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1. Introduction

In the last years there has been an increasing interest in studying the oscillatory
behaviour of the solutions of differential equations and inequalities which involve
forcing terms of the kind introduced by Kartsatos [9, 10]. As examples, we refer
the reader to the papers of Chen and Yeh [2-4], Foster [5], Grace and Lalli
[6-8], Kartsatos [11], Kusano et al. [12-14], and True [17]. The purpose of
this paper is to establish some new oscillation criteria for higher order functional
differential inequalities involving more general forcing functions. More precisely,
we consider the class of perturbations which represent the so called strongly
bounded functions (see [15]).

The functional differential inequalities under consideration are of the form

(1) x(t){Lnx(t)+f(t, x(gi(t)),..., x(gm(t))) - h(t)} p , n even,

and

(2) x(0{Lnx(t) -/(r, x(gi(t)l...9 x(gm(t))) - h(t)} ̂  0, n odd,

where n ^ 2 and Ln is the general disconjugate differential operator defined re-
cursively by Lox(t) = ao(t)x(t) and

Lkx(t) = ^(OCL^^COX, k = 1, 2,..., n.

We shall assume that a^t), i = 0,1, . . . , n, are positive and continuous functions on
[f0, oo) and the operator Ln is in the first canonical form in the sense that

(3) [" aj = co, i = 1,2 n - 1.

In what follows, the set of all real-valued functions y(t) defined on [ty, oo) and
such that Lfy(0, i = 0, 1,..., n, exist and are continuous on \ty, oo) will be denoted
by ^(Ln).

For the inequalities (1) and (2) the following conditions will be assumed
without further mention:
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( i ) fe C([f0, oo) x Rm
9 R) has the following sign property:

/(*, x l 9 . . . ,x j > 0 for (xt x j € « ? , t^t0,
/ ( r ,x 1 , . . . ,xm)<0 for (xj x j e* ! ! , *^ *0,
where /?+ = (0, oo) and R. = (-00, 0) ;

(ii) ^eC([f0, 00), /?), lim^tfXO = 00, i = 1, 2,..., m;
(iii) /ieC([f0, 00), i?) and there exists a function pe@(Ln) such that Lnp(t) =

h(t) and Lop(t) is strongly bounded on [f0, 00) in the sense that for every
T^r0 there are T*, T*^T such that

= min,e[r)00) Lo/>(0 and Lop(T*) = maxte[r>oo)Lop(0.

As usual, we restrict our considerations only to those solutions x(t) of (1)
(or (2)) which exist on some ray [tx, 00) and satisfy

sup{|x(s)|: s ^ t} > 0

for every t e [tx, 00). Such a solution is called oscillatory if it has arbitrarily
large zeros in [tx, 00) and it is called nonoscillatory otherwise.

2. Preliminaries

To formulate our results we shall use the following shorthand notation.
Letjre{l, 2,..., n — 1}, r = l , 2,..., n —1, and r, se[r0, 00). We define /0 = l and

7r(̂ , s;ju...Jr) = \ a-jtix)!,-^, s;j2,...9jr)dr.
Js

For the sake of brevity we denote

a4(f, s) = aoKt)Ik(t, s; 1,..., fc), afc(0 = ak(t, i0),

a>k(r, s) = fl^KOW^ s; n -1 , . . . , n -k) , cok(0 = cok(t, t0).

Moreover, we shall have an occasion to use the following generalized Taylor's
formula given in [1]:

u j j i
(4)

l . 1(T, / ;r , . . . , i+l) L
n^l\ dx,

where i = 0, 1,..., r; r = 0, 1,..., n —1; r, se[r0, 00).
Now we state two well-known Kiguradze's Lemmas which will be needed in

proving our results. For the proof see for example [16].

