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Intoduction

An existential problem of a weight-controlled subset, which is abbreviated

by a WSP, is a combinatorial problem proposed in [16]. This is specified by a
5-tuρle

(0.1) <17, S, ω: U x S^Z+0, α, b: 5^Z+0>

of a finite set 17, a collection 5 of subsets of U and non-negative integer valued
functions ω, α, b, where the weight function satisfies

ω(u9 s) > 0 if H e s,

ω(u, s) = 0 otherwise,

for any ue U and seS. Then, the problem is to find a subset 4 of U satisfying

(0.2) a(s) ̂  Ω(A, s) = £ ω(w, 5) ^ b(s) for any 565.
ueA

This problem is a general form of various combinatonial problems, e.g., the

problem of timetables [6, 10, 12, 16], graph colorings [2, 20, 22, 23], network

flows [8] or Latin squares [21]. It is difficult in general to check all Ω(A, s)
when U and S are large, and several researches to solve the problems are done

in these papers.

The purpose of this paper is to propose a new efficient algorithm to solve a

WSP. To do this, for a given WSP specified by (0.1), we consider a subset B

c 17, called to be bounded by b, satisfying
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(0.3) Ω(B, s)=Σ <Φ, 5) ̂  b(s) for any seS,
ueB

where ί2(0, s) = 0. If Ω(B, s) < a(s) for some 5 e 5 and if there exists

(0.4) uεi^(B, s) = {uεs - B \ B ( j { u } is bounded by b}9

then Ω(B, s) + 1 ̂  Ω(B U {w}, 5). Thus, starting from the bounded set 0 by b

and adding such an element u to B repeatedly, we may find A with (0.2). More

precisely, we consider a function

s* ' N = {0} U (Uf = i ({0} x Z\)} -> 2"

(p = |[/|, the number of elements in U),

for the set Z+ of all positive integers, satisfying the following conditions:

(*)0 ^(0) = 0 and ί0 = 0.
(*)k If B — jtf(iθ9 ... , ik) is defined for some k < p and il9 ... , i f ceZ + , then we

define

} if 5^(5)^0 and 1 ^ 7 ^ /,

where {t^, ... , wj is the set with some order of all different elements of i^(B9 s)

in (0.4) for some s in

= {seS\Ω(B, s) < a(s) and iT(E, s) * 0}.

This function j/ gives us a tree T defined as follows :

(**)0 Each node of T is an element of N, and 0 is the root of T.

(**)k If (i'o, ..., ίk) is a node of T and j/(i0, ... , ik) S Λ/(ΪO> ••• » ik>j) f°r some ^
< p, 7'eZ + , then (i0, ... , i fc,j) is a node of Γand connected with node (i0, ... , ik).

(**) Every node of Tis given only by (**)0 and a finite number of applications

of (**)*•
Now, the main result of this paper is stated as follows:

THEOREM. Let T be the tree of function ^ of a given WSP specified by

(0.1) and assume that there exists a solution of the WSP. Then there is a leaf

node (ϊ"0, ... , ιfc) of T such that ja/(ι0, ... , ik) is a solution of the WSP.

In other words, we can find a solution of a WSP by checking the first

inequality in (0.2) for any leaf node (/0, . . . , ik) in T if the WSP has a solution.
In § 1, we discuss how to check the solvability of a WSP and to transform

it simpler. In §2, we study the basic properties of the tree derived from a

WSP, and prove the theorem. In § 3, we give an algorithm for solving a WSP

by a tree searching according to the theorem. In §4, we apply it to construct a

solution of the 4-color problem; and in Appendix I & II, some FORTRAN
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programs derived from these are given.

1. An existential problem of a weight-controlled subset and some results

An existential problem of a wieght-controlled subset and its solution are
defined in [16] as follows:

DEFINITION 1 (Specification of WSP). An existential problem of a weight-
controlled subset is specified by a 5-tuple <L7, 5, ω, a, b> satisfying the following

conditions:
(1) U is a finite set which is called the universe,
(2) S is a collection of subsets of U, which is called the condition set,
(3) ω is a function from the set {(u, s)\ues} to the set of all positive integers,

which is called the weight function,
(4) a is a function from S to the set of all non-negative integers, which is called

the lower bound function,
(5) b is a function from S to the set of all non-negative integers, which is called

the upper bound function,

DEFINITION 2 (Solution of WSP). A solution of WSP <17, S, ω, a, b> is a

subset A of U satisfying the condition:

α(s) ̂  Ω(A Π s, s) ^ b(s) for any s in S,
where

Ω(U',s)= £ ω(u,s)
iielΓ

for a subset U' of £/.

By the definition of Ω, we have easily the following properties:

Ω(Uf n V", s) = Ω(U', s) - Ω(U' - υ", s), (1.1)

Ω(U'u U", s) = Ω(U', s) + Ω(V", s) if U'Π £/" = 0 (1.2)

for two subsets U' and U" of U.

In the followings, we denote Z + 0 for the set of all non-negative integers,

Z+ for the set of all positive integers and α(P) for the set of all solutions of a
WSP P.

In order to expand a partial function ω on U x 5 to a total function, we
define ω as follows:

( ω(u, s) if u in s,
ω(u, s) = <

|0 otherwise.
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We use ω in introduction instead of ω.

Figure 1 gives an example of a WSP with U = {ul9 u2,..., us}, S

= {*ι, s2,...9 s5}. Each value of ω(ui9 Sj) is appeared at the cross point of row

M, and column sjt Values a(st) and b(Si) are represented at the column st of row

a and row b respectively. Column A indicates a solution {ul9 u4, u6, UΊ] of the

WSP.
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Figure 1 An example of a WSP

If the size of U and/or 5 of a WSP is larger, it is more difficult to solve

it. Therefore it is important to reduce U and/or 5 without any change of

solvability.

