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Introduction

We consider SOy(p, q) (or O(p, g)-invariant solutions u of the differential
equation (p + v)u =0, where P =3, . (9/0x)* =3, _;.,(8/dy)* and v is a
complex number. There have appeared several papers dealing with the above
solutions in the sense of distributions ([4], [9], [10], [14]). On the other hand,
we find as a corollary of the result of A. Cerezo [2]: the dimension of the space
of O(p, q)-invariant hyperfunctions u on R?*? which are solutions of the
equation (P + v)Ju =0 is 2 and only SO(p, g)-invariant is 2 if p > 1 and q = 1,
or p=1and q> 1, 4 if p=1, respectively.

In this paper, we call such hyperfunctions “spherical hyperfunctions” and
will give integral representations of “spherical hyperfunctions”. In the paper
[3], Ehrenpreis’ principle says that any solution u of a differential equation Pu
=0 with constant coefficients has an integral representation by a suitable
measure on the variety defined by the polynomial o1 (P)(i£), where o(P) is the
total symbol of P. Thus spherical hyperfunctions may be represented through
integrals with respect to SO, (p, q) (or O(p, g))-invariant measures on the variety
{¢&, meCr*a; Y 2 — Y n} —v =0}. But these integrals are not convergent at
any point of R”*%.  However, in his paper [11], Sato’s idea enables us to justify
these integrals. Thus we can construct spherical hyperfunctions explicitly. In
this paper, when v is not 0, we give integral representations of spherical
hyperfunctions except for p > 1 and g =1. But when p > 1 and ¢ = 1 we can
construct spherical hyperfunctions in the same way as in the case of p = 1 and
q>1.

I would like to express hearty thanks to Professor K. Okamoto who taught
me Sato’s idea.

§0. Notations

Let G =0(p, q) and G, = SOy(p, q) for p>1 and g > 1. Then both G
and G, are acting on R?*4 naturally. Let v be a non-zero arbitrary complex
number and put p = (1/2)Arg(v) (Arg is the principal value) and A = |v|'/2e¥,
where i = (— 1)V/2. Then —n/2 <pu <m/2 and v= A2 Let g = so0,(p, q) that
is the Lie algebra of both G and G,. Let Z%(R?*4) (4% (R"*1)) be the space of
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all G(G,)-invariant hyperfunctions on R?*9, respectively. From Lemma 1 in
[2], #°°(R?*9) = #%(RP*9). Here #%(RP*9) is the space of all g-invariant
hyperfunctios on R?*%. We denote by #S(R?*9) (#S°(R?*9) the space of all
G (G,)-invariant hyperfunctions f such that P, f =0, where P, =), _._ (3/0x,)
— lejsq(é/é‘yj)z +v. In this paper, we denote by ch(t) (and sh()) the real
analytic function (¢! + e™%)/2 (and (¢' — e™")/2) on R, respectively.

§1. p=landg=1

In this section, we give spherical hyperfunctions using an integral
representation for the case in which p=qg=1. That is G=0(,1), G,
= SO0,(1,1). For each ¢ = (g, &,), where g€e{l, — 1} (i =1, 2), we denote by
U, the set of all (z, z,)e C? such that Im(e,z; + &,z,) > 0, where Im z is the
imaginary part of z (¢ C). Let

W' ={U,;e=I(e, &), e{t1}(i=12)} and # = {C*}u# "

Then it is easily seen that (%", ') is a relative Stein covering of (C%, C*\R?)
(see [7] for the relative Stein covering).

LEMMA 1.1. For each ¢ = (g4, &,),

00

!// (21 22) — J eil[alzlch(t—iu)+ezzzsh(t—iu)] dt
& b
0

converges absolutely and uniformly on every compact subset of U, and
holomorphic on U,. Moreover, Y, satisfies the following differential equations on
U,;

1) ((9/021)* = (8/0z2) Wy = — A*Y,

2) (2,0/0zy + 2,0/0z,)Y, = — &, € HEr71c0su ~ieazasinu)

Proor. It is seen that the above integral converges absolutely and
uniformly on every compact subset of U, and holomorphic on U,, because

Re[iA(e,z ch(t — iy) + e,z,8h(t — ip))]
= — |Al[e'Im(e,z, + &,2,) + ImE& + 2 (g,2, — &,2,)]/2.
It is easily seen that Y, satisfies the differential equations 1) and 2), because
(2,0/0z, + 2,0/0z, — &,&,0/0t)e*Erz1eblt—imy +erzasht=iw) — ()
Therefore the lemma is proved.

For each ¢ = (¢, &,), we denote by V, the set of all (z,, z,)e C? such that
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Re(eyzy + €,2,) > 0.

Lemma 1.2. ¥,

303

Here Re z is the real part of z.

is analytically continued from U, to V,UV_, but is not

holomorphic on any neighborhood of the point (z,, z,)€ C* such that €,z, + €,2,

=0.

PRrOOF.

Applying Cauchy’s integral formula, for R > 0, we have

R
ei).[alz;ch(t-iu)+ezzzsh(t—iu)] dt

0

(fn/2
eil[s;z;ch(io —ip)+e2z2sh(i0 —iu)] d@
0
R
eil[nz;ch(: —ip+in/2)+ezash(t—ip+in/2)] d[
0

(fr/2
giterzich(R—ip+i8) +e2zash(R—in+i0)] Jp

0

One can easily see that for each (z,, z,)e U,n V, the last integral converges to 0
when R — co. Therefore for each (z,, z,)e U,nV, we have

(* 0
ei).[mz;ch(t —ip)+e2zash(t —iu)] dt

V]

(fr/2
eil[elz‘cos(e — p) +ie2z2sin(0 — p)] do
0

(* 0
e~ AMerzysh(t —ip) +e2zach(t —in)] dt .

0

Y

Since the right-hand side of the above equality is holomorphic on V,, ¥, is
analytically continued from U, to V,. On the other hand, from Cauchy’s

integral formula
(zla 22)E Uen V—w

along another Jordan curve, we have for each

(* 0
eii.[elzlch(t—iu)+azzzsh(t—-iu)] dt

0
f—n/2

ei).[c;z;cos(o —u) +ie2z2sin(0 — p)] de
0

(* o0
el[slzlsh(t-iu)+ezzzch(t-i;4)] d[ .

0

Hence , is analytically continued from U, to V_, in the same way as
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V.. Therefore the first assertion of the lemma is proved. But the above
integral is not convergent at the point (z, z,)e C? such that &z, + ¢,z,
= 0. Indeed, for fixed real numbers a,, a, and 4, we put z,(9) = ¢,(a, + ia,
+id) and z,(9) = &;(— a; —ia, + ). If 6 >0, then (z,(d), z,(0))e U,. It is
easily seen that there are positive real numbers M,, M, and t, such that if
t>to then M, < cos(ce (a,;cos2u — a,sin2u)) and M, < e~ cexP(~D(@isin2u +azcos2u)
, where ¢ =|4| (> 0). Hence

to

e—céexpt dt + RCJ eilH(&.t) dt,
0

oo

Re y.(z,(9), z,(9)) > M1 M, J

to
where H(J, t) = €,2z,(d)ch(t — iu) + &,2,(0)sh(t — ip). The last term of the
above inequality is convergent when 6 —» + 0. But

o0
lim J e~ gt = 4 0.

6-+0 [y

Therefore y, is not holomorphic on any neighborhood of the point (z,, z,) € C?
such that e,z; + ¢,z, = 0. This implies the second assertion of the lemma.

For the purpose of the construction of g-invariant hyperfunctions, we
consider the following integral;

b
X(Zla ZZ; a, b) — IJ‘ ei).[zlcoso+izzsin9] d9
Then x(z,, z,; a, b) is an entire holomorphic function on C? for any fixed
(a, b)e R? and ((0/0z,)* — 0/0z,)*)y = — A*x. Moreover, since

(2,0/0z, + 2,0/z, + i0/00)e!Hz1e0s0+izasind] — ()

we have
(220102, + 2,0/02,)1(zy, 22 @, b) = [eiereosd +isasin0rjo =t

Now we give spherical hyperfunctions by means of elements of the Ceck
cohomology H*(#'; 0) as follows. Set A = {e= (¢, &,); g;,e{+ 1} (i=1,2)}
and A, = {(¢, n); €A, neA, e,6,n,n, = — 1}. For each (¢, n)e 4,, we define

(pe,r,r(zh 22) = l//a(zl’ ZZ) + l//rl(zb 22) + 'Il"ZX(Zl’ 225 C(8), C(?])),

where c(e) = cle, p) = — €16,1 + (1 — &y)n/2. Then ¢, ,(z;,z,) is a holom-
orphic function on U,nU, by Lemma 1.1. For given U;(i=1,2)in %"’ and a
holomorphic function ¢ on U,nU,, we denote by [(U;nU,; ¢)] the element
in H'(#''; ) which is given by the following 1-cocycle ; {(U,nU,; ¢),
(U,nUy; — o), (otherwise; 0)}.

We define
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fo= [(U(—l,l)n Ua,iys x(zy, 225 — 7, m)]
and

fen=LUNU,; @,,)] for fixed (¢, n)eA,.

