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1. Introduction

Kac’s model is a one dimensional model of the Boltzmann equation and is
written as follows:

(1.1)

0,F = — v0,F + Q(F, F),
{ (t, x, v)e[0, ©) x R x R,

F(0, x, v) = Fy(x, v),

where F=F(t, x, v) is a distribution function of particles with velocity v at time
t and at position x and 0,F =(0/0t)F etc.  Q is a collision operator given by

O(F, 6) = (11D | {Fw)Gw)+F@)G(1)— Fw.)6()~ F)G(w)} 1(0)dodo,,
where v] =vsin 0+v, cos 0, v"=v cos 6 —v, sin 8 and F(v})=F(t, x, v}) etc.
Throughout this paper we assume that I(6) is a non-negative integrable func-
tion on [ —=, 7] and satisfies I(8)=I(—0).
Note that the absolute Maxwellian state g(v) =exp (—v2/2)/./ 27 is a stationary
solution for (1.1). Putting F=g+gY2f and substituting it into (1.1), we have
the equation for f:

[ Of = —vof+ Lf + I'(f, /) = Bf + (£, f),
f(09 X, U) =f0(xa U)s

where Lf=2g"120Q(g, g'/*f) and I'(f, f)=g"'2Q(g""*f, g'/*f). According to
[2], the eigenvalues {1,}i>, and the corresponding eigenvectors {e,}2, of the
linearized collision operator L are given by

(1.2)

Jo=0, = g (sin” 0+cos” 0— DIO)d0 n = 1,

e, = ,(v) = exp (—v*/4)H,(v)/|| exp (—v?/A)H(v)]| L2r,y " Z 0,
where H,(v) are the Hermite polynomials. In particular it should be noted that

do=2=0, 2,<0(nx0,2),lim,,4 = —v,
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where v=gﬂ I1(6)d0. Here we shall suppose that the solution of (1.2) is given
by f(t, x, v) = 2= U,(t, X)e,(v). Substituting it into (1.2) and using the relation
vem(v)=\/ﬁem_ 1(v)+/m+1e,,(v), we get formally the following system of
equations for the unknown functions u; j=0, 1,...:

(1.3)
( ’uo 01 Ug )'O /uo
Uy 1 0 2 0 Uy ll 0 uy
ol i|=-| V2O V3 o+ |
i 0 Ym0 ym+i| |us| |0 n |,
\ i : VAN
0
+ llu:1u0
;tmu.mu0+ 2'»:';11 }'n,m—n\/m!/n !(m - n) !unum—n
um(Oa x) = (fO(x, U), em(v))Lz(R.,) m g 09

where ).,,,m=§n cos” @sin™ 01(0)d0 n, m=1. If u,=0 for n=2m+1, (1.3) is

reduced to

atu(m) = — Smaxu(m) + Dmu(m) + Wm(u(m), u(m))’
(1.4.m)

u(M)(O’ x) = t(uO(O’ x)""’ um(O’ x)),

where u™ =u™(t, x)="*(uy(t, x),..., U,(t, X)), .

01
10 2 0

So=| V2 0 V3 ,
0 . 0 Ym
Jm 0
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and W,, is a nonlinear operator. See section 4. Throughout this paper we
consider (1.4.m) only for m=3.

The purpose of this paper is to show that the solutions of (1.4.m),=34....
converge to the solution of the original problem (1.2) for all time t=0 as m— 0
if the initial value is small enough.

We summarize some results for (1.2) in the appendix without proofs, which
will be referred to in the posterior sections. See [6] for details. From Theorem
A.8 we see that (1.2) has a unique solution

f(®)e C[0, w0); H) n C([0, ©); v,—4),
where H;, = H(R,; L*(R,)) =

= {f(x e LR RIIANT = | (14180217 o)pdvde < 0} 120,

Vioy={f(x, »)l{1/(1 +|v])}fe H,_} 121 and f(¢, v) is the Fourier transform of
fe L3R, R,) with respect to x,

f& v = 1]2x SR eI (x, v)dx, i=/=1.

In section 2, we discuss the existence and the decay of the solutions for the
linearized equations of (1.4.m),-3 4.....

In section 3, we deduce that the solutions for the linearized equations of
(1.4.m),,=3,4,... converge to the solution for the linearized equation of (1.2) as
m— o0 in the norm

SUPo << (1 4+ - Il

for any a € [0, o), [=0.
In section 4, we show the existence and the decay of the solutions for
(1.4.m),, =3 4,... by estimating the operators W,, and then using an iteration scheme.
Finally in section 5, combining the above results, we deduce that the solutions
for (1.4.m),,- 3 4.... converge to the solution for (1.2) as m— oo in the norm

SUPo<ti<wo @+ - My,
for any a € [0, 1/2), I=1.
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couragement. Also she would like to express her gratitude to Professor
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2. Existence and decay of solutions for the linearized equation of (1.4. m)

In this section we discuss the linearized equation:

QU™ = — 5,0 + D,utm,
(2.1.m)

u™m(0, x) = ui"(x).
By the Fourier transform with respect to x we have
— 8™ = (=iZS,+ DA™ = T,(E)aem,
(2.1.m)
am(0, &) = agm(&).

s
Let £€ R be a parameter. We consider (2.1.m) in C™*! with the norm |x] =
Ixll, =, Ix]»)V2, where x=%(xq, X{,.-., X,,). The following lemmas are
easily shown.

LemMma 2.1 (i) o(T, (&) <={z|Rez<0},
(i) o(Tu(&) n{z|Rez=0}=g, if {0,
where o(T,,(§)) is the spectrum of T,, ().

LeMMA 2.2 T,(&) is a generator of a contraction semi-group {e'T=(): >0}
in Cm+1,

The following proposition gives us an information about the resolvent set of
T,(8).