DEFINITION 3 (Inconsistency). A WSP<(7, 5, ω, α, &> is said to be

inconsistent if there is an element 5 in S' such that d (s) > b'(s) on a

WSP<t7, S", ω', a', b'\ where

_ f ω(w, 5) iϊ seS and w e 5,

|max{ω(u, 5;)|u£s j9 i = 1, 2, . . . , f c } if s = s' and ues',

as =
lmax({0fo) - Ω(st - s', sj\i = 1, 2, ..., fc} u{0}) if 5 = s',
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b(s) if seS

£ (ω'(u, „') - cφ, st))\i = 1, 2, ... , fe}

and

Kitagawa [16] proved that if a WSP is inconsistent then there is no

solution. We give an example of an inconsistent WSP in Figure 2. It is
difficult to check that the problem has no solution without checking each subset
of U. But we can prove that by adding a new column s ^ Π s 2 .
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Figure 2 An example of an inconsistent WSP

Kitagawa [16], therefore, proposed a conjecture "if a WSP has no solution

then it is inconsistent". But we find a counter-example of the conjecture shown
in Figure 3. In this example, let be given a WSP <17, 5, ω, α, b> with 5 = {sl9

s2} and U = {ul9 u2}. If a new WSP<ί7, S", ω', a', ft'> is created as an
extension of S' such that

α(s) if 565,

1 if 5 = 5',

b(s) if 5 6 5,
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ω(u, s) if u e s and 565,

ω'(u, s) = 1 if 5 = s' and u = ul9

0 is s = s' and u = u2,

then the new WSP has no solution, nevertheless a'(sf) = b'(s').

ώ S s1 s2 s' = s1 n s2

U

U2

a

b

1 1

0 2

1 2

1 2

1

0

1

1

Figure 3 A counter example of the conjecture in [16]

As similar as expansion of WSP by intersection, we can expand a WSP by

union as follows.

DEFINITION 4 (Expansion by union). For P = WSP <Ϊ7, 5, ω, α, b>, the
expansion of P by union is a WSP <C7, 5, α/, a', b'y which is defined as follows:

ω'(w, 5) =

a'(s) =

b'(s) =

ω(w, 5) if 565 and U65,

£ cφ, 5") if 5 = 5
{s"eS|ues"}

0(5) if 565,

se5

b(s) if 565,

if 5 = 55,

if s = 5S,
seS

where

SS — UseS 5>

P = WSP < 17,5,0), α0,b>,

α0(s) = 0 for any s in S,
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b0(s) = max{ί2(s", sf')\s"eS} for any 5 in S.

THEOREM 1. If A is a solution of WSP<JJ, 5, ω, α, Z?>, then it is also a
solution of the expansion WSP <ί/, 5, ω', a', 2/> Z?

PROOF. Let A be a solution of WSP <£/, 5, ω, α, h>. ^ is also a solution
of both P and P. Then, ί2(ss n A, ss) ^ 0'(ss) can be proved as follows.

Ω(ssΓ\A9ss)

= Y ω'(w, ss)f i \ ~ ΛJ

= Σ Σ ω(w? s/) by the definition of ω'(u, ss)
uessnA {s'eSlues'}

•̂—1 «•—\ / /\ 1_ I I

s'eS ues'n A

^minίY Ω(snA', s)|y4'eα(P)} by Λeα(P)
sis

= α'(5s) by the definitin of a'(ss).

Similarly, Ω(ssΓ\A, ss) g b'(ss) can be proved as follows.

Ms)

Σ v / '\
7 Q}(U~ S )L-l \ •> /

s'eS ues'r\A

by
565

= b'(ss) by the definition of b'(ss).

Therefore

^(5s)^ί2(5$nA,5$)^^(5s).

(Q.E.D.)

By Theorem 1, we obtain the following corollary.

COROLLARY 1. In the expansion WSP(U, 5, ω', a', b'y of a
WSP <17, 5, ω, 0, ft>, // /fe subset ss in S satisfies

a'(ss) > b'(ss),

then the WSP<JJ, S, ω, α, b> /zα^ no solution.

By using Corollary 1, we can know that some WSPs have no solution.
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Figure 4 gives an application of Corollary 1 to the WSP in Figure 3. In

Figure 4, since A^ = {wj, A2 = {u2} and A3 = {ul9 u2}, we have α(P)

= {Al9 A2} and α(P) = {A3}. Then the value of £ Ω(sΓ\ Ai9 s) is 2,2,4 with

respect of each / in {1,2,3}. Then we have a'(ss) = 4, b'(ss) = max {2, 2} = 2.
Hence the WSP has no solution.

ώ S s^ s2 ss

U

M! 1 1 2

u2 0 2 2

a' 1 2 4

f>' 1 2 2

Figure 4 An applicatin of Corollary 1

But the converse of Corollary 1 is not true except the case that S has only
one element. Then, by Corollary 1, we cannot check whether a WSP has a
solution or not. Figure 5 shows an example so that the converse of Corollary 1

is not true. In Figure 5, since A± = {wj, A2 = {w2}, A3 = {w3}, A4 = {ul9 u2}9

A5 = {MI, M3}, A6 = {u2, M3} and AΊ = {uί9 u2, M3}, we have α(P)

= {Aί9 A2, A3, A4} and α(P) = {A5, A6, AΊ}. Then the value of ]Γ Ω(sΓ\Ai9 s)

is 4,2,3,6,7,5,9 with respect of each i in {1,2,..., 7}. Then we have a'(ss)
= min{7,5,9} = 5 and b'(ss) = max {4,2,3,6} - 6. Hence theWSP<l/,S,ω,0,ί>>
has no solution, nevertheless a'(ss) < b'(ss).
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Figure 5 An inapplicable example to Corollary 1
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We have never find any simple (like Corollary 1), necessary and sufficient

condition to check the solvability of WSPs. Then we will change our focus on

special cases of WSPs such that weight function ω has the constant value

1. We will call it binary WSP or BWSP. Actually, we can prove that each

WSP can be transformed to a BWSP without loss of generality. In order to

prove Theoremm 2, four lemmas will be proved in advance.