ProPOSITION 1.3. For any (e, m)€Ay, f., is g-invariant and f,,=
— fye Moreover, S.S f,, = {(x1, X, i&/2/200): &;%; + &%, = 0} U{(xy, X5 iN
J2Y2 00): pyx, + n,x, = 0}, where S.S f is the singular spectrum of f (see [12],
for the singular spectrum).

Proor. From Lemma 1.1, we have

(220/0zy + 2,0/02;) (Y, + ¥y

- _ EISZCil(s‘chosu—iezzzsinu) _ nlnzeil(mz;cosu-ir]zzzsinu)‘
Since

cos(c(e, n)) = g,cosu  and  sin(c(e, ) = — &,sinp,
we have

(2,0/02, + 2,0/02,) (21, 255 c(e, n), c(n, 1))

- eil(elzlcosu-—iszzzsinu) + ei}.(mzlcosu—ir]zzzsinu)

Hence (z,0/0z, + 2,0/0z,)¢,, =0 for any (e n)ed,. Therefore the first
assertion of the proposition is proved. Im view of the definition of y, we
see that ny1,%(zy, 255 (&), c()) = — ninax(zy, 235 ), €(e)) = &18,x(24, 255 (),
c(e)). Hence ¢, ,(z, z;) = ¢, (21, z;) on U,nU,. Therefore the second asser-
tion of the proposition is proved. The third assertion of the proposition is
clear from Lemma 1.2 and the definition of the singular spectrum.

-1 0 1
Letk1=[ 0 1jlandk2=[0 ?] Then k;eG(i=1,2) and G = G,

Uk;GoUk,GoUk k,Go. For any hyperfunction f on R? we denote by f* the
pull-back of f by the transformation ;x — k;x (i = 1, 2).

ProroSITION 1.4.  For each (¢, n)€ Ay, we have
1) fi:‘,ln =fkm,kls’
2) fi‘zn = fiamkae + (€1 —11)/2) fo-

PrOOF. By virtue of the definition of f,, and the fact that k{' = k;, we
have

IE‘}II = - [(Uk1£n Ukm; (pe,r]( —Zyq, 22))]-

Since c(k,&) = m — c(e), it is easily seen that
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x(— 2y, 235 c(e), c(m) = x(zy, 25 clkyn), c(k,e)).
On the other hand, ¥ .(— z,, z,) = ¥, (2, z;). Hence,
§0s,q( — 24,25 = Vielz1, 25) + lpkm(zu 23) + minax(zy, 235 clkyn), c(ky€)).

Therefore @, ,(— 21, 2;) = Gp,pu(215 22), SincE 111, = — &,6,. Hence 1) of the
proposition is proved. Next we show 2) of the proposition. Since, for any &
and gy,

X2y, 255 — cle, ), clkae, @) = (1 — e)ylzy, 255 — 7, m)/2,
we have
2z1, — 235 c(e), c) — (24, 225 clkan), clk,e))
= x(z1, 225 —cn), — c(€)) + x(z1, 235 clkze), c(kan))
= 121, 225 — cln), clkam) — x(z1, 225 — c(e), c(kze))
= (e; — M)x(zy, 255 — m, W)/2.
Hence, we have
Pen(Z15 22) = Vie(Z1, 22) + V(215 22) + M1M22(21, 225 ckan), c(kze))
+ mina(e — n)xlzy, 225 — m, m)/2.

Therefore ¢, ,(z1, — 22) = Piniae(Z1> 22) + (61 — N)N1M22(24, 2,5 — 7, W)/2. On
the other hand, it is easily seen that

# (Ui N Usges (€1 — 00112 x(24, 225 — 7, 1)/2)] = (61 — 1) fo/2

for any (¢, 7)e A,. Indeed, we define a 0-cochain ¥ (€ C°(#"'; 0)) such that ¥
= {(U(1,1)§ x(zy, 225 —m, @), (U-q,1ys 0), (U(l,—l); x(zy, 255 — 7, W), (U(—l.—l);
0)}. Then we have oy =

{(Ui—1,-yNUq,-1y; 2215 225 = 7, 1), (Up,1yNUqq,-1)5 0),
(U-1,00 Uy 2215 225 = 7, @), (U1, -1yN U= 1,15 0)},
where 6 is the coboundary operator. Hence
LU,-ynUq, -1y — 20215 225 — 7w, W)]
=[U1.ynUq s 221, 225 — 7 1)1 = fo.

This implies that the above equality (#) is true for the case &, =&, =%, =1 and
n, = — 1. For the other cases, one can easily prove the equality (#) similarly.
Therefore 2) of the proposition is proved.
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Now, we can give a basis of #°(R?) and #¢(R?), applying Cerezo’s result
([2]): dim #%(R?) =4 and dim #%(R* =2. We define hyperfunctions g;
(1 < j<4) as follows;

91 = fa.nat. -1y 92 = fu.n- 1.1y
93 =fi-1.-n-11» 9a =J-1,-1.0,-1-
Then it is obvious that g;e #S°(R?) for 1 <j<4.
LemMAa 1.5. g, +g,+ g3 +g4=0.

ProoF. We can define a O-cochain ¢ (eC°¥’; 0)) such that ¢
= {(U(m); — Y,z 22) (U-1,15 Yi-1,0(1 22) — x(z1, 225 — 4, 1+ W)

Umt,-1)s = W1,-1)(215 22) — X215 220 — p, T — p)),
WUa,-1s ¥a,-1(zs 22) — 2024, 225 — 1 1)}
Then it is easily seen that g, + g, + g3 + g, = [(6¥)] = 0. Therefore the
lemma is proved.

PROPOSITION 1.6. Any triple of g; (1 < j <4) is linearly independent.

Proor. We prove the proposition for the case g,, g,, gs3- Let c¢,g9;
+ ¢39; + ¢393 = 0 (c;e C). Then ¢, = c3 =0, because S.S g, = {(x,, x,; i(27*?
, 2712 0); x4 + x5 =0} U{(xy, X553 272, —27YH00); x; — x, =0} and S.S
g3 = {(x1, X33 (2712, 271 0); xy + x, = 0} U{(xy, x55i(— 2712, 271 00) 5
— x; + x, =0}, by Proposition 1.3. Hence c,g9, =0. Since g, is not 0, ¢,
=0. Thus ¢; =c,=c3;=0. In the same way, the linear independence is
showed for the other cases. Hence the proposition is proved.

ProrosiTION 1.7.

gi' =93, gt =94,
9% =92, 95 =4ga+ fo
95 =91, 9% =4
g4 =gs 9% =92~ fo.
Proor. From Proposition 1.4, the proposition is clear.
Finally we define spherical hyperfunction f; (1 < j < 3) by
f1=91+93 f2=91—95 and f3=fo — g, — 29, — g5.

THEOREM 1.8.
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1) {f;;0<j<3} is a basis of BS(R?).
2) {f;;0<j<1} is a basis of BE(R?).

Proor. It is easily seen that f, and g; (1 < j < 3) is linearly independent
by the same proof as in Proposition 1.6, since S.S f, = ¢. Hence it is clear
that f; (0 < j < 3) is linearly independent. Therefore, since dim #%° (R?) = 4, 1)
of the theorem is proved (see[2]). From Proposition 1.7, f, is G-
invariant. Moreover, it is obvious that f, is also G-invariant. Conversely,
from Proposition 1.7, one can easily see that for any fe#Y%(R?), there exist
complex numbers ¢, and c¢; such that f=cqf, + ¢, f;. Therefore 2) of the
theorem is proved.

REMARK. Since one can easily show that f%§ = — f,, f& = f, f% = f, and
f% = — f5 from Proposition 1.7, we have that

BV (R?) = BURY) @ < f2) DS

is the irreducible decomposition of the representation over Z9°(R?) with respect
to the finite group {e, ky, k,, kk,}.

§2. p=1land ¢g>1

In this section, we give spherical hyperfunctions using integral represent-
ation for the case in which p=1, g¢g>1. That is G=0(1,q) and G,
= S0,(1, q). For each ¢ in {1, — 1}, we denote by U® the set of all
(z, w)eC**? (here zeC and weC? such that ¢Imz > |[Imw], where |yl
=1cjeq ¥D)'? for y=(yi,..., y,)€R? and Imw = (Imwy,..., Imw,) for w
=Wy, ..., w)eC% Put

ViH = {(z, wy e C'*; + Imw; > 0}.
Let
W' ={U®;ee{+ 1}Ju{V?;ee{+ 1}, 1<j<q} and # = {C'T}u¥".

Then it is easily seen that (¥, #'') is a relative Stein covering of
(Ct*9, C**9\R**9) (see [7] for the relative Stein covering).