PROPOSITION 2.3

(i) For any PB,€(0, x/2] (x=—maX;yo,4;>0), there exist constants
0>0 and ¢>0 which are independent of m such that
@  infaspreiz-swsiziss 10— Tl 2 clyl, for yeCm,

(®) o(T(E) N {AIA<Bi} = {Anf(D}j=0,2  for [&] =6,

where A, (&) are the perturbed eigenvalues of i; with respect to &.
(ii) For any 8'>0, there exist constants f,>0 and ¢’>0 which are in-
dependent of m such that

infkel;-p,,m@a' l(A=T. Nyl = Iyl for yeCm+l

ReMARK. It is very important that §, ¢, f, and ¢’ are independent of m.
By this fact we can deduce the uniform decay of the solutions for (2.1.m),,=3 4,...
See Theorem 2.6.

Proor oF (i) Put
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(22 A=T.O)y = x,

where y='(Jo, V1is--+s Vm)s X='(Xg» X15..» X;u) and A= —B+iy. Taking the
inner product of (2.2) with y and taking the real part of it, we have for Re A=
—3k/4

(2.3) (1/)lxlI* + elyllz = [yl
2 Re((A—T(9)y, »)
2 (—3k/4) Zj=0,2 |yj‘2 + (K/4)Zj#0,2 |)’j|2-

The constant ¢>0 is determined later. Considering the first and the third
components of (2.2) for |1| =B, and |£] <5, we get

@/BD (Ix0l?+6%1y41%) 2 1yol?,
B/BD (%212 +26%|y, |2 +30%|y51%) Z |yl

The constant >0 is determined later. Substitution of (2.4) into the right hand
side of (2.3) yields

(2.5 (I/S)Nx||2+8||yll" 2 — cy(xol?+Ixal?) —
- 52‘32([}’1|2+|}’3|2) + 03 Z,#o 2 1yl
where ¢, =9x/4p2, c,=27x/4B% and c3;=x«/4. Calculating 2¢(2.4)+(2.5), we have

(2.4)

(6e/Bt+1/e+cy)lx]* 2 ellyl|? + (—82cy —ed%cs —26+¢3) X jao,2 V417

where ¢, =18/82. Consequently, the estimate (a) holds if we choose ¢ and &
small enough so that

—0%c, — €6%c, — 26+ ¢c; = 0.

By the estimate (a); we can set
P(&) = (1/2mi) SS‘ A=T(&) 'dr  for |¢] =56,

where S*={J||A|=pf,} and it is positively oriented. Since (A—T, (&))" 1—
(A—=T,(0)" as |{|>0 uniformly on S* and since dim P,(0)=2, dim P,({)=2
for |£|<d. This completes the proof of (i). -

ProoF OF " (ii) Taking the inner product of (2.2) with y and taking the real
part of it, we have for Re A= -,

1/e)lix)*+ellyl> =z —B Zj=0,2 l}’jlz + Zj#o,z(—ﬁ"lj)l.lez,

where the constants f§ and ¢ are determined later. In the case where |A| = |&| =4/,



6 Hideko NisHIYAMA

considering the first and the third components of (2.2), we get
¢s(8") (Ixol?+1y41%) 2 Iyol?,
ce(8) (Ix212 +1y1 1> +y31?) 2 |y2l?
If |A) £ |€], it follows from the second and the fourth components of (2.2) that
c7(0) (X112 +1x312 + X j=1,3,4 [¥i1?) 2 [yol?,
cg(8) (Ix3l? +1y3l* +1yal?) 2 |yl
Putting c=max;_s 4 c;(d’), we have
A(Xj=0,1,3 1%1P+ 2 j=1,3,41¥i1% = [yol?
c(Ix2?+ 32+ X j= 13,4 [¥,12) 2 2>
By the calculations similar to those in the proof of (a), we have
(1/e+4ec+2Bo)l|x||* 2 elyll> + X jxo,2 (—B—4;—2e—2Bc—4ec)|y;l>.
And the proof of (ii) is complete if § and ¢ are chosen small enough so that
—B—A;—2—2Bc—4c =0, j=0,2.

PROPOSITION 2.4.  Let 4, (&);=0,, be the eigenvalues given in Proposition 2.3
and ey, (&)j=o,, be the corresponding eigenvectors. Then there exists a constant
0,>0, which is independent of m, such that the following properties are satisfied
in [£|<6,:

(.a) A (O)=E%z, (O,
where z,, () belong to C*([—6,, 6,]) and z,, ;(0)=0.
(i.b) For any integer n=0, there exists a constant ¢>0 such that

SUP,, >3 SUP|¢| <4, Iaézm,,-(é‘)l Sec
(i.c) There is a constant u, >0 such that
Supmga sup|§|§al Re Zm,j(f) < - Hl < 0.

(ua) em,j(é) € Cm([ - 519 51] 5 Cm+1)’ (em,i(é)a em,j( - f)) = 5ija
where 0;; is Kronecker’s delta.
(ii.b) For any integer n=0, there exists a constant ¢’ >0 such that

SUPp >3 SUP| &) <4, llaéem,,-(i)ll =c.

