, it follows from (5.26) and (5.27) that

\Ch - D'h\, \Dh - D'h\ . 0 as h • 0.

Hence (4.16) holds. (4.17) can be easily shown by Lemma 4.2.
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5.6. Proof of Lemma 4.4

Let SJ, S5 and S§ be the sets of integers i for which (5.1), (5.2) and (5.3)

hold, respectively. Putting

Bί = Σthkn+1φ1(uF1'°-uϊ)lkn+u

and

El = hkn+1 Σfeΐ!;a(δu1)2φΊ,

we estimate |J?j{ —£j{| in Cases (a), (b), (c) and (d) which are introduced in Section

5.1. In Case (a), by (5.1)-(5.5) we have

(5.28) Bl = hkn+1{Φln+ι(Ln+1h-lH+1)δuΐJkH+ι

+ ΦnRn+ί(rn+ί-Rn+ίh)δu»RJkn+ί

Let Sg be the set of integers i satisfying ieS% and ί + leSΊ\jS% or satisfying

ίeSgand i + l e S j . Then

(5.29) Σf=Cί Φttδu*!)2 = ΣiesΓ ΦW"Ϊ)2 + Σ ί es? 07-i(5n?-i)2

By (5.28) and (5.29) we have

(5.30) IBS - JEJI S \\Φ\\oo{(Ln+ίh-ln+ί) +

+

Since

it follows from (5.30) that

(5.31) |Bϊ - E%\ £

Similary we can obtain (5.31) in Cases (b), (c) and (d). Hence

|BΛ - Eh\ ^ Ka(2Cl\\Φ\\

where K is a positive constant satisfying (5.25). Thus (4.20) follows. From

(4.18) and (4.19) we have
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\Eh-Fh\ ^ Σ n ( ' " + I {\Ln"a((uh)x)
2\φ\dx + [" a({uh)xy\φ\dx\dt

'a^uh)xY\φi-φ\dxdt

«,h + \\φt\\^h)},

which yields (4.21). (4.22) can be shown by using (4.4), and the proof is complete.

6. Numerical results.

In this section, we show some numerical results. Figs. 4 and 5 show that,
when an initial value υ°(x) takes Barenblatt and Pattle's solution at ί = 0, a nu-
merical solution of our scheme gives good profiles to the exact solution (1.3) as
well as interface curves (1.4). Moreover, we exemplify an initial function of the
form

(6.1) m
m-l

( l-0)sin 2

0

for x e ( — π, 0),

for Jc&K-π, 0)

to calculate the waiting time. The numerical interface curves of solutions to
the problem (1.1), (1.2) when 0 = 0, 1/2 and 1 are drawn in Fig. 6. The detail
of numerical waiting time will be reported elsewhere.

= 10 = 1/20=0

0.4

0.0
- 0 . 3 0.0 0.3

Fig. 6. Numerical right interface curves of our scheme with h=0.03125
subject to the initial condition (6.1) when m=2.
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