LEMMA 2.1. For each e€{1, — 1},
we(z, W) — '[ Jv ei}.[szch(t—iy)+<w,q>sh(t—iu)](sh(t _ i,u))“_ldr]dt
0 Sqa-1

converges absolutely and uniformly on every compact subset of U® and is
holomorphic on U®. Here {u,v) =Y up; (for u=(uy,...,u)eC? and v
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=(vy,..., )€ CY and dn is the normalized SO(q)-invariant measure such that

f dn=1. (See §0 for the notations A, u, ch, sh.)
sa-t

ProoOF. Since
Re[id(ezch(t — iu) + <w, n)sh(t — iu))]
= — |A|[e'Im(ez + <w, 7)) + Ime ™" *2*#(ez — {w, 1))]/2,

it is clear that the above integral converges absolutely on every compact subset
of U® and is holomorphic on U®.

REMARK. It is easily seen that y, satisfies the following differential
equations in a way similar to Lemma 1.1;

((0/0z)* = Y.(0/ow) W, = — AW,
(wj0/ow, — w0/ow)y, =0 (1<j<q, 1<k<g),

(w,0/0z + z0/ow, )Y, = — e(— isinp)? ™! J gtMezcosp—iCwmsinuly gy

Sa-1

Here 7, is the first coordinate of # (€S?”'). Indeed,
{w,0/0z + z0/dw, — e(cost,0/0t — sint, coth(t — in)d/dt,)}e*HE=W) = (,
where

H(t, z, w) = ezch(t — in) + <w, (7)) sh(t — ip),
n(r)j=cost; || sint, 1<k<qg—1)and n(x),= [] sinz.
1<ksj—-1 1<k<q—1

Hence, we have

(w,0/0z + z8/ow, )Y, = SJ\ J (sh(t — iw)?~ Y(De* 2" dtdy
0 Jsa-1

where D = cost,0/0t — sint coth(t — iu)0/0t,. By integration by parts in the
above integral, we have the third equation of the Remark.

For the purpose of the construction of g-invariant hyperfunctions, we
consider the following integral;

b
x(z, w; a, b) = — l'J\ J giHzcosd —iCwmsind] (_ jsin )11 dfdy.
a Jsa-1

It is easily seen that y(z, w; a, b) is an entrire holomorphic function on C**4 for
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any fixed (a, b)e R2.. Moreover one can see that y satisfies the following
differential equations;
((0/02)" = Lsjsa0/0W))x = — 21,
(w;0/0w, — w0/0w;)x = 0,

(w,0/0z + z0/dw,)x = j [(— isin@)1~ 1 gitlzcosb—iCwm)siné]16=b,, g,
Sa-1

Here we obtain the third equality by the same calculation as in Remark on

Lemma 2.1. '

Put x,(z, w)=2(z, w; 0, ), x-1(z,w)=x(z, w;m—p,m) and @z, w)
= (2, w) + x.(z, w) for each &. Then ¢, is a holomorphic function on U® by
Lemma 2.1. Moreover, from the definition of ¢, it is clear that ¢, satisfies the
following differential equations;

(0/02)* = Y., . i<a(B/OW)) o, = — 20,
(Wja/awk - Wka/awj)(pf =0 (1 < ] < q, 1< k < q),
(w,0/0z + z0/ow,)e, = 0.

Now we discuss the representation of ¢, in terms of special functions. Let
K,(z) be the modified Bessel function of order v.

LEMMA 22. For any (z, w) e U®, we have

e}
j J‘ ei[t:zchl + {w,n)sht] (Sht)q -1 dﬂdt
0 Sa-1

= cq( -2+ {w, W>)_(q_1)/4 K(q—l)/2 (= z2 + <W,W>)1/2),
where c, = n~122@" V2 [(q/2) (I'(z) is the gamma function).

Proor. The right-hand side of the above equality is an infinitely multi-
valued holomorphic function. But it is easily seen that one can choose a single
valued branch of the function on U®, because {Im(— z> + {w, w)) =0, Re
(—22+<{w,w)) <0}nU® = ¢. Since both sides of the equlity are holom-
orphic on U", it is sufficient to prove that the above equality is true over the
following real locus; z = z(r, u) = iercosu, w = w(r, u, a) = rasinu, where r > 0,
lu| < n/2 and a€S9™!. By easy calculation,

©
f j ei).[cz(r,u)cht + (w(r,u,a),n)sht] (Sht)q -1 dﬂdt
0 Sa-1

) T
— C; j J‘ e —rcosucht + ircostsinusht (sinz')“ - Z(Sht)q -1 d’tdt,
0 JoO
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where ¢, = n~/?I(q/2)/I'((g — 1)/2). But one can easily see that the above
integral is independent of the value u. Indeed, since

(0/0u + icostd/dt — isintcothtd/dr)e ~reosucht +ircostsinusht — ()
and

@ T
J j (costd/dt — sintcothtd/dt)eo= ) (sint)?~ %(sht)?~ L drdt = 0,
0 (4]
where H(t, 7; r, u) = — rcosucht + ircostsinusht, we have

a/au<J‘oo J‘ ei[az(r,u)cht+(w(r,u,t).r,)sht] (Sht)q— 1 dﬂdt) =0.
0 Sa-1

On the other hand, it is well known that for any r > 0,

J e "M (sht)! ™ dt = n~ Y2 I'(q/2)(r/2)" @ V/2 K- 1)2(7r).

0

Thus the equality of Lemma 2.2 is true over the above real locus. This
completes the proof of the lemma.

PROPOSITION 2.3. For each (z, w) e U®, we have
@iz, W) = c(A2(— 22 + {w, wD)) TUTIEK ) n ((A2(— 22 + (w, wh))H2).

Proor. Let UY = {(z, w)e C'*9; (Az, Aw)e U®}. Then it is clear that if
is not zero, UY is holomorphically isomorphic to U® and UPnU® is not
¢. By Cauchy’s integral formula, for each (z, w)e UPnU®, we have

(* 0
J‘ ei).[szch(t —ip)+<{w,n)sh(t — iu)](sh(t _ lﬂ))q -1 d”,dt

JO Sa-1

(u

= l J‘ eil[azch( —i6) +{w,n>sh(—i0)] (Sh( _ 16))11 -1 dr]dO

JOJsa-1

(* o

+ J‘ ei).[ezcht + <w,r,)sht](sh [)q -1 dﬂdt.

JO Jsa-t

Thus from the definition of ¢,,
(Pe(z, W) = fmf eil[ezcht+<w,n)sht] (Sht)q—l dr]dt
0 Jsa-t

for each (z, w) e UPnU®. This implies that ¢, is analytically continued from
U® to UY. Hence from Lemma 2.2,

@z, W) = ¢(A%(— 22 + w, W) TUT IR K ) (A2( = 22 + Cw, w))H2).
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Therefore the proposition is proved,

COROLLARY 24. ¢, can be analytically continued over {(z, w); — z*
+ <w, w) =0} but is not holomorphic on any neighborhood of the point
(z, weC ™1 scuh that — z2 + {w, w) = 0.

Proor. From the definition of the modified Bessel function, the corollary
is clear.

Now, we give spherical hyperfunctions by means of the elements of the
Ceck cohomology HY# '; ©). For given W, (1<j<q+1)in #' and a
holomorphic function ¢ on Wyn---nW,,,, we denote by [((W,n---nW,,,; ¢)]
the element in HY# '; ) which is defined by the following g-cocycle;

L..., 1 .
{(WJ.W--OW .5 8N ( q,+ )(p), (otherwise; 0)},
J1s-eos Jg+1

where sgn o is the signum of a permutation o.

Let fo = [(UPnVPn--nVP; x(z, w; —m, m))]. Then it is clear that f, is
a real analytic function on R'*? and f,e #%°(R'*9). For each ¢e{l, — 1}, we
define g, = [(U@n V0 --nVD; e0)].

REMARK. The hyperfunction g, may be defined by the element; [(U®n
Van...n Ve g n n)e.)] for fixed n=(n;) (n;e{1, — 1}), because

1<j=q

[UQnVPn--nVd; )] =[(UONVIIn--nV; [T n0)]

1<j=<q

for any holomorphic function ¢ on U®. Indeed, let y,; be a g — 1 cochain
defined as follows;

Yo = UV n VI VO n VI (— 1Y), (otherwise ; 0)}
for =1, ....Mj-1s Njs15..., M) (;€{1, —1}) and 1 < j<gq. Then
[(U(a)n yan...n VS-'”) NN Vf;"’); 0)]
+FLUOAVIIN- AV VD )]
= [(&pnd’)] =0
Here 6 is the coboundary operator.

PROPOSITION 2.5.  For each ce{l, — 1}, g, BS°(R**9). Moreover, S.S g,
= {(x, y; i(e/2"%, m)o0); x> = || yll, Inll = 1/2, xn/2'? + ey =0 (1 <j < q)}.

ProoF. It is clear that g,e Z#%°(R'*9) from the definition of g, From
Sato’s fundamental theorem (see [12]), we have that
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S.S g, < {(x, y; i(a, byoo); a* — |b|>* =0, ay; + b;x =0,

Vi = yitt; (1 < j, k < q)}.

But, as seen from the definition of g,, if (x, y; i(a, b)oo)eS.S g, then a? = 1/2,
Ib|l =1/2 and a = ¢/2'2. Thus

8.8 g, = {(x, y; i(e/2'2, myoo); x> = |Iy1I%, Inl* = 1/2,
xn;/2Y% + ey, =0 (1 < j<q)}.