PrOOF. In this proof, the indices i and j are 0 or 2. Let A=4,(&) be an
eigenvalue of T,,(¢) and let g =gq,,(&) be the corresponding eigenvector:



Convergence of approximate solutions for Kac’s model of the Boltzmann equation 7
(2.6) T.(&)q = Aq.
Put ¢*=min {1, —/,; n=1, 3,4,...} >0. If ReA> —c*/2, then we have
2.7 q =(P—D+iéS+A)"'Pq,
where D=D,,, S=S§,, and P is the orthogonal projection onto the null space of D:

1

P=Pm,0=

0

From the definition of P we can write Pq=covo+c,0,, Where co=c, o(£) and
¢y =0Cpo(€) are scalars and v,='(1,0,...,0) and v,=%0,0, 1, 0,...,0) form a
basis of the null space of D. Taking the inner product of (2.7) with v, and v,, we
get

o = calRa(& A0o» 00) + €x(Ry(E Ao, v0),
[ &2 = colRy(& Do, 02) + ex(Ry(E, Ao, 0,
where R, (&, 2)=Ry (¢, )=(P—D+i&S+2)"". Since (co, c)%(0, 0), we have
(Ry(&, 00— 00, 56)  (Ry(&> 03— 02, vo)
(Ry(&, 00— 00, 02 (Ry(E, 203~ 03, 02)

Set A=z¢2. Noting that (P—D) 'v;=v; and (Sv;, v;)=0, we have from the
resolvent equation

(Ra(&, 2)v;—v;, v)) = E2M, (&, 2),
where R,(¢, z)=R,(&, z£?) and
(2.8 M, (& 2) = M, /S, 2) = — 2(Ry(¢, 2)vi, v)) +
+ (R2(&, 2)(iS+2&) (P—D)"'iSv;, v;).
This implies
Mool 2) Moas,2)|

(2.9) M@, z) = M, (&, z) = =0.
'Mz,o(f, z) Mz,z(f- z)
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In (29) we put z=0+it o0, 1€R, f,(&, 0, ©)=Re M(&, 6+it) and g,(¢, 0, T)=
Im M(&, o+it). Then (2.9) is equivalent to
[ f(é’a’ t)=0,
9, 0,7)=0,

where f=f, and g=g,. Since M(¢, z)e C*({(¢, z)|Re zE2> —c¢*/2}), it follows
that

(2.11) 1, g€ C*({(¢, o, D¢ <6, —c*/262<0, T€R}),

(2.10)

where J is any positive real constant. The roots of M(0, z)=0 are
[ zo = {3a/b+./9a?[b*—12/b}/2,

(2.12) ]
z, = {3a/b—\/9a%[b7=12]b}2,

where a=4,+A;, b=4,4;. It should be noted that z, <z;,<0. By the Cauchy-
Riemann differential equation, there holds

O.f 0.f
0,9 0.4
By virtue of (2.11), (2.12) and (2.13), we can apply the real implicit function
theorem to (2.10) in a J,-neighbourhood of £é=0. Moreover 8, is independent
of m, because the constants M,,(0, z;) and 9,M,,(0, z;) are independent of m and
{0IM (¢, 2)}m=3 (I=0, 1) are equicontinuous families at (¢, z)=(0, z;). This
completes the proof of (i.a).

Let k and | be non-negative fixed integers. We show that the constants
0%0'M,(0, z;)u=3,4,... are uniformly bounded and {0%0.M,(¢, z)}-3 is an
equicontinuous family at (¢, z)=(0, z;), which assure (i.b) from the following
well-known fact:

050, (&) = (L) [ Um 85) )¢, (), 0D,

0t (&) = (L5 ) | O 8) )¢, 5, 2,10

We shall show only the case of k=0, I=0. In view of (2.8) and (2.9) it is enough
to show that the constants M,,; (0, z\)m=3,4,. are uniformly bounded and
{M,,; (&, 2)}2-3 is an equicontinuous family at (¢, z)=(0, z,), where k=0, 2.
Note that

(2'i) Rm,Z(O’ zk)vj = vja

(2.ii) Sv; = /jvj—1 + Ji+1vj.y,

(2.13) x0 at (0,7 =(0,72;0).
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and R,, »(0, z,)=(P—D)"! and S are symmetric operators, from which, it follows
that the constants (R,, (0, zy)v;, v;) and (R, (0, z,)S(P—D) Sv;, v;) are in-
dependent of m, where k=0, 2. Therefore the constants M,,; (0, z;) are
independent of m. Next, let |(|<1 and |z|<c*/2. From (2.8) we have

[2(Rp,2(&5 2);, 0)) = 2)( Ry, 2(0, Z))0;, v))|
S 12—z [(Rm,2(&, 2)v3, 0PI + |2l I({R,,2(S, 2)— Ry 2(0, 2i)}vs, 0))
S lz=zl IR, 2(&s DI vl Nl +
+ 1zl IR, 2(&s DINES +2E2)R, 2(0, zi oyl N1l
where k=0, 2. Since | R, »(¢, z)|| £2/c*, (2.i) and (2.ii) yield
12(Rpn,2(S, 2)0i5 07) = 2Ry, 2(0, 2)vs, vl £ e(lz— 2zl +1ED),
where the constant c is independent of m. Similarly we have
[(Ryn,2(&, 2)(iS + zE)(P — D)~ tiSv;, v;) —(R,, (0, 2,)iS(P— D)~ 1iSv;, v;)| < clé|,

where the constant c is independent of m. Therefore

SUPm>3 SUP g 51,{z]sc%/2 |Mm,i,j(f, z)=M,,; (0, z))| < c(lz—z| + &)

where the constant c is independent of m.
To see (ii.a) we substitute g, (&)= 3 m-, c,v, into (2.6), where c,=c,, ;.(£).
Taking the coefficients of v, and v, we have

—idey = '{j(ﬁ)co,
—ico + Ayey — f2ie, = i(&)ey,

from which it follows that k,, (&)co=c,,
where k,, (&)={—1+2,2,, (&) +&3z, (£)}//2. Recalling (2.7), we get

(2.14) dm (&) = Ry(&, Ay, {(8)) (Vo + ki, (E)v3) .

Since g,,;(¢) belong to C*([-d,,6,]; C"*!) and |q,,;(0)] =0, (ii.a) follows.
(ii.b) holds owing to (i.b), (ii.a) and (2.14).

PROPOSITION 2.5. There are constants 6>0, §,>0 and B,>0, which are
independent of m and &, such that the semi-group {e'Tm(%):t=0} is expressed
as follows: '

(i) For any & with |&] <0,

(2.15) e Tm(® x = (1/2ni) lim, ., S_’;‘“:’ (A= T,(&)'xdA +
—p1—ty

+ X j=0,2 €4 (x, ey (—&E))gm+1ey (£).
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(ii) For any & with €| =6,

(2.16) et Tm® x = (1/2mi) lim,_, o, S"’z*f’ et (A= T (&) xd).