LEMMA 1. For an element s in S and a non-empty subset s' of U satisfying

two inequalities:

a(s) ^ Ω(s, s) (1.3)

and

Ω(s - s\ s) < a(s), (1.4)

in a WSP<JJ, S, ω, α, ί?>, there is a subset s" of s' such that

a(s) - Ω(s - s', s) ̂  Ω(s" Π s, s).

PROOF. It is easy to prove Lemma 1 as follows:

0 < a(s) - Ω(s - sf, s) by (1.4)

^ Ω(s, s) - Ω(s - s', s) by (1.3)

= Ω(s'(]s,s) by (1.1).

(Q.E.D.)

Since a BWSP can be specified as a 4-tuple <17, S, α, b>, we denote it by

BWSP<17, S, α, b>.

Then, a solution A of a BWSP <£/, 5, α, ί>> can be specified as a subset of

U satisfying the following condition:

a(s) ^ \Ar\s\ ^ b(s) for any s in S.

LEMMA 2. A BWSP<U, S', a', fc'> can be constructed from a

PROOF. If ω(u, s) = 1 for any u in s and any s in 5, then the 4- tuple

<17, S, α, by is a BWSP.

If ω(w, 5) > 1 for some u in U and some 5 in S, then let 5', a' and V be

given as follows:

S = 2U,

a'(sf) = max {pis', s)\sεS} for any s' in S", (1.5)

b'(J) = mines', s)\seS} for any s' in 5', (1.6)
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where

p(s', s) =

|ίΊ + l tt Ω(s, s) <a(s)9 (1.7)

min{|s"|: a(s) - Ω(s - s', s) ̂  Ω(s"Πs, s), s" c s'}

if Ω(s, s) ̂  a(s) and Ω(s - s', 5) < a(s), (1.8)

0 if ί2(s, 5) ^ a(s) and ί2(s - 5', 5) ^ α(s), (1.9)

max {15" I : b(s) ^ ί2(5"π*, *), s" c s'} if Ω(5n*', *) > b(*), (1-10)

|5r| if Ω(sn5', 5) ̂  b(s), (1.11)

', 5) =

and, 1 5' I and \s"\ are the number of elements of 5' and 5" respectively. It is
obvious that the 4-tuple <£/, 5', α', br> is a BWSP. (Q.E.D.)

LEMMA 3. Let 4- tuple <17, S', α', *'> fo? /Ae 5PF5P derived from α
, 5, ω, α, fe>. Then, there is an element s' in S' such that

iff there is an element s in S such that

Ω(s, s) < a(s).

PROOF. (Necessity) If there is an element sf in S' such that a'(s') = \s\
+ 1, then there is an element 5 in S such that p(s', s) = |s'| + 1 by (1.5). Thus,
there is an element s in 5 such that Ω(s, s) < a(s) by (1.7).

(Sufficiency) If there is an element s in S such that Ω(s, s) < a(s\ then
there is an element s' in S' such that p(s', s) = \s'\ + 1 by (1.7). Any 5 in S such
that Ω(s9 s) ̂  a(s) satisfies p(sf, s)^\s'\ by (1.8) and (1.9). Hence

a'(s') = max {pis', s)|seS} = \s'\ + 1. (Q.E.D.)

LEMMA 4. Let 4- tuple <[/, S', a', f/> be the BWSP derived from a
WSP <17, S, ω, 0, by. Then any element s' in S' satisfies

PROOF. It is easy to prove the lemma as follows.

b'(sf) ^ q(sf, s) by (1.6)

g |5Ί by (1.10) and (1.11).

(Q.E.D.)

THEOREM 2. Let P be a WSP(U, S, ω, α, £>>. There exists a P'
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= BWSP^V, S, α', 6'> such that

P has a solution A iff P' has a solution A.

PROOF. Let P' be the BWSP <C7, S', a', &'> derived from a
WSP<£7, S, ω, α, ft> P.

(Necessity) Let A be a solution of P. We will prove that A is a solution
of P' in two cases (i) and (ii).

(i) For s' in S' satisfying Afts'^0, we will show that s' satisfies a'(s')
^ \A(]s'\ ^ b'(s'\ Condition a'(s') <.\A{}s'\ is proved in the following three
cases (i.i), (i.ii) and (i.iii).

(i.i) Since P has a solution, there is no case such that Ω(s, s)
< a(s). Then, there is no s' in S' such that a'(s') = \s'\ + 1 by (1.7).

(i.ii) In the case that Ω(s, s) ̂  a(s) and Ω(s — s', 5) < α(s), we have p(s', 5)
= 0 by (1.9).

(i.iii) In the case that Ω(s, s) ̂  a(s) and Ω(s — s', s) ̂  a(s), we have the
following formulas.

a(s) ^ Ω(A n s9 s) by A e α(P)

= Ω(Ans- Ansffts, s) + Ω(Ar\s'{}s, s) by (1.2)

g Ω(s - s\ s) + Ω(Ans'{}s, s).

Since ^ Πs' satisfies the condition in (1.8), assign A Πs' to 5" in (1.8), and we have

From the above three cases, we finally obtain

a(s')^\Ans'\ by (1.5).

Similar to the above discussion, we will show \A{]s\^b'(s)m the following two
cases (i.iv) and (i.v).

(i.iv) In the case that Ω(sΐ\s'9 s) ̂  b(s), we have

q(sf9s) = \ϊ\ by (1.11).