Conversely, it is easily seen that g, is not microlocally analytic at the point

(x, y; i(e/2Y%, n)oo) in / — 1S*R**9 such that x* = | y||%, xn;/2'* +¢ey; =0
(1<j<gq) and ||n]|> = 1/2 from Corollary 2.4. Therefore the proposition is
proved.

—1 0 1 0

Let kl=[ L. ],k2=[ 1 ] Then k;eG and G = G,
0 1 0 -1

Uk, GoUk,GoUk,k,Go. For any hyperfunction f on R' 4, we denote by f* the

pull back of f by the transformation x — k;x.

PROPOSITION 2.6.
) f§=fo and gi* =g-, (for any ¢),
2) f¢=/fo and g =g, (for any ¢).
Proor. Since y(—z, w; — w, n) = y(z, w; — 7, ®).
f&=—-LUnVPn-nVyP; xz, wi — m, 1)l
Let ¥ be a g — 1 cochain defined as follows;
Yy ={(VPnvVPn--nVP; x(z, w; —m, m), (otherwise; 0)}.

Then it is easily seen that f, — f& = [(6¢)] =0. Hence f% = f,. Since ¥,
(—z,w)y=y_,(2z, w) and x,(— z, w) = x_,(z, w), we have

ge=—LUTnVEN-nVPsep )] =g
Therefore 1) of the proposition is proved. Since

X(Zs Wity — Wy — T, Tt): X(Z’ Wit Wy — T, 7[),

f,62= —[(U(”ﬂ( ﬂ V.(il))ﬂVfl—l);x(zs Wi oo, —Wq; -7, 7'())]

1<j<q-1

=—[UDnC N VIOV a(z, wy o, wes — )]

1<j<q—-1
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Let Y’ be a g — 1 cochain defined as follows;
Y ={UPn(C N V"), az, w; —m, n)), (otherwise ;0)}.

1<jsq—-1

Then it is easily seen that f, — f¥ = [(6y’)] = 0. Hence f, = f&>. Since @,(z,
— w) = ¢,(z, w), we obtain g¥* = g, by the same proof as f¥* = f,. Therefore 2)
of the proposition is proved.

PROPOSITION 2.7. fo, g, and g_, are linearly independent.
Proor. From Proposition 2.5 and S.S f = ¢, the assertion is clear.

Now, we give a basis of #%°(R'*9) and #¢(R'*9), since Cerezo proved in
[2] that dim #%(R!*9) = 3 and dim #%(R'*9 = 2. We define hyperfunctions
f; 1 <j<2) as follows;
fi=(g1+9-1/2 and f,=1(9,—9-1/2.
THEOREM 2.8. 1) {f;;0<j <2} is a basis of B°(R'*9).
2) {f;;0<j<1} is a basis of BS(R'*9).

Proor. From Proposition 2.7 and the fact that dim #%(R!'*9) = 3, 1) is
clear. By Proposition 2.6, f, and f, are both G-invariant. Conversely, from
Proposition 2.6 and 2.7, one can easily see that for any fe ZS(R**9) there exist
complex numbers oy, «; such that f=oayf, + «,f,. Therefore 2) of the
theorem is proved.

REMARK 1. Let G, = GoUk,G, and G, = GoUkk,G,. Then G; is Lie
subgroups of O(1, q) and G, = SO(1, q). Let Z#5/(R'*9) be the vector subspace
(< BS(R'*9) of all Giinvariants in #,(R**9), for j=1, 2. Then it is clear
that BS(R**9) < #%(R'*9) and #%'(R'*9) < #%(R'*9. But from Propo-
sition 2.6 and Theorem 2.8, we have

AR = BER'Y) < B (R = BLR ).
REMARK 2. Since f% = — f, from Proposition 2.6,

BYPR'Y) = fo> @S> DS

is the irreducible decomposition of the respresentation over ZS°(R'*?) with
respect to the finite group {e, k,}.

§3. p>1land ¢>1

In this section, we give spherical hyperfunctions using integral repesent-
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ation for the case p> 1, g > 1. That is G = O(p, q) and G, = SO(p, q). For
each e {1, — 1} and j (1 < j < p), we denote by U the set of all (z, wye C***
(here ze C? and we C) such that eImz; > ||[Imz||, where z = (z,, ..., z,) and see
§2 for the notation || || and Im. Put V{*V = {(z, w)e C**?; + Imw; > 0}, for
1<j<gq. Then UY and V{ are both convex in C?*% Let

W' ={UP;ee{l, -1}, 1 <j<pju{VP;eefl, -1}, 1<j<q}

and # = #"'U{CP*%. Then it is easily seen that (#, #°') is relative Stein
‘covering of (C?*9 CP*4\R’*9). (For the relative Stein covering, see [7]).
Indeed, from the definition of VP,

U{V9;ee{£ 1}, 1<j<q}) c{lzweC*Imw;=0(1 <j<q)},

where A° is the complement of a set 4. But since
{(z, weCP*4;Imz; # 0, Imw, =0 (1 <k < q)} c UL YUY for each j,
we have CP*I\R?*1 < y{W; Wew '}.

Let ¢;=(0,--, },---, 0)eR’. For each &=(g,,¢,) such that ¢;e
{—1,1} for 1 <j<p, we denote by S, the set of all £ in SP~' such that
(& gje;» =0 for any j (1 <j < p) (for the notation { ), see §2). For each ¢
= (&4, ", &) let D, be the set of all (z, w)e C?*? such that {Imz, &) + {Imw, 1)

> 0 for any ¢ in S, and 7 in S?7 !, where Imz = (Imz,, ..., Imz,) for each z in
(o

Lemma 3.1. D,= () UY for any e = (g, -, &,).
1sjs<p
Proor. Since ¢;e;eS, for any j (1 <j<p) and the minimum value of
Imw, ) (€S~ 1) is — ||Imwl|, if (z, w)e D, then {Imz, ¢;e;> > |[Imw|. Hence
(z, weU$ for any j (1 <j<p). Therefore D,= () UY). Conversely, if
1<jsp

(z,w)elsosp U$ then ¢Imz; > |[Imw| for any j (1 <j<p). It is easily seen

that {Imz, &) > | Imw| for any (€S, and (z, w)e ) Uj»‘f’. Indeed, since ¢, &,
1<j<p
+ - +¢,¢,>1 for any €S,

Imz, & > (e,¢; + -+ + &,8,) [ Imw|| > [[Tmw |

for any (€S, and (z, we () UYY. Hence (z, w)eD,, because the minumum of
1<j<p

Imw, n) (neS?™') is — |Imw]|. Therefore D,> () U%). This completes
1<j=<
the proof of the lemma. =

Put A4(z) = A(z; p, q) = (chz)? " !(shz)? "' and 7, =¢.¢e,--¢,. (See §0 for
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the notation; ch, sh.)

LEMMA 3.2. For each ¢ = (gy,--, ¢,) (§;€ {1, — 1}), the integral

¥z, w) = n”JwJ j @iz eh= i)+ Cwmdshe =il (¢ — jy)dEdndt
0 Js,Jsa-1

converges absolutely and uniformly on every compact subset of D, and is
holomorphic on D,. Here d¢ (dn) is the normalized SO(p)-invariant (SO(q)-
invariant) measure on S Y(S?') such that f dé =1 (J dn = 1>,
respectively. o o

ProoF. Since

Re{iA[{z, &Ych(t — ip) + <w, n)sh(t — ip)]}
= — [Al[e'Im({z, &) + <w, 1)) + Ime™"*24((z, &) — {w, 1))]/2,

the lemma is clear.

For each (a,b)eR* and e¢=(e, -, ¢,) (5;e{£ 1}), we denote by
x:(z, w; a, b) an entire holomorphic functin on C?*? defined by the following
integral ;

b
ine‘[ J‘ f ei).[(z,{)cosc—i<w,r1>sin§]A( _ ic; P, Q)déd"]dc
aJs JSsa-1

Put ¢,(z, w) = Y,(z, w) — x.(z, w; O, p). Then, by Lemma 3.2, ¢, is holom-
orphic on D, for any ¢. Moreover, from the definition of ¢,, it is easily seen
that ¢, satisfies the following differential equations

[(0/0z))* + -+ +(8/02,)* — (0/0w,)* — -+ — (B/ow)*]p, = — A* @,
(w;0/0wy, — w,,0/0w)p, = 0 for any 1 <j, k<gq.
Put H(z, w; &, n, t) = {z, Eycht + {w, ndsht for (z, w, &, n, t)e CP x C? x SP~!
x 8771 x C. Then H is holomorphic with respect to the variables (z, w, t) and

real analytic with respect to the variables (£, #). For fixed ¢ in S,, we denote by
h(z, w; £) a holomorphic function on D, defined by the following integral:

h(z,W;é)=J J eMHEWEnTI A — ip; p, q)dndt
0 Sa-1

m
—i f f eitfEwiem =10 A(— i6; p, q)dndC.
0 Jsqa-1
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Then h is real analytic with respect to ¢ in S, and we have

@z, W) = naf h(z, w; &) d¢

N

€

for any (z, w)eD,.
For the purpose of the proof of the rotation invariance with respect to the

variables (x,,---, x,), we use the following coordinate system on the sphere
sP1;

£,(0) = cosb,,
&,(0) = sinf, cosb,

£,_1(0) = sinb,sin0, ---sinf,_,cosf,_,,
¢,(0) = sinf,sin6, --- sinb,_,sinb,_,,

where 0 <0, <n(1<j<p-2)and 0<0,_, <2rn. Itis well known that the
normalized SO(p)-invariant measure d¢ is represented with respect to this
coordinate as follows;

)
=207

dé (sinB,)?~2(sinf,)? "3 - sin6,_,d6,db, ---db,_,.