=B2—iy
In the above, the first terms on the right hand side of (2.15) and (2.16) have the
following estimates:
-8,

e =T @) Ixd2] S cetlx] j=1.2,

—Bj—iy

@.17) |(1/2ni) lim, ., S

where the constant c is independent of m and &.

PrOOF. We give an outline of the proof. Let §>0. Then the semi-group
is represented by the inverse Laplace transform

e!Tm(® x = (1/2ni) lim, _ S””’em(l_Tm@))_lxdl for any ¢,
B-iy

By virtue of Proposition 2.3 (i) and Cauchy’s integral theorem, we can change
the path {z|z=B+iy ye R} to {z|z=—B,+iy ye R} U {z||z|=B,}. Hence we
obtain (2.15). The expression (2.16) follows from Proposition 2.3 (ii).

To obtain (2.17) we rewrite (A— T,,(£))~! by using the resolvent equation as
follows:

A=T (&) = (A+a,+iES,)" ! + (A+a, +iéS,) (D +ay) (A+a, +iES,)! +
+ (A+a,+i6S,) " (D +a,) (A= T(O) (D +ay) (A+a, +iCS,)™!
=1, + 1, + 1

where a, > max {B; j=1,2, |4 j=0,1,2,...}. Hence we get easily

—Bj+i
I /2mi)s —lim, ., | " e 1,da) < e,
! =Bj—iy
Since
“hiriy At ’ . ,
(57 e raxdi, ) | e Dy +anl 1l 1K1~y + @)
J—t m+1
and
-Bj+i
KS T gt [ xda, x’)
-Bj—iy cm+1

S e M nsup,er,ges, I(—Bj+ iy = T(O) 7 I |1 Do+ ay 12 X1 111 /(— B+ ay)

where S, ={¢||¢| <8} and S, ={¢||£| =}, we have

i
Ve [di| < et D,y+a,]l/2(—B;+ay),
ba

i~

I(1/2mi)s —lim, - ., S:i
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and

—Bjtiy
et L,di|

—Bi—iy

I(1/2ni)s ~lim, -, S
S et sup,ep ges; (= B+ iy — T(E) M 1D+ a4 [2/2(— B;+ay).
The proof is complete by Proposition 2.3.

To state the main theorem in this section we need some definitions.

DEFINITION. Let [20.

H(R,) = {u(x) e L*(R)||lu|}= SR (L+1ED*ag)Pdé <o},
Hl,m = {u(x)=’(u0, Ugseeos um)lquHl(Rx) j=03'-'s m}’ I”u”llz,m: T]!‘=0 "uj“lz9
Hl,oo = {u(x)=t(u0a Ugs..os um"")lquHl(Rx) .’=0, 19 |||“|” lz,oo= 23’0=0 "u1"12< (X')} H
2. operator from H, to H, ,:

(gf)(x) = t((f(x’ ’)’ eO)’ (f(x7 ')a el)r--’ (f(x9 ')a em)a'--) fe Hl,
Z;P:O ujej if u(x) = t(uO(x)7 ul(x)9'-" um(x)"")9
iouje; if u(x) = *(ug(x), uy(x),..., 4n(x)),

(Here we formally define 22-1.)

2L (27 u)(x, v) = {

Ly = {u(x)="(uo(x), uy(X)s..., uu XN 127 ull L= 27l L2y s L1 RA) < 0}

E,=Hy 0 Ly, Ml-Mlgm= - Mlm+ 27" lle

eTmy = /127 X eitx et Tm) (&)dE ueH,,,.
R

THEOREM 2.6. Let 1=0. Then {e'Tm: t=0} is a contraction semi-group
on H,,. Moreover, there exists a constant ¢;>0 which is independent of m such
that e'T» has the following decay estimates:

(i) LetuekE,. Then

e T ullim = ex(Nullim+supieiss |27 8l Lar L+ DY < cqllullpm/(1+D14,

where & is the constant given in Proposition 2.5.
(ii) LetuekE, and uyx)=0 for a.e. x and j=0,2. Then

e T ullim = cqllull gm/(1+ 5%

PrROOF. Nishida and Imai proved the existence and the decay of the solutions
for the Boltzmann equation. (See [5].) ‘- Referring to [5] we can similarly con-
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struct the solutions of (2.1.m). Evidently the constant ¢, is independent of m by
virtue of Proposition 2.3, 2.4 and 2.5.

3. Convergence of solutions for linearized equations of (1.4.m)

In the preceding section we obtained the solution e!T»u for the linearized
equation of (1.4.m). In this section we shall show that {eTmu}®_, converges

to the solution for the linearized equation of (1.2). First, we define infinite di-
mensional vector spaces and infinite dimensional matrix operators.

DEFINITION 3.1.

E=H,n L*R,;; L'RY), M-Me=1I-M+ -l

Foo = {u="(ug(x), uy(x),..., uy(x),...)lu(x) e & for any j and
u(x)=0if j& M, where M is some finite set {0, 1, 2,...}},

7;»: = - Smax + Dm9
T, O
Tm=|¢o6 o. |
01 Ao
1 0 0 A 0
T® = — I s
0~ 0m
\./E 0 ."- 0 .Am
The following lemma is easily shown from Lemma 2.2.
LEMMA 3.1. T3 is a generator of a contraction semi-group {e'T%: t=0}
in Hy .
REMARK. e'T#u="'(e'Tm P,u, u,,,,...) holds for ue H, ,, where P, is the
orthogonal projection from H, ,, to H,,,.
LEMMA 3.2. T® is a generator of 'a contraction semi-group {e'T": t=0}
in H, ,,. Moreover

P1(A—T®)'Pf = (A—B)"Yf for any fe H,, Re A>0.