(i.v) In the case that Ω(sΓ\sf9 s) > b(s), we have

b(s)^Ω(A(]s, s) by

= Ω(A ns - A ns' ns, s) + Ω(Ar\sfΓ\s, s) by (1.2)

Since y4n*' satisfies the condition in (1.10), assign Afts' to s" in (1.10), and we
have
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From the above two cases, we obtain

ί>'(s')^|Λns'| by (1.6).

Hence

(ii) For s' in 5" satisfying A n s' = 0, we have

β($ - S', 5) ̂  ί2((5 - 5') Π A, S)

= Ω(sί]A,s) by Arts' = 0

^φ) by Aeα(P),

for any s in 5. Then, we have

a'(s) = 0 for any s in 5.

On the other hand, we have

|Ans ' | = 0 by Arts' = 0

^ b'(s) by the definition of V .

Hence

This completes the proof of the necessary condition.
(Sufficiency) Let A be a solution of P'. We will prove that A is a

solution of P in two cases (i) and (ii).
(i) In the case that A = 0, we have α'(s') = 0 for any 5' in S'. The value

of p(s', s) in (1.8) is a positive integer by Lemma 1. The value of p(s'9 s) in (1.7)
is also a positive integer by the definition. Therefore a'(sr) is given by only
(1.9), that is,

Ω(s — s', 5) ̂  a(s) for any s' in S' and s in S.

Since S' => 5, let sf be 5, and we have

a(s) = 0 for any 5 in 5.

As the range of upper bound function b is non-negative integers, we have

a(s) ^ Ω(A n *, s) = 0 g b(s) for any 5 in 5.

(ii) In the case that A ^ 0, we suppose that A is not a solution of
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P. There is an s' in 2U such that s' = A. Then, we have

a'(A)^ \A\ ^b'(A).

Hence

b'(A) = \A\ by lemma 4. (1.12)

On the other hand, if there exist three subsets 5, s' of U and s" of 5' such that
Ω(snsf, s) > b(s) and ί2(sΓΊs", s) ̂  b(s), then 5" ̂  sf. Because, if s" = s', then
these two inequalities contradict each other. Thus, if there are 5 and s" such
that ί2(sns', s) > b(s), then b'(sf) < \s'\ by (1.6) and (1.10). Therefore, if there is
an s' in 5' such that i/(s') = |s'|, then Ω(sns'9 s) ̂  b(s) for any s in 5 by

(1.11). Thus we have

β(Λns, s) ̂  b(s) for any 5 in 5 by (1.12).

This inequality means that A satisfies the boundary condition b in P. From
the above assumption that A is not a solution of P, there is an element 5" in 5
which does not satisfy the boundary condition α, that is.

Ω(Ans\s")<a(s"). (1.13)

If A = 17, we have Ω(s", s") < a(s"). Then, there is an element s' in 5" such that
a'(s') = \s'\ + 1 by Lemma 3. This contradicts the assumption that P' has a
solution A. Therefore A^U, that is, U - A ̂  0. Let s' = U - A9 and we
have

Q(s» _ (u _ A\ sf') = Q(A n 5", 5") by s" c U and A c U

< α(s") by (1.13).

Then, (U — A) satisfies the condition formula in (1.8). Then, we have

0 < p(U - A, s") by Lemma 1

^ a'(U - A) by (1.5).

This contradicts the assumption that A is a solution of P'. This completes the
proof of the sufficient condition. (Q.E.D.)

Now we will give a useful proposition for reducing a BWSP.

PROPOSITION 1. Suppose that there exist s± and s2 in S satisfying the
following conditions:

s1^s29 (1.14)

a(sj ^ φ2), (1.15)
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(1.16)

in a BWSP<Ό, S, α, fe>. Then a solution of the BWSP(U, 5, 0, ί>> is also a
solution of BWSP(U, S — {si}, 0 | s _ { S l } , £ | s _ { S l } >, α«ύf vice-versa.

PROOF, (i) Let A be given a solution of the BWSP<(7, 5, α, &>, and we
have

α(s) ̂  | X Γ I 5 | ^ b(s) for any 5 in 5.

Since S— {sj is a subset of 5, ,4 is also a solution of the
BWSP <[/,£-{*,}, s | s _ { S l } , fo|s_{Sl}>.

(ii). Let A be a solution of the BWSP<ί/, 5- {sj, α | s _ { S l } , b\s.(Sl]y,
and we have

0(5) ̂  |^ns| ^ fe(ί) for any 5 in 5- (sj. (1.17)

On the other hand, since

Φi) ̂  Φ2) by (1.15)

^ I ^ Π 5 2 | by (1.17)

^ M n s i l by (1.14),

and

+ l ^ n f r i -s2)|

1X0(^-52)1 by (1.17)

= 6(52) + |51 |-|52 | by (1.14)

^ 6(5j by (1.16),

then we have

a(s1) ?g I X n s J ^ 6(5^ for any 5 in 5.

Thus A is also a solution of the BWSP<(7, 5, α, fe>. (Q.E.D.)

Figure 6 gives an example of Proposition 1. In this example, sl and s2

satisfy the conditions in Proposition 1, and then we can remove sί from the
BWSP without change of solvability.
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Figure 6 An example of Proposition 1

We have discussed how to check solvability of a WSP and to make it

simpler. This proposition is very useful, because the number of all subsets of U

is too large to be checked exhaustively when the size of U is large. On the
other hand, our purposes are not only to check the solvability, but also to

construct a solution. In the following sections, we will show an efficient
method for constructing a solution of WSP.