Set IV =100 =(0;0<0<m/2}, I"V=I"1D={(0;n/2<0<n}, [©~V
={0;3n/2<60<2rn} and """ Y ={0; n <6 <3n/2}. Then it is easily seen
that for any & = (¢;,--, &,) we have

Se = {(£1(0),+ £,(0)); 0;€I*(1 < j < p—2), 0, el o)},

Indeed, since if (&,(0), -, £,(0))€S, then &&;(0)>0 (1<j<p), we have
gjcosf; >0 (1 <j<p—1) and ¢,sinf,_; >0. Hence ;eI® (1<j<p-—2)
and 0,_, eI®-"* if and only if (£,(), -, £,(0))€S,. Put

S¥ = {¢(0)€S,; 6, =m/2} for each ke{l,-,p—2}
SPD = (EB)€S,; 0,-, = 12 — ¢,)/2},
S = {¢0)€S,; 0,1 = a},
where £(60) = (1(0), -, &,(0)), @, = 0if e,y =2, = 1,0, =2mifl &, = — 2, = |

and g, =mnife,_;=—¢,=—1org,_, =¢,=— 1. Then one can easily see
that 0S, = (J S® for each ¢, where 0S, is the boundary of S,. Indeed, by
1<k=p

virtue of the definition of S®, we have S® = §,n{¢,(6) = 0} for any ¢ and k
(1 <k <p). We equip the sphere S~! with the orientation which is induced
by the canonical orientation of {6;0<6 <n}?"2 x {#;0<6 <2n} and the



318 Atsutaka KOwATA

map

1,75 0,-1) —>(1(6), -+, £,(0)).

Moreover, for any ¢ and k (1 < k < p), S® can be equiped with the orientation
which is compatible with the above orientation of S?~!.

THEOREM 3.3 (Stokes). Let w be a differential form of the degree p — 2 on
SP1, then for any &= (g,,--, ¢,),

j do = Z (— 1)j+18jf 15(w) + (= I)Psp—ﬁpf 1 p-1(®)
s, s s

1sj<p-2 (p-1)
£
+ (—— 1)p+18p~18pf l:p(w)’
SgP)

where 1, ; is the inclusion map from S¥ to SP~1 for each ¢ and j and 1} (w) is the
pull-back of w by the map 1, ;.

Now, we consider the natural action of SO(p) on R?. Then the sphere
§P~1 is stable under this action. Let I = so(p) be the Lie algebra of the Lie
group SO(p). For eachj(1<j<p-—1), set

E;=(ay) and K0, =exp 0,E;,
where
0 fGERH#0J+1, (G+1))
ay = 1 if (G, k=>G+1,))
-1 if(bk)=0,j+1)

and exp is the exponential map of f into SO(p) and 6;e R. Then one can easily
see that

6(0) = '(Kp— 1(617— 1) Kl(el)tel)s

where ‘A is the transpose of a matrix 4 and e, =(1,0,---, 0).
For each k (1 < k < p — 1), we define the vector field X, (X;) on R? (S*™1)
such that

(KN =~ fexp(E))  for any feC(R?)

d
(XiNEQ) =7, flexp(tEy)Q) for any feC*(8"™")

t=0

for any xe R? (£e€S?™ 1), respectively. Then
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0
X, = — - -
X ""“axk x,‘an+1 forany k 1<k<p-—1)
and
X =cosf i—cot@ sinf (1<k< 2), Xy = 4
k= k+1 a6, k k+laxk+l sSksp , Ap-1 —axp_l'

Indeed, the first and second assertion for k = p — 1 are simply seen. For the
second assertion except for k=p— 1, we need some calculations. Since
K ()K(0,) = K{0,)K,(t) for j > k + 2, we have

Kk(t)Kp— 1(017— 1) K1(61)
=K,_1(0,-1) - K200k 4 2) Ki(O) Ky 4 1 (0x 1 1) K (6,) --- K1(64).

On the other hand, we can choose 8, = 8, (¢, 04, 04+ 1), Oisy = Orss(t, O Orsy)
and ¢ = o(t, 0,, 6,,,) such that

Ki®Kyt 10+ )Ki(8) = Kio 1 B ) Ki0) Ky 41 ().
In fact, such 8, f,,, are given as follows;
cosf, = costcosd, — sintsinf,cosb, . ,,
sinfcosf ., = sintcosf) + costsing cosb, ,,
sinf,sinf, . , = sinf,sinb, . ,.

Hence 00,/0t),—o = cosf,,, and 00,,,/0t|,-o = — cotf,sinb, . Since
Ki+1(@)Kj(0) = Kj0)Ky+1(p) for j<k—1 and Ki,(p)'e;="e; for
1 <k <p-—2, we have the second assertion.

Since X, is a real analytic vector field on R?, we can extend it on the
holomorphic vector field on CP, uniquely. In this section, we use the same
notation X, for such a vector field. Let F be a C*-function on C. Set G(z, &)
=F({z, &) for zeCP and ¢eSP!. Then we have X,G(z,¢)
= X G(z, £). Indeed, snce { ) is SO(p)-invariant,

d
i G(exp(tX)z, exp(tX)E)=0 for any Xef.

t=0
Here we extend the action of SO(p) on R? to CP?, naturally. Hence we have the
assertion from the definition of X, and Xj.
Put  w(f) = I'(p/2)/@2n"?)  (sin,)?~2(sinf,)? 3 ---(sinf,_,). Then d¢
= w(0)d0, A --- A dO,_,. We denote by 1(X)(w) the interior product of X and
.

LemMMA 34. We have
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1) (X)) = (— D) ' o(0)[d0,(X;)db; A - Adb,_,
k+1
—dOy, (X)dOy A - AdO,_] (for any k(1 <k <p—2))

and (X,_,)(d&) = (— 1)Pw(0)dO, A -+ A dO,_,,
2) for any ¢ and j (1 <j<p)
K
13X )dE)) = 3 j(— V7 [0(0)d0(X () =2 4Oy A -+ A dO,_,
) k+1
+ Oy, (— 1 [(0)dby+ 1(X1) oy =nj2 401 A =% A dO, 4

(for any k (1 <k <p—13)),
12X -5)(dE)
=0, 2 (= P [0(0)dOy_ 5 (X} —5)]g,_ ,=r2d0y A - A dO,_5 A dO,_,
+ 0, 1,i(— VP2 [(0)d0,_ 1(X}-2)]o, _, =rz—epy2 401 A - AdO,_5,
1250(X - 1)(dd) = 6, (= DP[0(O)]o,_, =rz-epy2d0y A -+ A dO,_,
+ 0,(— DP[w(0)]g, =4, dO; A == A d,_,,

where dfy A % A dO,_; =dO; A - AdO_y AdO .y A AdO,_y and by ; is

the Kronecker’s 6.

j
PrOOF. 1) Put i(Xp)dé)= Y aj0)d; A --*--Adb,_,. Then we
1<jsp—1

see from the definiton of the interior product that for any j (1 <j<p—1),
do,(X}) Ci,1 " Crj-1 Crj+1 0 Crp—1

a;(0) = w(0)det

40, (X)) Cpo1 v Cporj1 Cporjrr 7 Cpo1p-1

where ¢; ; = d6,(0/00)) and det A is the determinant of a matrix 4. Since c;;
=d6,0/00,) =5;; (1 <i,j<p—1),if 1 <k <p—2 then a(0) =(— 1) 'w(0)
d0(X1), ay+1(0) = (— 1)w(0)dO, . ,(X}) and ajf) =0for 1 < j<k—1,k+2<
j<p—1. fk=p—1then a,_(0)=(—1)’w(®) and af)=0for 1 <j<p
—2. Thus 1) of the lemma is proved.

2) From the definition of :¥; and 1), 2) is easily obtained.
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Now we recall the functions ¢,, h and the vector field X, on R? or C*. In
view of the remark on the vector fields X, and X;, we have

X, 0.(z, w) = nsj (X h)(z, w; &)dé  for any ¢ and k.
S

&

Let Ly, be the Lie derivative over S~ ! with respect to X;. Then LX;((dé) =0,
because d¢ is an invariant measure. Hence we have for any ¢ and k,

J (Xih)(z, w; Q)dE = f Ly, (h(z, w; £)d¢)  for (z, w)eD,.
S, S,

Let d be the exterior derivative over SP~!. Since
LX;( =doi(X}) + 1(X)od and d(hdé) =0,

we have for any ¢ and k.

|

Thanks to Stokes’ Theorem 3.3 and from Lemma 3.4, we have

Ly; (h(z, w; §)d&) = J d@(X)(h(z, w; £)dC))  for (z, w)eD,.