REMARK. 2~ le!T"Pf=e'Bf holds for any fe H,.
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ProOF. LetueH,,. Since (A—B) '2? lueH,, we can set (A—B)"'? lu=
Do wi(x)e,=2"'w, where w='(wy, wy,..., W,,...)€H, .. So we define the
operator A from H, ,, to H, , by Au=w. Then A4 is a bounded operator. Noting
this and A(A—T*)u=u for ue %, we see AA—T®u=u for ue 2(1—T%),
which shows that A belongs to the resolvent set of T®. Since T is dissipative,
the proof is complete.

In order to obtain Proposition 3.4 we shall prepare the following lemma.
LemMA 3.3. Let Re1>0. Then
lim,, ., (A=Tx) '=(A—-T%)"! strongly in H, ,.

ProOOF. Let xeH,, and £>0. Since (A—T*)Y¥,) is dense in H, , there
exists X' ='(Xg, Xiseees Xppy...) E(A—=T®)(&,,) such that [|x—x'||,,<eRel/2.
In view of x'€e(A—-T*N¥,) there exists y='(yg, Vis--+s Yms---) € Lo such
that x'=(A—T®)y. Since ye¥,, there is an integer N>0 such that for
any j=N,y;=0. If m=N+1, we have TuT*y=T*Tgy, which implies
A=T) 'Te(A-T*)y=TZy. Since x'=(A-T®)y we get (A-T*)1TZx'=
TE(A—T*)"'x. Hence we have

H{A=T2) ' —(A=T*) x|l <

SIHA-T) ' =G =T M x=x)1e + A =TR) ' =CA=T*) " }x|ll1, o

S (2ReMllx =XM1, + MA=TR) T3 =T=)(A=T*) X1,

<e+ [[A=T) " A=T*) Ty =T |00

(since (T2 — T®)x'=0)

=g,
which completes the proof.
ProposITION 3.4. Let T>0and ueH,,. Then
lim, ., supo<,<r e T u—eT ul|, , =0.
See [4] for a complete proof.

PROPOSITION 3.5
@) 2j(Qj=0,2 and A, (&)j=0,, are given in Proposition A.3 and 2.3 re-
spectively. Then we have

(034)(0) = (334, )(0)  for n <2m=3.

(ii) ej(&)j=0,2 and e, (&);j=o,, are given in Proposition A.4 and 2.4 re-
spectively. Then we have
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0te,, ;(0)

0

P{(0%e;)(0)} = for nEm-2,

0

where P is defined by Pf=*(({, eo), ([, €1)s..., (f; €n)s...).

Proor. First, we define some notations:
P*: the orthogonal projection onto the null space of L,

Ry(¢, 2) = (P*—L+idv+z£3)7,
M (&, 2) = — 2(Ry(E, 2)e;; €)ram,) +

+ (Ry(¢, 2)(iv+zE) (P* — L) tive;, e;)r2(r,)»
Mo,o(f, z) Mo,z(f, 2)
Mz,o(é, z) Mz,z(fa z)
z=0+ it o, T€ER,
f(&, 0,7) =Re M(¢, a+it),
g(&, 0, 7) = Im M(&, o+it).

)

M(¢, 2) =|

Applying the real implicit function theorem to
[ f=0,
g =0,

in a neighbourhood of (&, g, 7)=(0, z;, 0), we obtain the solutions z;({)=0c;({)+
it{(&) j=0, 2 of M(¢, z)=0 in the same way as in section 2. See [6]. Moreover
we have

" 0:0,8) = (LG [ FLA Y& 0,0, (),

o(f, g) |9(f, g)
00/0 = (S [ FLD e 0,60, 7,0,
Hence in view of the expressions for M,,; ; and M, ; it is enough to investigate
(a’éalsz,Z(éﬁ z)vh)(05 zj) h = 03 la 2’ 3 l = 0, 2;
(a§a§R2(§9 z)eh)(()’ Zj) h = 0, 19 2; 3 j = 0, 2,
(Smalé‘alszJ(éa Z)U;,) (Oa zj) h = Oa 2’ .] = 0’ 2’

and
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WD4OLR,(E, 2)e) (0, z) h=0, j=0,2.

Put aléaLRm,Z(é, Z)l)h= §=o Qn(éa z, Rm,Z(é’ Z), Sm)vhs where Qn(é9 Z, X’ Y) is
a non-commutative polynomial in &, z, X and Y, which is independent of m
and whose degree with respetc to Y is just n. Replacing D,, and S,, by L and v
respectively, we have

0%0:R,(&, 2)ey = Th=0 Qul(¢; 2, Ry(¢, 2), v)ey
Note the following facts:
R, 20, z))v; = v;, R,(0, zj)e;=¢; i,j=0,2.
R,, >0, Zj)Ui = (—=1/4)v;, R0, z;)e, = (= 1/A)e,
(3.2) j=0,2, i=134,..m k=134,...,
Suv; = Jjvjoy + i+l 0SjSm—1, S, =mvo,_,,
ve; = \/jej—y +j+lejs; 0= j<oo.