LEMMA 1. Let ye@(Ln) satisfy y(t)>0 and Lny(t)<0 on [ry, 00), ty^to.
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Then there exist a T^ty and an integer £9 O ^ ^ n — 1, such thatn+£ is odd and

(5) Lty{i) > 0 on [T, oo) for i = 0, 1,..., £,

(6) (-l)'- 'Ljj<0 > 0 on [T, oo) for i = £, £ + 1,..., n.

LEMMA 2. Let ye@(Ln) satisfy y(t)>0 and Lny(i)>0 on \ty, oo), ty^t0.
Then either

(7) L(y(t) > 0 on [T, oo) /or i = 0, 1,..., n,

or there exist an integer £, 0^£^n — 29 such that n + £ is odd and (5) and (6)
hold on [T, oo).

We shall prove further the following lemma which plays an important role
in our later considerations.

LEMMA 3. Suppose that the conditions (i)-(iii) hold. If x(t) is any non-
oscillatory solution of (1) (or (2)) on an interval [tx9 oo), tx^t0, then LQx(i) is
bounded away from zero, i.e. there exist a T^itx and a positive constant c
such that \Lox(t)\^c whenever t^T

PROOF. We consider only (1). Let x(t) be a nonoscillatory solution of (1)
on [tx, oo), tx^t0. Choose tl sufficiently large and assume x(f)>0 for t^t^tx
(the proof for x(t)<0 being similar). Since glt)^>oo as *->oo, there is a t2'^t1

such that x(0*(O)>O for t^t2 and i = l, 2,..., m. Put u(t) = x(t)-p(t). By (1)
and condition (i) we have Lnw(0<0 for t*zt2 and consequently Ltu(i)9

i = 0, 1,..., n —1, have to be eventually of constant sign. In particular, Lou(t) is
either positive or negative for t^t3^t2, where f3 is sufficiently large.

Assume first that Lox(t) is unbounded for large t. Then Lou(t) is also un-
bounded and Lou(i)>0 for t^t3. From Lemma 1 it follows that L1u(i)>0 for
every large t.

If Lox(t) is bounded we use Lemma 1 in the case Lou(0>0, resp. Lemma 2
in the case Lou(f)<0, to conclude that L1u(t)>0 for t^.t3.

Hence in both cases we conclude that the function Lou(t) is increasing on
[f3, oo). Choose t*}zt3 such that L0p(f*) = minfg[,3>00)L0KO- Then

Lox(t) ^ Lox(t*) + Lop(t) - Lop(t*) ^ Lox(t*) > 0 for t ^ t3

and the proof is complete.

3. Main results

On the basis of Lemma 3 we can prove
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THEOREM 1. Suppose that the conditions (i)-(iii) and

(8) limsup^^aoCO < °o

are satisfied and, moreover, for any c>0 there is a cx>0 such that for all t^t0

xt ^ c, i = 1, 2,..., m, implies f(t, xt,..., xm) ^ cl9 and

Xi<> - c,i = 1, 2,..., m, implies f(t, xl9..., xj g - cx.

Then every solution x(t) of (1) is oscillatory.

PROOF. Assume to the contrary that there exists a nonoscillatory solution
x(t) of (1). Let x(t) be positive for t^tx^t0. It follows from Lemma 3 that
there exist a T^tx and a positive constant c such that Lox(t)^c for t^T. By
(ii) we have that there is a T^Tsuch that Lox(g£t))^.c for i = l, 2,..., m and
t^Tt. Hence, putting u(t) = x(t) — p(t) and taking (8) into account, we have
from (1)

L n u ( t ) ^ - f i t , x { g x ( t ) ) , . . . , x ( g m ( t ) ) ) ^ - c t < 0 , t ^ T l 9

and by Lemma 1 from [16] we get lim^^ Lou(t)= — oo. Since Lop(t) is bounded,
) = \imt^o0(L0u(t)-\-L0p(t))= — oo, a contradiction to the positivity

In the case x(f)<0 on [tx, oo) the proof is similar.

EXAMPLE 1. All assumptions of Theorem 1 hold in the case of the inequality

(9) x(t) {x"(0 + [x2(r) + x2(t-n/2)]x(t) ~ sin t} ^ 0, t^ n/2.