SE

&

LemMmA 3.5. For any ¢ -and (z, w)e D,,

(Xk9.)(z, w) = Ekn:J‘ [h(z, w; 5(9))w(0)0050k+1]ak=n/2 do, 5 db,_,

k
s¢0

k+1

- 8k+1nsJ [h(z, w; 5(9))w(9)00t0k]0k+1=n/2 dfy - dep—l
Sge+ 1)

(for any kK (1 <k <p—13)),

(Xp—Z(pe)(Z’ W) =

81:—2 nzf [h(Z, w; 6(0))(0(9)005911— 1]0p_z=n/2 d01 e dep—Sdep— 1
sgp-z)

—&p—1 n:J\ [h(Z, w; 6(6))w(0)00t9p—2]9p~ 1=m(2 —¢p)/2 del o dep—Z’
s@-1
(Xp— 1(/)5)(29 W) =

8p-— lspns j‘ [h(Z, w; 6(0))(0(0)]0,,_ 1=m(2 —¢p)/2 dol o dep—l
SgP‘ 1)

— ep_lspnef [h(z, w; E0))w(6)]p,_, =4, 401 -+~ dO, .
Sf:P)
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Set Y=w,0/0z, + z,0/0w,. Then it is easily seen that
{Y—D(, 0,, t,; 8/0t, 8/06,, 8/dt,)} ePHEW:EOA1=In) =

where D(t, &, n) = D(t, 6,, ©,; d/0dt, 3/08,, 0/0t,) = cos@,cost,0/0t — sint,cosb,
coth(t — iu)d/0t, — sinf,cost,tanh(t — iu)d/00, and n(r) = (n,(7),---, n,(7)) (€
§971) is defined in a way similar to &(6).

Let w,(0) = w(f) and w,(7) be defined in a way similar to w,(0). Then dn
= wy(t)dty A -+ Adt,_;. Now, we calculate Yo, First we have

Y.z, W)=nsf f f (D(t, &, n)e*HEmEm W) A(t — ip)dndCdt
0 Js Jsa-1t

.
=7, J [A(t — ip)e?HC == g (B)cos,cost,db --- db,_,dn
sa-1

v

£

= At — i)
- f f é—(%;—li)e“”wp(@)cosﬁlcosrldf)l-~d0p_1d11dt
0 Js, Jsa-1t

(* 0
+ 7, e A(t — ip)coth(t — iu)cos, i(sinrlcuq(r))dédndt
0 Js, Jsa-1 0t
- 817‘5‘[ ‘[ J v(@', 7, t)A(t — ip)th(t — ip)cost,d0, ---db,_ dndt
0 sgl) Sa-1

+ nsf f f e  A(t — ip)th(t — iu)cost, ﬁ(sinﬂla)l,((}))d@1 cdf,_, dndt,
0 Js, Jsa-t .

where v(0, 1, t; z, w) = v(0, 1, t) = [@, ()" #¥]y _,» and th(t) = tanh(t).
But
dA(t — ip)

— cosf, costyw,(0)w,(1) o

0
+ A(t — ip)coth(t — iu)cos@lwp(f))aT (sint;w,(1))
1

0
+ A(t — ip)tanh(t — iu)cosrlwq(r)ge— (sinf, w,(0)) = 0.
1

Thus we have

Yy, (z, w) = — nsf j e HHEWEOMO. ~i) A(— jy: p, g)cosh,cost,dEdn
s, Jsa-1

— elnef j f v(@, n, t; z, wA(t —ip; p — 1, g + 1)cost,dB, --- dO,_  dndt.
0 sgl) Sa-1
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By the same calculation for Yy,(z, w; a, b), we have

Yy.(z, w; a, b) =

- “aj j [e*HC=0 A(—il; p, q)1525 cosO, cost, dédn
s,Js9-1

b
- ielnaJ‘ J j v(@, n, —iQ)A(—il; p—1, q + 1)cost,df,---dO,_,dnd(.
a Jsihdsa-t

Therefore we have
LEMMmA 3.6. For any ¢ and (z, weD,,

Yo (z, w) =

- s,nsf J‘ f v(@', 1, t; z, wd(t —ip; p— 1, g + 1)cost,dO, ---db,_,dndt
0 sgl) Sa-1

u
+ islnsf f J v(@, 7, —il)4(—il; p— 1, q + 1)cost,db, ---db,_ dnd(.
0 JsdJsa-1

Now, we give spherical hyperfunctions by the elements of the Ceck
cohomology H?*1 " }(%'; ©). Under the same notation as in §2, we put

f=LUPN-nUPAVEN-n VO x(z, W),

where

Az, W)=I f J eiHa oSt Ziwmsindl A(— i(; p, q)d&dndl.
—nJs,Jsa-1

Then it is clear that f is a real analytic function on RP*? and
feB%(RP*9). Let

g= [(U(lﬁl)n... n Ugip)n V(ll)n - N Vfll); QDE)]-

Then we have
PROPOSITION 3.7. geZB%°(RP9).

Proor. It is clear that g satisfies the following differential equations;
[(0/0x1)* + -+ + (8/0x,)* — (9/0y,)* — -+ — (8/0y,)*1g = — A%g,
(y;0/0yx — »0/dy)g =0 for any 1 <j, k<gq.

Since the Lie algebra g is spanned by the differential operators x,0/x;.

—X410/% (L<k<p—1), »0/Ye+1— V+19/y (1<k<q-—1), y0/0x,
+ x,0/dy,, we must prove that
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(%0/0%; 1 — X4+10/0x)g =0 (1 <k <p—1) and (y,0/0x; + x,0/0y,)g = 0.

First we prove that (x;,,0/0x;, — x,0/0x,,,)9 =0. For each k
(1 <k<p)setek)=(g, ", &—1>0, &1, &), Where ;€ { £ 1} for j # k and

Uk) = N Uy for any 1 <k <p and gk). Put

1<jsp
itk
k
%(k)(z, w) = Eknsj [h(z, w; 5(9))wp(9)0050k+1]ok=n/2 dfy -~ dop—l

NS

f1<k<p-2),

k
‘Pa(k)(Z, w) = sk”aj [h(z, w; 5(9))wp(9)C0t9k-1]ok=n/z dfy - d0p—l

SK)
(f2<k<p-2),

k
V.

Whel'e dol """ dep_l = dgl “'dek_1d0k+1 "'dep_l and

Pep— 1)(2, W) =é&p- lspnej [h(Z, w; 5(9))0)‘,(6)]9},_ 1=be del dgp—z,

-1
SgP )

Vep-1y(2, W) = sp-lnej [h(z, w; Hw,(0)cotl, _,Tq,_, =5, 401 ---db,_,,

stp-1)
&

l//s(p)(z’ W) = 8p— 18p1te [h(z, w; 5(0))wp(0)]0p_ 1=ag del e dgp— 2>

5@

where b, = n(2 — ¢,)/2.

Then it is easily seen that ¢,,, and ¥, are holomorphic on U(e(k)) for
1<k<p-—1and2<k<p, respectively. In fact, we see from the same proof
as in Lemma 3.1 that if (z, w)e U(e(k)) then (Imz, &) + {Imw, n)> > 0 for any
teS® and neS?!, where we set e(k) = (g, -, &1, 0, 41,5 €,) for &
= (€4,**, &,). Thus, by the same proof as in Lemma 3.2, ¢,y and ¥, are
both holomorphic on U(e(k)). Foreach k(1 <k<p—1),letc,beap+q—2
cochain defined as follows:

{UEERINVPN-nVP; (= 1) p,,,) for each g(k),
Uk + ))n VP n--n V5 (= 1 Y,44 ) for each ek + 1),
(otherwise ; 0)}.

Then d(c,) = {(UE'n---nUEnVEIN--nVY); @ty — Yoo 1)), (otherwise ; 0),
for e =(¢;,--, ¢,)}. On the other hand, by Lemma 3.5 and the definition of
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Pewy and l//s(k)a we have
Xk(Pa=(ps(k)—¢5(k+1) for any & and 1 SkSp— 1.

Thus (x4 ,0/0x, — x,.0/0%;+1)g = [6(c,)] =0 for any 1 <k<p—1.

Next, we prove that (y,0/0x,; + x,0/0y,)g =0. For any &(1) = (0, &, -+,
&,), let x.1)(z, w) be the holomorphic function on D, defined by the right-hand
side of the equality of Lemma 3.6. Then in a way similar to the proof of
Lemma 3.2, we see that y,,, is holomorphic on U(g(1)). Letcbeap+qg—2
cochain defined as follows;

c={(UEMNVPn--nVY; 2.4)), (otherwise; 0); for &(1) = (0, &3, -, &,)}.
Then
3) = {Un--nULNVIN-- V] xe))s (otherwise; 0);

for e = (ey,--+, &)}

Thus (y,0/0x; + x,0/0y,)g =0, because Yo, = x,,, for any &= (e, -, ¢,)
Therefore the proposition is proved.