2. A tree derived from function jf on WSPs

In order to provide an algorithm for construcing a solution of WSP, we

will define a function of a given WSP and investigate its properties. To define

the function for a given WSP <C7, S, ω, α, b>, we use the following notations:

/', s) = {UGS- l/' |Ω((l/'u{u})ns,s)^&(s) for any sεS},

'} = {seS|fl(l/'ns, s) < a(s) and ΉI7', s) * 0},

for V ci U.

DEFINITION 5 (Function ̂  of a WSP). For a given WSP <17, S, ω, a,
we define a function inductively as follows:

(p = I U |5 the number of elements in (7),

for the set Z+ of all positive integers, satisfying the following conditions:

(*)o (̂0) = 0 and i0 = 0.
(*)k If B = s/(iθ9 ... , ik) is defined for some fc < p and i l 9 ... , i f ceZ + , then we
define
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- Λ ί βU {uj} if ίf(B) % 0 and 1 ̂  j ί I,
o,. ..,'» 7) -JB otherwise,

where {MJ, ... , wj is the set with some order of all different elements of i^ (B, s)

for some 5 in

This function s/ gives us the labeled tree T(P) of a given WSP P.

DEFINITION 6 (Tree derived from function si on WSPs). For a given

WSP<[/, 5, ω, α, b> P, we will define a labeled tree T(P) as follows:

(**)0 Each node of T(P) is an element of {0} U((Ji = ι ({0} x Z\)\ and 0 is the
root of T(P).

(**)fc If (/0, . . . , zfc) is a node of Γ(P) and j/(f0? . . , ϋ S ̂ OΌ> - > l'k» 7) f°Γ some
k < p, 7'eZ+, then (z'0, ..., ik, j) is a node of T(P) and connected with node

O'o> > *'*)•
(**) Every node of T(P) is given only by (**)0 and a finite number of

applications of (**)fc.

The label of a node (Ϊ0,..., ifc) of Γ(P) is j^(i0,..., ik).

From the definition of function Λ/, each node of the T(P) of a given
WSP <C7, 5, ω, α, fe> P satisfies a property:

for any 5 in S and any node (i0, . . . , ίk) of T(P). We also have a property :

Ω(.fl/(ίo, . . . , ϊ'k) n 5, 5) + i ^ X β(j^(i0, - - - , ι'k, ) n s, s)
seS

for any two nodes (i0, ...,ik), ( i 0 > - - - > i k > 7) °f T(P) such that (ι'0, ...,ίk, j) is
connected with (f0, . . . , ik).

Now, we show a relationship between a solution of a WSP P and T(P) in
Theorem 3. In order to prove it, a lemma is proved in advance.

LEMMA 5. Let A be a solution of a given WSP <JJ, 5, ω, a, 6>. Γλen,
subset Uf of A satisfies the following condition :

J (Uf) *0=^ (Vs

/') = {sES\Ω(U'ns, s) < a(s)}

for U' c (7.

PROOF. Suppose that Uf ^ A and there exists an element s in ./(£/') such
that Af}i^(U'9s) = 0. Then we have
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Ω(U'ns,s)<a(s). (2.1)

Since A is a solution, we have the following inequality for the above 5,

Ogί2(Λns, s)-α(s)

= Ω((A - i/') n 5, 5) + β(c/' n 5, 5) - φ) by ι/' c A

<Ω((A-Uf)ns9s) by (2.1).

Thus

(A- U')

From the assumption, we have (A — U')Γ\y(U'9 s) = 0. If w e (A — 17') Π 5, then
u^ΊΓ((7', s) and u^ U'. Then, there is an s' in S such that

Ω((U' U {M}) n s', s') > b(s') for any ue(A-U')ί\s

by the definition of V. Since 17' u {u} cz A, this contradicts the assumption
that A is a solution. (Q.E.D.)

THEOREM 3 (Relationship between a solution of a WSP and the tree
T(P)). For a WSP(V, 5, ω, α, fe> P, P /zαs α solution, iff there is a node

PROOF. (Necessity) Let A be a solution of P. Assume that

J (Λ/(i0, . . . , y) ̂  0 for any node (ί0, . . . , y of T(P). (2.3)

Since j/(i0) = 0, j/(i0) c A. If A = 0, then J(sf(i0)) = 0. Then, |A |
^ 1. Moreover assume a node (i0, *Ί, . . . , i^) of T(P) satisfies

\,...,iΰcA (2-4)

for any fceZ+0 such that fe < \A\. Then,

A n T^(j2/(i0> i'ι , . . , ii)» 5) ̂  0 for

by Lemma 5. There are u' and 5' such that

Then, M' e T^(«fi/(i0, iΊ,..., ΐi), 5r). Thus, we have

tt' =0

by the definitin of y. Let u' be the first element of the set with some order of

all different elements of y ( j t f ( i θ 9 iΊ, . . . , *"i)» 5/) an^ we have
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<=A by (2 .4) and ii'e

Thus,

^(0,1,. ..,!) = A .

Then

, 1, . . . , 1)) ̂  0 by (2.3)

, that is, Ω(A Π s, s) < a(s). This contradicts that A is a solution of P.
(Sufficiency) Let (i0, ... , ίk) be a node of T(P) such that J(i0, ... , ίk)) = 0,

and we have

(i0, ... , ik)ns, s) ^ b( s) for any 5 in 5,

and

Ω(Λ?(i0, ... , ik)ns, 5) ^ α(s) for any 5 in 5

by the definition of J. Hence j^(i0, ..., ik) is a solution of P. (Q.E.D.)

From Definitins 5,6 and Theorem 3 for a WSP <C7, 5, ω, α, b> P, we can
construct the labeled tree Γ(P). If P has a solution, then there is a node of

T(P) in which one of the labels corresponds to a solution of P. Hence we can
find a solution to search Γ(P). In order to search T(P) by using a computer,

we should represent Theorem 3 as an algorithm. In the following section, we

will propose such an algorithm.