It follows from the above that:
() ifn+h=m,

(v.1) 040, z;, R, 5(0, z)), Sp)vw = X128 Ay Vs
(€1) 0,0, z;, Ry(0, 2)), v)e, = T12¢ a, e,
Gi) if n+h=m+1,
(v.2) 0.0, z;, R, 20, 2)), Sp)vw = o an,nsVrs
(e2) 040, zj, Ry(0, z)), v)e, = Xito @y, nrlr + A hm+1€m+15
and (i) f2m—1=Zn+h>m+1,
(v.3) 040, z;, R, 20, 2)), Sp)v, = X2F =W af v, +
+ 2 2m+ 2= (nt by CnhrVrs
(e3) 0,0, zj, Ry(0, z)), v)e, = Z2G' "W ay e, + T2 s 2-mtm dnprer

where the coefficients of v, and e, in the right side hands are the constants and
j=0, 2. Taking the inner product of (v.k)y=,, 3 and (e.k),-, , 3 With v, and e,
respectively, we get for 0Sn+h=<2m—1, in view of (3.2),

(Qn(oa zj’ Rm,Z(O, Zj): Sm)vh’ vs) = (Qn(o’ zja R2(0a zj)9 U)eha es)

where j=0,2 and s=0,2. This implies
(3.3) ((080%Ry,2(E, 200, z)), v;) = ((O£0LR2(E, 2)en)(O, z), ey),
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where k<2m—4, h=0, 1, 2, 3, j=0, 2, s=0, 2. We have similarly
(3'4) ((SmagaiRm,Z(é’ Z)vh)(oa Zj); Us) = ((Ua’éaiRz(f, z)eh)(o’ zj)’ es)’

where k<2m—>5, h=0, 2, j=0, 2, s=1,3. (3.3) and (3.4) complete the proof of
the statement (i).

Replacing 4,, ;, vy and v, in (2.14) by 4;, e, and e, respectively, we obtain the
representation of e;(£). (This is proved in [6].) Using the representations of
e,, (&) and e;(&) together with the statements (i), (v.1) and (e.1), we get the statement
(ii).

PROPOSITION 3.6. Let M =3 be an integer. Then there exists a constant
c(M)>0 such that for any m=M and any fe E

1271 €T P 2f—et® £l < cCM)I|F /(1 + DM,

PrOOF. We estimate |2~ ! e!Tm P, 2f—e'B f||? as follows:

LTI Z7E e Tn® P,2f(E, v) — e'*® J(&, v)|2dvd¢ <

!

—

IIA

(5 asiee-apmtim,., (7 e G- T 2] (€ 002 -
RJ|&|26 —Ba—iy

— (12ni) lim, ., S:" T it (= BE) I, v)dA2dvdE +

Ba—i
+ 2S SI | (141|271 /2mi) limy_'oo g"ﬂw:"’ et (- Tm(é))—lpmgj‘(é’ 0)dA —
RJ[g|<0o =Br—iy
— (/2 lim, ., |7 X (1= BO) 17 (€, v)dAdod +
—p1—1y
+2 SR Sm - (L+1ENHP LS oo, €43 (P, PF(E, D), €y (—E)gm+1m (&) —
— X j=02€MO (f(E v), e[(— &) Lar, ef(O)dvdE
= 11 + Iz + 13.
By the estimates in Proposition 2.5 and A.5
35 LSce2|flIz j=1,2,

where the constant ¢>0 is independent of m and f=min;_, ,f;.
To estimate I; we shall first give some estimates:

€)= 2 en (Ol2cn, S cAMDIEM,
€140 — eam O] < (M)emEREM = 0,2,

where the constant ¢(M) is independent of m, but it is dependent on M, which are
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deduced from Proposition 2.4 and 3.5. Using the decomposition:

et (f, e = ram,ei(§) — P71 ePmi ) (PP, ey (—E))ome18m (E) =
= e'H® {(f, e(—8)— 27 ey (— 1w, ei(O)} +
+ e @ ((f, Py (= O L2r, €)= P UPWPS, € (—E)emr1em (O} +
+ (eMD — 'm0 PYP,P], ey, (—E))ms 1€m,[(E)
=K,s+Ks+Kg j=0,2,

we have from Proposition 2.4
(3.6) S S" K 2dvde
RJ-6
o -
= S-a et 45O ||| (&, - )"i’-(Ru)"ej(“ é)_'?_lem,j(_ 5)”%,2(1:.,)”ej(€)||%2(n,)d€

S oM |7 et U2 PG R, S
< (M) supig 5ol F & M acm, | €7 82424
< DS NEA -+,

and

e | {7 IKidede < OIS+ k=56,

The summation of (3.5) (3.6) and (3.7) completes the proof.
THEOREM 3.7. Suppose =0 and fe E. Then
]imm—'uo Sup0§t<co (1 "'t)al l”'@.—l etTm Pm'@f— ethmI = 0

Proor. Let e>0. Choose an integer N =3 with a<(2N—1)/4. Owing to
Proposition 3.6 there is a constant T>0 such that for any t=T and m=N

(3.8) ll#~" e!Tm P, 2f—e'® flll; < &/(1+1)*.

In view of the remarks in Lemma 3.1 and 3.2 and Proposition 3.4, there exists an
integer M(= N) such that for any m=M

3.9) |#~1etTm P, 2f—e'B fl, < &/(14+ T)M-D/4 on [0, T].

Therefore (3.8) and (3.9) complete the proof.
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4. Existence and decay of solutions for (1.4.m)
We define W,, as follows:
0
Wou, v) = (1/2)| Aq(uov, +u42)
o0t 00)+ T TG = )y )

where u="*"(ug, Uy,..., u,) and v="(vy, vy,..., v,). Then W, can be regarded as
a bilinear operator from H,,, x H,,, to H; .

LemMA 4.1. Letl=1. Supposeu,veH,,. Then
(1) MWty )Ml = ** Ml gm0 M 1,5
(D) 2 W, D)L =2l lll gm0 M 1 s

where c**=2vd and the constant d depends only on l. Therefore the constant c**
is independent of m.

Proor. We first evaluate the k-th component of W,(u,v). Owing to
Schwarz’s inequality, we get
(1/4)|Xk_o VK ni(k—n)! S“ cos” 6 sin*=" 61(0)dO(u,vy _, + g —4V,) —

— W(uovy + uyo)|?