Now, we consider the singular spectrum of the hyperfunction g. For any
e=(ey,, &) (g;e{x 1}), let

g. = LU N---nUSPnVPn--nVPY; 9]

Then g =) g,. For each ¢ and (x, y)e R?*9, let I,(x, y) be the dual cone of
D,(x, y), where D.(x, y) = {(a, b)e R"*%; (x + ia, y + ib)eD,}. Here I,(x, y) is
regarded as the subset of \/— 1 T, R?*%. We put

Iyx, y) = {pe/— 1 S&, R**9; peI,(x, y)}

for each ¢ and (x, y)e R”*9, where p is the projection of pe / — 1 T§ ,, R?*% to
J — 18§, RP"%. Then one can easily see that

I(x,y) = {i(a, b)oo; e1ay + -+ + €,a, > | b]| and g;a; >0 for 1 <j< p}.

In fact, if &¢ + - +¢,¢,>[nll and ¢¢;>0 (1 <j<p) then {ya; + -
+ &y, + Myby + -+ by = | bll(ery + o+ €p8,) +miby + o +1gby 2 (1B
nl + nby + - +n,b, >0 for any (a, b)eD,(x, y). Conversely, if §;a; + -
+¢,a, + nyby 4 - 4+ n,b, > 0 for any (a, b)e D,(x, y) then &,y + - + €,¢, >
rlin| for any 0 < r < 1, because we can choose (a, b)e D,(x, y) such that a; = ¢;
and b;= —njr/lln| for0<r<land 1 <j<p. Thuseé, + - +¢,¢, > nll
and ¢;¢; > 0. In view of the definition of the singular spectrum, we have
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$Sg.c U T.xy for each e.

(x,y)eRP * 4

We put §= 5.1 @0z W)= 0,1z, w) and go =4g,....,- We shall
prove that (0, 0; i(a, b)oo)€e S.S g, for any (a, b)e R?*? such that |a| = |b]
=2"Y2and ;>0 for any 1 <j<p. Let

Do =Dy.,...;, and D; = {(z, we C**9; Rez; > |Rew| for any 1 < j<p}.
Put

(Pl(z’ W) =

ip+q-2JwJ f e—l[<z,€>sh(t-in)+<w,v1>ch(t-iu)]A(t —iu; q, p)dfdndt.
0 JsJdsa-1
Then ¢; is a holomorphic function on D; (j = 1, 2). Moreover, it is easily seen
that
@o(z, W) = @4(z, W) — xo(z, w; 0, p — m/2)  for any (z, weDoN D,

by the same proof as in Proposition 2.3 (or Lemma 1.2), where y,
= Xa,..1)- But we have

ProrosiTiON 3.8. Let (a, b)eR?*? be such that |a| =|b|l #0 and
lal|"taeS or — |a||"*aeS. Then @, is not holomorphic on any neighborhood
of the point (z, w) = (iay, -, ia,, iby,---, ib,). Hence @, can’t be analytically
continued to the previous point.

COROLLARY 3.9. (0, 0; i(a, b)oo)€e S.S g, for any (a, b)e RP*4 such that | a||
=|b|=2""and a; >0 (1 <j<p).

Proor. Since S.S g, = Uf(l’...,l)(x, ), the corollary follows from Propo-
sition 3.8.

For the proof of Proposition 3.8, we need some lemmas. Let N
={1,2,---} and J,(z) (#?) be the Bessel function (Hankel) of order v.

LemMa 3.10. If Ref > |Imal|, ve N and 2ue NU{0} then we have

f e~ Pshi(chppt1 (sh t)“,]#(ozch t)dt

0

= ¢;(v, W(@/0Py{at(o® + 22T A, 5 (07 + B2V}

1
— J e PETTDVI L2 _ [0 m D2 (ax)dx,
o

where ¢, (v, p) = (n/2)}2e™*® and arg(x®> — 1) =n/2 if x < 1.
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Proor. We put x =cht. Then

j o~ Psht (cht)"+ 1 (she)’J u(cxcht)dt

0
=j e PERmDVEyut1(y2 1HE=D2J (ax) dx.
1
On the other hand, it is well known that for Ref > |Ima|

[+ o}
-[ e PP DM xud (32 )12 ] (ax)dx
0

= (n/2)'Pe™ak(a® 4+ B2)THETIE D), L((@F + BA)YP),
where arg(x? — 1)V/2 = n/2 if x <1 (see [1]). This implies the lemma.

Let U be a relatievely compact open subset of C. Then for each a e C we
have

LEMMA 3.11. IfveN and 2ue N then there exists a positive number M such
that for any Be U\{ = ia}

10/0B)" {(® + B%)™H2 A2, (e + B*)'2)} — cy(v, wB*(0® + B2 7¥|
SM|0(2 + ﬂzl—v—y+1’

where ¢, =c,(v, W) =(— 1)2"**I'v + w/I(WI(1 —yw if veN and u
—1/2eNU{0}, (= 1)"*#*+127 12"k 'y + 1) if ve N and peN.

Proor. 1) Let u—1/2e Nu{0}. It is well known that
HO2) = J_(2) — (— 1] (2).

Hence from the definition of J, ,(z), we have z™*#?)(z) =

QHy=2u S (— 127 72k
k=oF(k+1)F(—u+k+1)
0 1}k -2k
_(_ 1)#2-# Z ( 1) 2 2k

sol(k+ D)+ k+1)
Hence, we have
(0/0B{(* + B2 # 2@ + BY')}

_ (=12 + )
S TWra - p

Bt + )R+ @+ BT S B + B
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where u,(B) is a polynomial of § and the last term of the above equality is
uniformly convergent on every compact subset of C with respect to the variable
o0
B. Thus there exists a positive number M such that | Y. w(B)(«* + 2| < M
k=0

for any peU. Therefore the lemma is proved when u — 1/2e NU{0}.
2) Let peN. It is well known that

HC(2) = (— 1{J,(2) — (= V'N,(2)},

where N, is the Neumann function of order u. From the definition of N, and
the same calculation as 1), we have the lemma.

LEMMA 3.12. Let aeRP such that |a||#0 and |a|| ‘aeS or
— |lal|"ta€S, we have

DIf(1—p)/2>v>—p—q/2+ 3/2 then

o~ +0

lim 5“’“‘””"[ [<deq + ia, &) + [la]?["d¢ = 0,
N

- +0

2) lim 5‘”+q“2’/2f (deg + ia, E)P7 1 [Kdeq + ia, £)* + |la|?] 7P~ 92732 d¢ # 0,
S

where ey = (1,---, 1)e R".

Proor. For a positive number J, we set

100) = J [<deo + ia, &)* + [lall?" d¢,
N

J(9) = j (deq + ia, EYPT1[{ ey + ia, £D% + |la]|?] P92 +32 ¢,
s

If ||a|"'aeS, then there exists an element k(a) in SO(p) such that a
= ||a||K(a)e,. By the simple calculation, we have

1(9) =f |K(9; &5 a)l"dd,
k(a)~ 1S

J@) = f ((Beo, k(@)Y + illall Cey, EYPTUK(S; &5 @) PmU2 2 g,
k(a)~ 'S

where
K(0;¢&; a)=|lall*(1 — <ey, £)?) + 2id| al ey, £)<eq, k(@)E) + {Dey, k(@) )>.

Moreover, when |a| 'aeS, there exist real numbers p, (0 < p, < 7/2), p,
(n/2 < p, <m) and a compact set C (< [0, ]~ 3 x [0, 2n]) such that
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k(a@)™'S = {(£(0);0< 0, <p, or p, <6, <m, (6-,0,_,)eC}.
Of course, p? + (p, — m)> #0. When p, >0, we set

I'o)= rj IK(6; £(0); o)’ w,(6)db, ---db,_,,
0 Jc
J'(0) = rf ({Beg, k(a)E) + illall ey, EXPTIK(S; &5 a) P42 T2 4E,
0 Jc

We put x = 6'2cotf,. Then, by the simple calculation,

[}

Ir(é) — 6v+p/2—1/2j‘

d(d)

f K (0; x, &; a)*(6 + x?) ">~ P2 dxd¢,
C

)

J'(®) = ‘Ydj

j Ky x, &5 aP T K (65 x, &5 a) (6 + x*)¥2 1 dEdx,

4@ Jc

where

Ky (05 x, &5 a) = |all* + 2illalx(a'x + 8'2<¢, &) + d(a'x + 6'/2<¢, &))?,
K,(8; x, &; a) = adx + 6{e, &) +i|a|x, d(J) = é'*cotp,,

d=(p+qg—2)/2, k=—p—q/2+3/2, d =|al 'Y a;, & =kia) ‘e, —de,,
& = E(0) = (£(0) — cosB,e,)(sinf,)~ ! and

d¢ =2"'n"P2[(p/2)(sinb,)* "3 ---sinb,_,dO, ---db, _,.