3. An algorithm for solving WSP

An algorithm for constructing a solution of a given WSP P is to search
each node of the tree Γ(P) exhaustively. But in the tree by Definitin 6, there
are possibly two or more nodes with the same label which causes redundant

searches. Then we will give a theorem to avoid them.

LEMMA 6. Let P be a WSP(U, 5, ω, α, by and T(P) be the tree derived

from <$/ on P. If a node (i0, . . . , ik) of T(P) satisfies

L((Ϊ0,...Λ), Γ(P))c=D(Γ(P)),

then a descendant (ί0,...,ίk, Λ> >7'J (me{0, 1, ... , 1 1/| - fc}) of (iθ9 . . . , ik)
satisfies
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where

D(T(P)) = {(i0, ... , iJeNKio, ... , ίk) is a node of T(P),

and

(i0,...Λ), T(P))

(i<>> >ik>Jι> ..Jq)
 is a node ofT(P\

N = {0}u(U?!ι({0}xZ*+)).

PROOF. If a node (i0, . . . , ik) of Γ(P) satisfies

L((i0,...ΛX Γ(P))

and its descendant (i0, ..., i*, 7ι5 >7m) (we{0, 1, ... , | l/| — /c}) satisfies

then we have

(io, - , ̂  J i , - - > 7 J e L((i0, . . . , ifc), T(P))

by the definition of L. This contradicts that L((i0, ..., ik), T(P)) c D(T(P)).

(Q.E.D.)

THEOREM 4. Lei P be a WSP<JJ, S, ω, α, fe>, Γ(P) te /Ae /ree derived from

efi/ 6>« P, βflί/ (i0, . . . , ik, 7) &e connected with a node (i0, . . . , ίk) of T(P) for each j in

{1, 2, . . . ,/} . T/* we

O» - > iki /) = ^OΌ> - - > ίfc) U {u'} ,

O, - » ̂  A T(P)) c D(Γ(P)) /o

for some element (i0, ... , ik, 7, Ί, ... ,;J o/ L((i0, ... , ifc, ;'), T(P)) such that j ^/,

then
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PROOF. Assume that

on these hypothesis. Let V be j/(ΐ0, ..., ik, j, Λ,..., 7m)?

 an<l we have

J(l/') = 0. (3.1)

Then 17' is a solution of P given by Theorem 3. Since U'au', we have

*(io, - , k /) = •*('<>, - Λ) U K) c I/'. (3.2)

On the other hand, we have

J GS/(ΪO, . . . , ι'k, /, /i, . . . , 7'i)) ̂  0 by Lemma 6.

From (3.2) and Lemma 5 there exists a descendant (i0, ..., ik, /, jΊ,...J'n) of

(*o> » ίfc» /) which satisfies

Then (ι'o, ..., ΐk, /, Ί, . . . , i) is an element of L((i0, ..., ik9 /), T(P)) such that

J(Λ/(ΪO,..., **, /, /i,..., 7ΰ) = 0 by P 1)- Therefore (i0,...,^ /, /ι,.. ,
j'n)$D(T(P)). This contradicts that L((ί0, ... , ik, /), Γ(P)) c D(T(P)).

(Q.E.D.)

This theorem enable us to avoid redundant searches of the tree T(P).
Now we show an algorithm for construting a solution of a given WSP

based on Definitions 5,6 and Theorems 3,4. When a WSP <t7, 5, ω, α, b> P is
given, the following algorithm can search each node with different label.

ALGORITHM 1.

1) Let n:=\U\, S:= {sl9 ..., 5m}, A:=0, J0:= 1, i:= 1, ί, :=0 for each j
in {!,..., m} and / fc:=0, Hk:=0 for each fc in {!,..., n}.

2) Let 7:=^.!.
2.1) If ίj < a(Sj), then let J f :=7 and go to 3), else go to 2.2).
2.2) Let j :=j+l. If j g m, then go to 2.1), else exit: "A is a

solution".
3) If there exists an element u in Sj. — Hb then let Ht:= HiU{u} and go

to 3.1), else go to 3.2).
3.1) If w e Λ u / i U U/i, then go to 3), else go to 3.1.1).

3.1.1) If tk + ω(w, sk) ^ b(sk) for any sk including w, then go to 3.1.2),
else go to 3).

3.1.2) Let ut:= u,

A:=A\j{uι}9

i9 sk) for V5 k 9M ί 9
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ΐ := i + 1
go to 2).

3.2) If i = 1, then exit: "there is no solution".
If ι^2, then let / f :=0,

H,:=0,

fOΓ

go to 3).

In this algorithm, set A indicates a label of a node of the tree. If a node
(ί'o, . . > ϊ'k) is called a level fc node, a level k node has a label A
= {i*!, ..., wk}. Term ί, means a value of Ω(Ar\sp Sj). In step 2), element s
with the smallest number of suffix are selected, but any other element of 5 is
also available. Subset It contains of all processed elements of U which cannot
be included in A.

4. An application to the four color problems

In this section, we show an application to graph coloring problems (say
4CP) defined as follows:

PROBLEM (4CP). For a finite graph G = (V, E\ is there a function C from
V to {1, 2, 3, 4} so that C(v) ̂  C(v') if (υ, v') belongs to E for any pair (ι>, ι/) in
VI

DEFINITION 7 (A WSP derived from a 4CP). For a given 4CP G = (V,E\
the WSP<ί/, 5, ω, α, b> derived from a G is defined as follows:

ί/ = {0;,c)|t;eKce{l,2,3,4}},

ω(w, s) = 1 if M 6 5 and 5 e S,

0(̂ (1;)) = 1 for any ue F,

(̂5^1;)) = 1 for any veV,

a(s2(e, c)) = 0 for any eeE and ce{l, 2, 3, 4},

b(s2(e, c)) = 1 for any eεE and ce{l, 2, 3, 4},

where

eF}, (4.1)
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S2 = {s2(e, c)\eeE, ce{l, 2, 3, 4}}, (4.2)

*1(ι?) = {(ι;,c)6t7|c6{l,2,3,4}}, (4.3)

) = {(VP> C\ (Vq> C)} f°Γ β = K> Vq}

THEOREM 5. If there is a solution of the WSP derived from a 4CP, then a
solution of the 4CP can be constructed.