Thus all solutions of (9) are oscillatory. One such solution is x(f) = sin t.

EXAMPLE 2. The advanced inequality

(10) x(0

- 2 sin (logQ

has the oscillatory solution x(t) = sin (log t)/t. Moreover, as it follows from
Theorem 1 where we have p(0 = cos(log t)jt, every solution of (10) is oscillatory.

EXAMPLE 3. Consider the inequality

x(t) {(£T'x'(0)' + e~*'2x(t- njl) + e~«x(t- n) -

- ^"2f(sint-3cost) + *r'(cost + sint)} ^ 0
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for t^n. Here p(i) = (l + e~t)sin t. Since all conditions of Theorem 1 are
satisfied, every solution of (11) is oscillatory. For example, x(t) = e~tsint is
one such solution.

The next example shows that Theorem 1 is in general false in the case of odd
order inequality (2). However, we are able to prove a similar theorem concerning
the oscillation of all bounded solutions of (2).

EXAMPLE 4. The third order linear inequality

(12) x(t) {t(t(tx'(t))fy - x(t - n) - t(cos t-3tsint-12 cos 0} ̂  0,

t ̂  7c, satisfies all the conditions of Theorem 1 with p(t) = sin f, but it has x(t) =
t + sin t as an unbounded nonoscillatory solution. On the other hand, the above
inequality admits the bounded oscillatory solution x(r) = sin t.

THEOREM 2. Suppose that the conditions of Theorem 1 are satisfied. Then
every bounded solution x(t) of (2) is oscillatory.

PROOF. Let x(t) be a bounded nonoscillatory solution of the inequality (2).
Arguing exactly as in the proof of Theorem 1 we conclude that l im^^ Lox(t) =oo
for x(t) eventually positive, resp. lim,_ ̂  Lox(t) = — oo for x(t) eventually negative.
In view of (8), this contradicts the boundedness of x(t).

EXAMPLE 5. Consider the equation

(t(tx'(t))fy - e^2t2lx2(t) + e*x2(e*'2ty]x(e*'2t) =

(13^ 2 sin (log Q + 2 cos (log?) _ cos (log t)
t2 t

for t**l. Here the forcing term is the third "quasi-derivative" of the strongly
bounded function p(i) = (l + t~1)sin(\ogt). Moreover, since the problem of
oscillation of the functional differential inequalities (1) and (2) includes the problem
of oscillation of the corresponding functional differential equations, we may
conclude, by Theorem 2, that all bounded solutions of the above equation are
oscillatory. In fact, x(i) = sin (log t)/t is one such solution.

Now, let the function/(r, xl9...9 xm) satisfy, in addition to (i), the following
condition:
(iv) for any u e @(Ln) such that

M(0 ^ cafc_i(0, resp. u(t) ̂  - c a ^ ^ O ,

for some constant c>0, some integer k, 1^/c^n —1, and t^tx^t09 there

exists *2^' i s u c n t n a t
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f(t,u(gi(t)),...,u(gm(t)))

^ f(t, mk _ t(g t(0), • • •, cak _

resp.

f(t,u(9l(t)),...,u(gm(t)))

on [f2, oo).

THEOREM 3. Suppose that the conditions (i)-(iv) are satisfied. If, moreover,

(14) \_ con-k-t (T, T)/(T, COC^^T)) , . . . , c a ^ ^ r ) ) ) ^ = oo

and

(15) \ ^ . f c - !^ , T)/(T, —cak_x(a^T)),..., — cajt-i^^r)))^ = — oo

/or euerj; T^^o, ev^ry positive constant c and every odd integer fe=l, 3,..., n — 1,
a// solutions of the inequality (1) are oscillatory.