Hence if — v — p/2 > — 1/2 then

lim 6~v~P2+12[(§) = 5||al|”f x“27P(|la|l + 2ia'x?) dx,
- +0 0

e o)
lim 6®*1~212 J'(§) = i”‘léllall‘"q’“l’/zj xP*t173(|la| + 2ia'x?)*dx,
= +0 0

where ¢ =J d&’. When p, <7, we set
c
1"(5)=J JIK(5;5(9);a)lva(0)d91-~'d9p-1,
pP2JC

J"(0) = rj (Kdeg, k(@)&> + illall<ey, EYT1K(S; &; @) P72 32 dE.
C

P2

Then, by the same calculation as I'(d) and J'(d), if — v — p/2 > — 1/2 we obtain
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0
lim Y~ P2¥121"(§) = ¢ IIaIIVJ (= x)"27?(|al|| + 2id'x?)"dx,
5 +0 —®
0
lim §®*4-2/2J"(5) = i"’16||a|1""+”/zj (= xP*973(lla]| + 2ia'x?)dx.
5 +0 cw

Hence if (1 —p)/2>v>k= —p—gq/2+3/2 then JliTo oPra=22 (§) = 0.
Therefore, if ||a] ~'ac$, we have 1) of the lemma. When — [|a|| 'a€S, we

obtain 1) of the lemma by the same proof. Moreover, ¢ # 0 and

Q0
J [x[P*273(|la|| + 2ia'x?)~P~9U2+312gx

- 0

_T((p+49-2/9I(p - 1)/2) [Zia’ ]-wa-m Lo,

I'((2p + 49— 3)/2) lal
since @' = ||a| "'} a; > 0. Hence we have 2) of the lemma when [a|~'a€S.
But when — |la||"'aeS we have the same. Therefore the lemma is proved.

In the proof of Proposition 3.8, we use the following notation. For each

w=(wy, -, w)eC? we set y(w)=( Y, wH'2 Here z!/? = |z|'/2¢(Ae)/2 for
1sjsq
each ze C, where Argz is the principal value of argz. Then the notation y is an

extension of the notation | | in §2.

PrOOF OF PROPOSITION 3.8. For a positive number J, we put z(d) = (6
+iay, -+, 6 +ia,) and wy = (iby,---, ib;). Then (z(), wo)eD,. It is well
known that

J em iy = 24712 [g/2)p(0) ™42 S g0 ().
s9-1

Since y(Ach(t — iu)b) = Ach(t — ip)| b|| = ch(t — in)y(Ab) for any t>0 and
be R, we have

©1(2(5), wo) = ¢o (4 ||b||)-(q—2)/z %

L j e~ KOOI T aya (R bl ch(t — iw) At — in; ¢/2 + 1, p)d&dL,
N

where ¢, = i?*97226"2/2 (q/2). Set

1,(0) = C'zf (Oeq + ia, EYPT1[(Seq + ia, &Y + ||b||2]PU2+312 g¢,
s
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1,(0) = J L(; ¢; a, b)dS and
S

I;(0) = — j Jl Ly(4; &; a, bydxdE
S

0o

n
+ ij j [P A(—it; q/2 + 1, p)J g 2y2(ach(— i) Ja=aypy dtdg,
§J0 p=4i{deo+ia,&)
where ¢, = c,(p — 1, (q — 1)/2)A7P79%2,
L(; &5 a,b) = [(a/aﬂ)p—l{(aZ + Bz)(—q+1)/4 'yffz—)ﬁ 1)/2 ((0‘2 + ﬂz)l/z)}
—cp—1,(g— 1)/~ + BA) TPV ey
B=A4{deo+ia, &)
and
Ly(d;¢5a,b) =
[e PO~ D2xa2(x2 — )= D2 J oo (@X)a=ap) :
B=A4{deo+ia,&)
Then from Lemma 3.10, it is easily seen that

@1(2(8), wo) = ol Ab (79T D2 {1 (11(0) + 1,(9)) + 13(9)}.
Indeed, if Ref > |Imal, Re e ™#(— B + ia) < 0 and |u| < n, we have

I(a, p) = r) e  PR=(ch(t — ip))** ! (sh(t — iw)" J, (ach(t — ip))dt

0

= r e~ (ch(r))* 1 (sh(t))” J, (ech(t))dt

0

+ ir ePshit(ch(— it))** Y(sh(— it))” J, (ach( — it))dt,

0

from Cauchy’s integral formula. Hence, from Lemma 3.10,

I, B) = ¢, (v, v)(9/0B)" {o"(0® + B*)~ @V A2, 5 (0 + B2}

1
— J e PP D2 yv(x2 _ )= DI2  (ax) dx
0

+i f " epshit(ch( — it)* 1 (sh( — it))" J, (ach( — if))dt.

0

First, from Lemma 3.12 2), we have lim §%*972/2],(8) # 0. Secondly, from
o0~ +0

Lemma 3.11, we have 3.11, we have
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|60 972, (5)] < M'6P*a- 22 f |(Beq + ia, E)2 + |[b]|2|7P=92+ 5124,
s

where M’ = M |A|~277%%5 (see Lemma 3.11 for M). Hence from Lemma 3.12

1), we have lim 6®*9"P2[,(8) =0, if [a|=[b|#0 and |[a] ‘ac

0= +0

+ S. Finally, since lim Is(9) exists, we have lim 6%*4~2/2[3(6) = 0. There-
8- +0 6—+0

fore

lim 6797272 @, (2(5), wo) # 0.

5~ +0
Since (z(0), wo) = (iay, -+, ia,, iby, -+, ib)) if 6 = + 0, Proposition 3.8 is proved.
Now, we have the following proposition from Corollary 3.9.
ProposITION 3.13. S.S g coincides with the following set A;
A ={(x, y; ia, b)o); llall = [Ibll = 27", a;x, = &Xj, bV = Ymbus

buXj= — a;yy for any 1 <j<p, 1<k<p, 1<m<gq,1<n<gqj.

PrOOF. Thanks to Sato’s theorem, we have S.S g = A. Put 4, = AN

{x=y=0}and 4, = An{x #0 or y #0}. First we prove that S.S gn4, #
¢. Indeed, from the remark of the singular spectrum of g,, we have S.S g.n
{(x=y=0}c I,(0, 0) for each ¢ and S.S g = S.S g,. But from the definition of
I, 0,0;i(a bo)¢l, if e#(1,---, 1), |a] = b =272 and a; > 0 (for any
1 <j<p). Thus we have S.S gnA, # ¢ from Corollary 3.9. We recall the
Lie group G, = SO,(p, q) and it’s natural action on R?*4  This action induces
the action on \/ — 1 S*R?*4 naturally. It is easily seen that A, is G,- stable
under this induced action of G,. Moreover A, is G-transitive.
Hence S.5 gnAy = A4,. In fact, if pe A, and p¢ S.S gnA,, then for pyeS.S
gNnAo (# ¢) there exists ke G, such that p = kp,, because A, is G,-transitive.
But, since S.S g is G,-stable, pe S.S gnA,. This contradicts to p¢S.S gnA,.
Thus S.S gnAy = A,.

On the other hand, since the differential operator P =Y (9/0x;> — ).
(0/dy,)? is simply characteristic, it is well known that the singular spectrum
propagates along the bicharacteristic curve of the Hamiltonian vector field
H,p), where o(P) is the principal symbol of the differential operator P (see
[6]). Thus S.S gnA; = 4,. In fact, it is easily seen that the bicharacteristic

curve through the point (a, b; i(c, d)oo)e,/ — 1 S*RP* 4 is

Y5 a, b e, d)=(cit +ay, -, cpt +a, —dit+by,---, —d;t +b,; i(c, d)oo).
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Hence A, = S.S g, since for any (x, y; i(a, byoo)e A; y(t; 0, 0, a, b) through the
point (0, 0; i(a, b)oo)e A;,. Thus S.S g = A, since A = A,UA;. Therefore the
proposition is proved.

We recall the Lie group G = O(p, q). Then we have
PROPOSITION 3.14. f and g are both G-invariant,

Proor.

-1 0 1 0

Letk1=[ L },k2=[ T ] Then k;eG and G = G,
0 1 0 -1

Uk, GoUk,GoUk, k,G,. Hence it is sufficient to prove that f* = fand gt =g

(j=1,2). The proof of the k;-invariance of f is as the same proof of f, in

Proposition 2.6. Since

V(= 24, 23,000, 2, W) = — l//(—el,ez,v--,sp)(z’ W)
for any &= (e;,--,¢,), we have g = — [(U{nUS?n---nUnV{n--n
VO = @—ey.e,))] =g.  Since @,(z, w) is ky-invariant, we have g** = g. There-
fore the proposition is proved.
Finally, we have the following theorem.

THEOREM 3.15. If p>2 and q > 2 then
BY(R?*Y) = BI(RPT9) = {f > D {g)-

Proor. It is clear that f and g are linearly independent from Proposition
313 and S.S f=¢. Therefore, from the Cerezo’s result; dim Z¢(R?*9)
= dim #% (RP*9) =2 (p > 2, q > 2) and Proposition 3.7, we have the theorem.
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