PROOF. Let P be the WSP <[/, 5, ω, a9 by derived from a 4CP and A be a
solution of P. From (4.1), we have

Ω(Ar\sί(v)9 s^v)) = \A(]sl(v)\ = 1 for any veV.

For each pair (v, c) in slr\A9 we define C(v) = c. We have

O^Q(At]s2(e9c\ s2(e,c))

= \Ans2(e, c)\

^ 1
for any eεE and any ce{l, 2, 3, 4}. This means C(v) ^ C(v') if (v9 v') belongs
to E for any pair (v, v') in V. (Q.E.D.)

We show an algorithm for constructing a WSP from a 4CP.

ALGORITHM 2.
1) Let n = \V\, m = |E|, l/:=0.
2) For i from 1 to n;

2.1) Let 5^-):= 0, φ .̂))̂  1, 6(^(1;,)):= 1,
2.2) For c from 1 to 4;

Let U:= Uu{(υi9 c)}, s^ϋj)^ s^^U {fe c)},
3) For i from 1 to m;

3.1) For c from 1 to 4;
Let 52fe, c):= {(i;^, c), (ϋί2, c)},

flfofo, c)):= 0, ft(*2fe c)):= 1,
where et = (vil9 vh).

Figure 7 illustrates a graph on a 4CP and Figure 8 provides the WSP
derived from the graph in Figure 7. In Figure 8, column A indicates a solution
of the WSP. This means that C(v^) = 1, C(υ2) = 2, C(v3) = 3, C(v4) = 4 and
C(v5) =1. It is easy to confirm that this function gives a coloring of the 4CP.
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Figure 7 A graph on a 4CP
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Appendix I.

A FORTRAN program given in Appendix I is provided for reduction of an
array including 0 values. If the function ω has many 0 values, then the
program is efficient to reduce 0 values in order to require less computer
memory than original array. After the specification of parameters, this
program are given by both a flow-chart and FORTRAN language.

Explanation of parameters.

MM(ί,7'): two-dimensional array which corresponds to the incidence matrix
of ω on U x S.

M: the size of each column of array MM (the cardinality of 5).
N: the size of each row of array MM (the cardinality of U).
UAD(i): a pointer to table OM to search MM (i, 7) in ascending order of j.
SAD(7): a pointer to table OM to search MM (i, 7) in ascending order of i.
OM(fe, p): a reduced array. If MM (i,j) = 0 for some i and 7, then this table

does not include a column such that OM (2, p) = i and OM(3, p)
= 7 for some p.

k = \ 2 3

P ~~
1

2

MMftΛ ϊ } next pointer on OM so that

MM(i, j) > 0 for the same ί

next pointer on OM so that

MM (1,7) > 0 for the same j

WS(j): work array to find the value of OM (5, p).
NUN: pointer of OM(/c, p)
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Init ia l ize some values.

U A D ( i ) : = 0 ( i = l , 2 , . . . , N )

SAD(j) :=0 (j=l,2 M)

NUH:=1

O M ( l , N U M ) : = M M ( i , j )

O M ( 2 , N U M ) : = i

O M ( 3 , N U M ) : = j

OM(4,NUM):=[next pointer on OM so that

HM(i,j) > 0 for the same i]

If there is a MM(i',j) so that MM(i',j) > 0 and i ' < i for

the same j, then let VS be the pointer MM(i',j) on OM and

OM(5,VS):=NUM.

I
If the first pointer on OM that MM(i,j)^ 1 f or the same i, then

_ ϋAD(ί):=NUM. _

)̂  1 for the same j, thenIf the first pointer on OM that

_ SAD(j):=NUM.

\JS(j):=NUM

j
;
=j * l

(5)1 OM(4,NUH-.1):=0
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SUBROUTINE SPCONV(MM)
COMMON OM,SI,TT,A,B,UI,AN,N,M,SAD,UAD

INTEGER OM(5,0:20000),SI(0:201),TT<200)
INTEGER A (200),B<200>,UI<101),AN(2,100)

INTEGER N,M,SADC200),UAD(100)
INTEGER MM<100,200),WS(200)

DO 1 1=1 ,N
UAD(I)=0

CONTINUE

DO 2 1=1 ,M
SAD(I)=0

WSCI)=0
CONTINUE

NUM = 1
,N

J=1 ,M
(MMCI , J) .EQ.O)

OMC1 rNUM)=MMCI

OMC2rNUM)=I
OM(3,NUM)=J
OM(4,NUM)=NUM+1
IF (WS(J).GT.O)

IF (UAD(I) .EQ.O)

IF (SAD(J) .EQ.O)

WS(J)=NUM -

DO 10
DO

1=1
1 1

IF GOTO

J)

11

OM(5,WS(J))=NUM

UAD(Ϊ)=NUM

SAD(J)=NUM

11

10

CONTINUE
OM(4,NUM-1 )=0

CONTINUE

RETURN
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Appendix II.

A tree searching program given in Appendix II is provided for solving
WSP based on Algorithm 1. Before showing a flow-chart and its FORTRAN
program, the explanation of parameters are given as follows:

Explanation of parameters.