PROOF. Assume that there exists a nonoscillatory solution x(t) of (1).
Without loss of generality, we may assume that x(t) and x^g^i)) are positive for
t^t^tQ and i = l, 2,..., m. Put w(r) = x(O —KO- In ^ e proof of Lemma 3
we have shown that there is t2^tx such that L 1 M ( 0 > 0 for t^t2. Thus, by
Lemma 1 with ^(0 = ̂ 1^(0 and

in place of Lny(t)9 we conclude that there are an odd integer £ e{l9 3,...,n — 1}
and a T ^ 2 such that

(16) LM0 = £*-iJ<0>0 on [T, oo)

for i = l, 2,..., i9 and

(17) ( - i r % u ( 0 = ( - iy- £ L i . 1 XO>0 on [T,oo)

for i = £,
Using the formula (4) with y(t) = u(t)9 i = £9 r = n — 1, and taking (17) into

account, we get

. - . - ^ T , r; n - 1 , . . . ,



Oscillation criteria for functional differential inequalities 645

on [T, oo). Thus, for s-»oo

L£u(0 ^ -

and from (1)

(18) Lgu(t) > ^ . ^ ( T , 0 / ( t , xto^t)),..., xtom(T)))dTf * ̂  T.

On the other hand, it is not difficult to verify that

for l^r^n—1 and, therefore, we can rewrite (4) as

(19) Liy{t) = T.U Ljy(s)Ij-tt9 s; i +1,. . . ,;) +

i = 0, 1,..., r; r = 0, 1,..., n - 1 .
If ^>1 , then using the above formula with y(i) = u(t), i = 0, r=#-2, s=T,

and taking (16) into account, we have

(20) Lou(t) ^ Lou(T) + L^iiCrj/i-iCf, T; 1,..., £-\) for r ̂  T.

Since Lop(t) is strongly bounded there is a T^T such that Lop(T*) =
minre[r>00) Lop(t) and it follows from (20) with T* in place of Tthat

4- Lox(T*) 4- ^ . ^ ( T ^ / ^ ^ r , T+; 1,..., ^ -

^ Lox(T+) + L,.1u(T^)h-1(t, T^ 1,..., ^ - 1 )

for t^T*. Thus there exist a c > 0 and a T x^T* such that

(21)

for f^7 \ and ^ > 1 .

From Lemma 3 it follows that (21) holds also for £ = 1.
By (iv) and (18) we have now for sufficiently large t

co^^^s, t)f(s9cccli-1(g1(s)),...,c<xjl-l(gm(s)))ds,

a contradiction to (14).

Similarly we can prove
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THEOREM 4. Suppose that the conditions (i)-(iv) are satisfied. If, moreover,
(14) and (15) hold for every T ^ t0, every positive constant c and every odd integer
fc = l, 3,..., n - 2 , then all solutions x(t) of (2) such that

x(0 = O(aw_!(0) as f->oo

are oscillatory.

EXAMPLE 6. For an illustration of Theorem 3 consider the equation

(22) WrKKr^O)')')')' + 3r3x(*-«0 =

= - 4 r 4 [ 3 sin(log 0 + 5 cos(log 0] - 3r3sin(log0, f ^ 1.

It is not difficult to verify that all the conditions of Theorem 3 are satisfied with
p(f) = (l + f)sin(logf) for which Lop(t) is strongly bounded, and so all solutions of
(22) are oscillatory. One such solution is x(t) = sin(logt).

We now give an example which illustrates that the conclusion of Theorem 3
is in general false if Lop(t) is assumed only to be bounded. Similar examples
can be found also for our other results.

EXAMPLE 7. The inequality

(23) x(0{Wr1x(0)7 + 2r2x(0
- 2r2[sin(log 0 + cos(log 0 + 3]} ^ 0, t ^ 1,

has the nonoscillatory solution x(0 = 2 + sin(logO- Here all the hypotheses of
Theorem 3 are satisfied except that L0p(0 = r1[sin[logf) + cos(log0 + 6] is not
strongly bounded.

Our next result concerns the oscillation of all bounded solutions of (1) (or (2)).