= n

< ko {k!/nl(k—n)'}| Si cos” 0 sin*~" 01(0)dO|? Y k_o luve—,* +
+ Sk_o {k!nW(k—n)'}| g” cos” 0 sin*~" 01(0)dO|2 Yk _ olug_,val2 +
+ v¥(Juovi|* +|uvol?) = I

Noting that 3., {k!/n!(k—n)!}(Sn cos™ 0 sink" 61(0)d0>2§v2 (see [2]), we
have -
I < 4v2 35 o lug—vnl
By Sobolev’s inequality:
Ifall, < dllfllgl. f, g€ H(R,)

we have

A
W Wt 012, = SR(I +1ED? ko [the k-th component of W, (u, v)|?d¢
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—
< 42 Steo | (141602 Shoo o124

é 4V2d2 2'1?=0 Zk=0"uk—n"12"vn“lz
= (c**)2ull?mlivlF m
This shows (i).
Next, summing up Iy x-o,....., W€ have

4.1) I Won(u, 0)II < 2v[Jull [lo]].

From the definition of L},

2= W, 011 = | {127 Watu, wlax|’

L%(Ry)

< ([, 121 W )l iacudx)

- (gn W, (u, v)lldx)2 .

Applying (4.1) and Schwarz’s inequality, we obtain the estimate (ii), and so the
proof is complete.

REMARK 4.2. It is easily seen that
W, (u, u) — W, (v, v) = W,(u+v, u—v).

Making use of Theorem 2.6, Lemma 4.1 and Remark 4.2, we obtain the
following theorem.

THEOREM 4.3. Let I1=1. There exist constants cg>0 and ¢, >0, which are
independent of m, such that for any initial value uy€E,, with ||upllgm<cg,
(1.4m) has a unique solution u(t)e C%[0, 0); Hy,,) n C}([0, 00); H;_ 1 )
Moreover :

Nu@Nim < ca(lltollim+5uPig <5 127 ol L2, DI+ DV = o lluolll g m/(1+ )14,

where 0 is the constant given in Proposition 2.5.
We can prove this theorem by the usual technique. So we omit the proof.
See [5] for a complete proof.

5. Convergence of solutions for (1.4.m)

In this section we show that the solutions constructed in section 4 converge
to the solution for (1.2).
We consider the following equations:
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GD S0 = ety + ! B I (), f(5)as,
(2.m)  ut™(f) = eTm P, Pf, + S; = Tm W (u™(s), ul™(s))ds.

PROPOSITION 5.1. There exists a constant cg>0 such that for any m=3
and fo € E with || foll g <cg, the equations(5.1) and (5.2.m) have unique solutions
f(®) and u™X(t), respectively. Moreover there is a constant ¢>0 such that for
any m=3,

(5.3) SUPo<i<a (1 + D2 f() =27 Tu™ DI, < cll foll e-

Proor. It is clear from Theorem 4.3 and A.8 that the solutions for (5.1) and
(5.2.m) exist. In order to prove (5.3) we directly evaluate X(0, ¢),
where X(a, £)=X(a, t, m)=(1+0)*|| f(t) = 2~ um(@)||;:

X0, 0 < lle?fo— 271 ™ P 2foll, +

+ ‘” So {e¢=98 ['(f(s), f(5))— P! et=9Tm P, 2T (f(s), f(S))}dSWI -

|

+[[§: 271 -9 (B2 L9, S5~ Walutm(s), umisyyds

]

=1+1II, +II,.
By Proposition 3.6 we see

(54 I < cll foll /(1 +1)5%,

and
65 11, = [ ellr, SN/t +1—s5)14ds
S o) {suPogage (L+9 LSO || 1{(1+1=5)4(1 +5)/2)ds
= 6y/Zec(T) {suposyz: (1+9) L FO (1 +0)7,
where ¢(I')=2v(1+d). Next, noting that
Pu2T(f(5), £(5) = Wolu™(5), u™($) = Wo(Po 2] ($)+uM(S), Puf(5) = u™(s)
we get

11, 5 {| 10T W(Puf (9 +um(S), Pl ()= u (S, s

< ¢ielD) || IPRIE)+um 10 X0, 5)/(1+1=s5)1%ds
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< d*supo << (L +)Y4(| P f (1,00 +
+ Nu™($)ll1,) SUPo s <¢ Xml(1/2, 8)/(L+1)!/2

where d*=8\/§c,c(l" ), ¢ is the constant given in Theorem 2.6 and X,(«, t)=
A+ || P 2f () —u™(t)|l;..- Next, we use the following estimates:

SUPo gs<oo (L+)YHIS() 1> SUPo g5< 0 (L+ )4 Nu™($) 1w < c2ll folles
where the constant c, is independent of m. These show that
(5.6) 11, = 2¢,d* || foll g supo <s<: Xn(1/2, 9)/(1+1)12.
Summing up (5.4), (5.5) and (5.6) yields

SUPosi<o0 X(1/2, 1) = clll folll e(1 +64/2e(D)c3 ll foll £)I(1 —2c2d* I fo ll ) -

The proof is complete.

LEMMA 5.2. Let T=0. Suppose g(t)e C%([0, T]; H). Then

S; {et9)B g(s)— P~ e(t=9Tm Pm.?g(s))dsm =0.
1

lim,, ., , SUPo <, <7

Proor. Lete>0and put c=max,<,<r [|g(®){l,. Here we may assume c=0.
Since g(¢) is uniformly continuous on [0, T, there exists a partition 0=s,<
§; <:--<s,=Tsuch that for any i 0Zi<Zk,

i — Si—1 < ¢/6c, llg(s)—g(s;- ), < ¢/6T, forany sel[s;—y,s:].
By Proposition 3.4 there is an integer M =3 such that for any m=>M
mMaxo<i<k SUPo <1 G g(s:), Ml < €/3T,
where G(t, g(s), m)=e'Bg(s)— 2 LetTm P, 2Pg(s). Let m=M and s,_<t<s,.
we have

I§g 0= g mas]

<[zt (65 9, m-Ga—s, g6, myas|| +

Si-

S ST

S' G(t—s, 9(s), m)ds“'l

t

¢/3Tds + S 2cds
1 1

Si- Sh-

< Yt g 2/6Tds + 3=} S
Si-1
= €.