OM (ϊ, j\ SAD (j\ UAD (i), M and N are the same of previous explanations.
AN (/?, q): This array has two parts. One part is a set A corresponding to

function j/(/c0,..., /cj, and the other part is each set It to avoid
redundant searches. If AN(1, q) ̂  1, it means that q is included in
A. If AN(1, q) = — i, it means that q is included in It. AN (2, q)
is used for removing of /^ effectively.

TT(7*): corresponds to tj in Algorithm 1, that is, Ω(Ar\SpSj).
SI(ϊ): corresponds to Jt in Algorithm 1.
UI(ϊ): corresponds to ut in Algorithm 1.
A (j): corresponds to the lower bound function a for sjf

B(j): corresponds to the upper bound function b for Sj.
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Initialize some values

(k=l n) ,

subroutine FINDS

Write "SOLVABLE".

Write all elements of A

Write "INSOLVABLE".

subroutine FINDU

}\i =Φ,

-ι! = Iι-ιU{uΓ-ι),

A:=A-{ui-ι},

tk
:
=tk~ω (ui -ι,Sk) for

Ui =U,

A:=AU{uί),

tk
:
=tk*ω (ui.Sk) for

.(R_Cf2)
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V>ω

SUBROUTINE SPTREE
COMMON OM,SI,TT,A,B,UI,AN,N,M,SAD,UAD

INTEGER OM(5,0:20000),SI(0:201),TT(200)

INTEGER A(200),B(200),UI(101),AN(2,100)

INTEGER RC,N,M,SAD(200),UAD(100)

REAL*16 COUNT

"Initialize some values
COUNT=0

SI(0)=1

1 = 1
DO 10 J = 1 ,M

TT(J)=0

10 CONTINUE

DO 20 J=1,N

DO 21 K=1,2
AN(K,J)=0

21 CONTINUE

UI(J)=0
20 CONTINUE

UI(N+1)=0

"Start of f i n d i n g a solution

2 CONTINUE

CALL FINDS(I,RC)
IF (RC.EQ.O) GOTO 888

3 CONTINUE

CALL FINDUCI,RC,COUNT)
GOTO 2

GOTO 3

COUNT

400

IF (RC.EQ.2)

IF (RC.EQ.3)

WRITE(*,400)

FORMATdX, ΊNSOLVABLE

GOTO 999
888 CONTINUE

WRITE(*,*) 'SOLVABLE'
DO 30 K=1,N

IF (ANd ,K) .GT.O) WRITE(*,200)

CONTINUE

WRITE(*,300) COUNT

FORMATd X, 'ANSWER =',I4)
300 FORMATdX, 'TOTAL NUMBER OF
999 CONTINUE

RETURN
END

SUBROUTINE FINDS(I,RC)

COMMON OM,SI,TT,A,B,UI,AN,N,M,SAD,UAD

INTEGER OM(5,OΓ20000),SI(0:201),TT(200)

INTEGER A (200),B(200),UI(101),AN(2,100)

ί
N
I

EG ER
.

 S
'
N
'
M
'
RC
'SAD(200),UAD(100)

s
 w h i c h satisfies TT(sXA(s)

SEARCH NUMBER =',F10.0)

30

200
SEARCH =

τ
,F10.0)

Search

DO 10 S=J,M

IF (TT(S).LT.A<S)) GOTO 50 —
10 CONTINUE

RC = 0

RETURN
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τ
 I f the problem has a solution, this point is the END of search,
t

50 CONTINUE

'Initialize some values for subroutine FINDU
SI(I)=S Ί

UKI)=0 1^
OM(5,0)=SAD(S) fΦ

OM(2,0)=0 I
RC = 3

RETURN
END

SUBROUTINE FI NDU ( I , RC , COUNT )

COMMON OM,SI,TT,A,B,UI,AN,N,M,SAD,UAD
INTEGER OM (5, 0:20000), SI (0:201) ,TT<200)
INTEGER A (200) ,B(200),UI(101),AN(2,100)
INTEGER U,RC-,N,M, S AD (200) , UAD ( 1 00)
REAL*16 COUNT

"Search u w h i c h is in OM(U,S(D) and not

1

u w h i c h
U=UI(I)

CONTINUE
U=OM(5,U)

IF(U.EQ.O)

in AN

GOTO 2

IF (AN(1 ,OM(2,U)) .EQ.O) GOTO 50

GOTO 1

CONTINUE

IF (I.LE.1) THEN

RETURN

END IF

"Trace Back when it has no solution.
IF (UI(I).EQ.O) GOTO 30

K = OM(2»UKI»
31 CONTINUE

J=AN(2,K)
AN(1 ,K)=0

AN(2,K)=0

IF (J.EQ.O) GOTO 30

K = J

GOTO 31

30 CONTINUE

1 = 1-1

U = OM<2,UI(I»
AN(1 ,U)=-(I)

K=UAD(U)

21 CONTINUE
IF (K'.EQ.O) GOTO 20

J=OM(3,K)
TT(J)=TT(J)-OM(1 ,K)

K=OM(4,K)
GOTO 21

20 CONTINUE

RC = 3

RETURN

>©
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"Check u if TTCs)+OMCU,s)>BCs) for all s
50 CONTINUE

J=UAD<OM<2,U))
51 CONTINUE

IF (J.EQ.O) GOTO 60
K=OMC3,J)
IF «TTCK)+OM(1 ,J».GT.B<K» GOTO 1
J=OM<4,J)
GOTO 51

60 CONTINUE

J = OMC2,UICI»
UICI)=U
K=OM(2,U)
ANC1,K)=I
ANC2,K)=J
K=UADCK)

71 CONTINUE
IF (K.EQ.O) GOTO 70

J=OM(3,K)
TT(J)=TT(J)+OM(1,K)
K=OM(4,K)
GOTO 71

70 CONTINUE

COUNT=COUNT+1
RC = 2
RETURN
END
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