THEOREM 5. Let the conditions (i)-(ni) and (8) be satisfied and let the
function f have the following property:
(v) for any c>0 there is a ct>0 such that for all t^t0

Xi ^ c, 1 <; i ^ m, implies f(t, xu..., xm) ^f(t, cu..., cx)

and

xt ^ - c, 1 ^ i g m, implies f(t, xl9..., xj ^f(t, -cx,..., ct).

If, moreover,

(24)

and
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(25)

for every T^.t0 and every positive constant c, then all bounded solutions of the
inequality (1) (or (2)) are oscillatory.

PROOF. We consider only the inequality (1).
Assume the existence of a bounded nonoscillatory solution x(t) of (1). Let

this solution be positive for t^tx^t0. Introducing the function u(t) = x(t) — p(t)
and proceeding as in the proof of Lemma 3, we get Lnw(0<0 for t^.t2^tt, where
t2 is sufficiently large. Since Lou(t) is bounded, we have by Lemma 1 in the case
L0u(t)>0, resp. by Lemma 2 in the case Lou(0<0, that there exists a t3^t2 such
that

(26) (-iy-lLiu(t)>0 for t ^ t3 and i = 1, 2,...,n.

Moreover, it follows from Lemma 3 that there are a T^t3 and a constant c > 0
such that

x(gt(t)) ;> c for t^T and i = 1,2,..., m.

Now, an application of formula (4) with i = 1 and r = n — 1 to w(f) and taking (26)
into consideration give

(27) Lxu{t) ^ - [in-lit, t; n - l , . . . ? 2 ) A ^ - d r

for s^t^ T. Dividing (27) by at(t) and integrating from T to t, we obtain after
some manipulations

Lou(t) ^ Lou(T) - J \ - I ( T , T; n -1 , . . . , 1) L*uff dx9 t ̂  T,

which by (1) and (v) yields

Lou(t) ^ Lou(T)

for r ^ T a n d some constant c ^ O . Finally, if we let f-»oo in the last relation,
we get a contradiction to the boundedness of Lou(0-

A similar argument holds for x(t) eventually negative, and this completes the
proof.

Following the results of Grace and Lalli [6] we can similarly establish

THEOREM 6. Let the conditions (i)-(iii), (8) and (v) be satisfied. If,
moreover,
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(28) lim sup —U- [' (on-x{xy T) / (T, C,..., c)dx > 0

and

(29) l i m i n f ^ L . ^ © ^ ( T , T)/ (T, - C , . . . , -c)dx < 0

/or every T^^ o and every positive constant c, then every solution x(t) of (1)
(or (2)) sttcft f/iaf L0x(f)/a2(0-^0 «s f->oo is oscillatory.

In order to prove this theorem it sufficies to show that the inequalities (26)
remain valid for the positive solution x(i) of (1) (or (2)) such that L0x(t)/(x2(t)-^0
as t-> oo. But this is possible to do in an analogous way as in the proof of Lemma
in [6], The rest of the proof follows along the lines of that of Theorem 5, and
so we omit it.

REMARK. AS mentioned in the Introduction, the class of strongly bounded
functions contains the following particular classes of continuous functions which
have frequently appeared in the literature concerning the oscillation of forced
differential equations and inequalities:
( I ) the class of functions cp: [f0, oo)->i? which are oscillatory and such that

(II) the class of functions <p: [tOi oo)->/? such that there exist sequences {t'n}™=1,
(O£=i a n d constants qu q2 such that l im, ,^ t'n = 1 ^ ^ ^ ̂  = oo,
<P0n) = 4i> <KO = 42> and q1^cp(i)^q2 for t^t0.

Obviously, the function Lop(t) in Example 2 is of the type (I), while Lop(t) in
Examples 1 and 4 are of the type (II). On the other hand, there exist strongly
bounded functions which need not satisfy (I) or (II). In fact, the forcings in
Examples 3, 5 and 6 represent such functions.
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