The proof is complete.
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THEOREM 5.3. Let 0=a<1/2 and foeE with ||| foll g <cg, where the constant
cg is given in Proposition 5.1. Suppose that f(t) and u™(t) are solutions of
(5.1) and (5.2.m) with the initial value f, and P, 2f, respectively. Then we have

limy, . ¢, SUPo <i<o (1 + D1 f()) — 27 (D), = 0.

PrOOF. In order to evaluate directly we use the same decomposition in
the proof of Proposition 5.1. According to the proof of Proposition 5.1 we have

5.7 I, £ a; SUPg << X2, 8)/(1+1)* forany m = 3,

where the constant a,<1 is independent of m. Let ¢é>0. By Theorem 3.7
there is an integer M, =3 such that for any m=M,

(5.8) [ < (1—ay)e/2(1+1).

In view of (5.5) for the estimate of I1,, there exists a constant T>0 such that for
any mM,, =T

5.9 I, £ (1—a,)e/2(1 +1)*.
Hence, summing up (5.7), (5.8) and (5.9), we get
(5.10) supr<, X(a, t, m) < (1—az)e+a;5UPg<i<a Xm(®, 1) for m= M,.

To obtain the estimate on [0, T] we note that f(s) is uniformly continuous on
[0, T]. 1t follows from Lemma 5.2 that there is an integer M,(= M) such that
for any m=M,

I, < (1—ay)el2(1+T)* for 0t<T
Consequently, we have
(5.11) supog,<r X(a, t, m) < (1—ay)e + a, SUPp <1< o0 Xm(®, 1) for m 2 M,.

The estimates (5.10) and 5.11) imply the result.

Appendix

We first consider the linearized equation of (1.2):
0.f = Bf,
f 10, %, 0) = fo(x, v).
(A.1) is rewritten, by the Fourier transform with respect to x, into
8.f = (—i¢v+L)f = B/,
[ J©0, & v) = fo(&, v).

(A1)

(A2)
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Regarding £ € R as a parameter, we consider (A.2) in L2(R,). In this appendix
we use the short notation |- || = - | L2(g,)-

LemMa A.l. (i) o(B(¢))={z|RezZ0},

(if) a(B() n{z|Rez=0}=g, if {x0,

(iii) a(B(E)=0B(S) U 0 B(¢)), 6 (B()={zlz=—iy—v, ye R},
where o(B(§)), 6 (B(§)) and o,(B(£)) are the spectrum, the essential spectrum
and the set of the isolated eigenvalues with finite multiplicity of B(&) respectively.

(See [7].)

LEMMA A.2. B(¢) is a generator of a contraction semi-group {e*3(®: =0}
in L(R)).

PROPOSITION A.3.
(i) For any B, €(0, /2], there exist constants >0 and ¢>0 such that

(@) inflyzp,,Rerz-3x/a,16158 [A=BENSIZclfl,  for feL*(R,),
(b) o(BE) N {AIA <P} ={2(O};=0. for [EI=6,

where A (&) are the perturbed eigenvalues of 1; with respect to &.
(ii) For any 6’ >0, there exist constants f,>0 and ¢’ >0 such that

infesz—p,, 11200 [(A—BEOVI 2 ¢IfIl,  for feL*R,).

PROPOSITION A.4. Let A[(&);=o,, be the eigenvalues given in Proposition A.3
and ef(&);=o,2 be the corresponding eigenvectors. Then there exists a constant
0,>0 such that for |£| <6, we have the following results:

(.a) A4)Q)=&%2/(&), sup¢ <5, Re 2 (&)< —py <O,

where z (&) belong to C*([—6,, 6,]) and , is a positive constant.
(ii.a) e&)e C([—9y, 6115 LA(R,)), (e(9), (&) =0,

where d;; is Kronecker’s delta.

PROPOSITION A.5. There are constants 6>0, §,>0 and B,>0 such that
the semi-group {e*B(9): t=0} is expressed as follows:
(i) For any & with |&] <9,

(A.3) eB® f = (1/2ni) lim, ., S'i‘f’ e (h— B(E)-fdA +
—p1=iy

+ Xj=0,2 €O (f, e(—E))r2(r,ye;(&).
(ii) - For any & with |&]| =4,
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(A9 e'BC) f = (1/2xi) limy..w S:iziiy e* (A—B(é)~1fdA.

2

In the above, the first terms on the right hand side of (A.3) and (A.4) have the
following estimates:

=Bj

12 lm, . § 7 08t = B@Y A S et S, = 1.2,

where the constant c is independent of ¢.
From the above results we obtain the existence and the decay of the solutions

for (A.1) in H,.

THEOREM A.6. Let 1=0. Then B is a generator of a contraction semi-
group {e'B: t=0} in H,. Moreover there exists a constant ¢; >0 such that e'B
has the following decay estimates:

(i) LetfeE. Then

lle*Bf M < ey llf e/ (L+2)1e.
(ii) Let feE and SR e(v)f(x, v)dv=0, a.e.x, j=0,2. Then

e*B £l < cilflle/(L+2)3/4
LeMMA A.7. Let l=1. Supposef, ge H,, Then

1) NS ol = e**Nrigl.
@ Nrcs olie = 2vi Mg

Theorem A.6 and Lemma A.7 together imply the following theorem, which
is our main result in this section.

THEOREM A.8. Let I=1. There exist constants cg>0 and ¢,>0 such that
for any initial value foe E with || follg<cg, (1.2) has a unique solution f(t)e
C%([0, o0); H) n CY[0, o0); V,_,), satisfying the estimate

@ = eallfolle/ (1 +2)14.
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