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Introduction

In this paper we shall be concerned with a connection problem for the so-
called hypergeometric system of linear differential equations

0.1) (t—B)%’t—(=Ax (te C),

where X is an n-dimensional column vector, A4 is an n by n constant matrix and B
is an n by n diagonal matrix. This is a Fuchsian system with regular singularities
at diagonal elements of B and infinity in the whole complex t-plane.

The global study of (0.1) was initiated by K. Okubo [9], who investigated
an effective method of algebraic computation of the monodromy group for (0.1)
without accessory parameters, together with the reduction of every single Fuchsian
differential equation to (0.1) ([10], see also [7]). R. Schafke [12] and W. Balser-
W. B. Jurkat-D. A. Lutz [1] cleared up the relation between connection coeffi-
cients of (0.1) and the Stokes multipliers of the Birkhoff system of linear differential
equations

dY _
o {—(1+A)+ Bz}Y,
which has a regular singularity at z=0 and an irregular singularity of rank 1
at z=o0, through the Laplace transformation Y(z)=§ X(t)e*'dt.
Recently M. Kohno [5] has shown that the connection problem for (0.1)
can be solved by a global analysis of the system of linear difference equations

0.2) (B=A)(z+1)G(z+1) = (z—A)G(z) (zeC)

which gives the coefficients in power series solutions of (0.1). In [6] he has
also analyzed a case when there appear logarithmic solutions at finite singularities
and has shown the global Frobenius theorem. By means of the method of [5],
the author [14] (see also [13]) has analyzed completely (0.1) in the case when
A is diagonalizable and has only two distinct eigenvalues, and has verified the
following results:

(i) Principal solutions of (0.2) in the right half z-plane give the solutions of
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(0.1) which are holomorphic everywhere in the finite complex t-plane except at
only one singular point;

(ii) The non-holomorphic solution of (0.1) near a finite singularity is
given by a solution of (0.2) which has zeros in the left half z-plane; and

(ili) Connection coefficients between such solutions as stated in (i) and
(ii)) and a fundamental set of solutions near infinity are expressed explicitly in
terms of solutions of a certain (appropriately determined) hypergeometric system
of dimension n—1.

The purpose of this paper is to prove such results (i), (ii) and (iii) in a more
general case when there appear logarithmic solutions not only at finite singularities
but also at infinity. Moreover, we consider especially a new connection problem
between solutions of (0.1) near finite singularities.

In (0.1) let us assume that B has multiple eigenvalues, i.e.,

n n2 np

B =diag [A,..., A1, Azseers Agyenny Apyenns 4]
(lk¢}'l (k¢l)’ nkz], n1+n2+---+np=n)_

We write A in the (ny, n,,..., n,)-partitioned form
A=[A4;] (.., A; isan n; by n, matrix)

and denote the distinct eigenvalues of A by g, (I=1,..., q). For simplicity we
suppose that A,, (k=1,..., p) consist of only one Jordan canonical block, i.e.,

Akk = vk + ']("k) (k= ],..., p)

and the Jordan canonical form of 4 has only one Jordan block for each y, (I=
1,..., q), i.e., A is similar to

(uy+J(my) @ (p2+J(my)) @@ (p,+J(m,))

(mz1, my+m,+---+m,=n),

where J(m) denotes the m-dimensional shifting matrix, i.e.,
01
Jm)=| g | €M(O).
0
Moreover, we assume the following:
[A,] No three A, lie on a straight line.

[A,] None of the quantities v, (k=1,...,p) and p—pu, (I, k=1,..., 4,
I#k) is an integer.
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[A,] None of the quantities y, (I=1,...,q) and y—v, (I=1,...,q, k=
1,..., p) is an integer.
The condition [A,] is related to the reducibility of (0.1) (see [10] and [1]). In
more general cases when A,, (k=1,..., p) consist of several Jordan canonical
blocks or the Jordan canonical form of 4 has several Jordan blocks for each
w (I=1,..., q) (with some generic conditions corresponding to [A,~A,]), we
only need a slight modification of the consideration which will be stated below.

Our development proceeds along the following line. In Section 1 we are
concerned with local solutions of (0.1) near singularities. In Section 2 we
investigate the system (0.2) through the Mellin transformation. In Section 3
we analyze the Barnes integral representations of solutions of (0.1) and clear up
the structure of connection coefficients between solutions of (0.1) near a finite
singularity and near infinity. In Section 4, using the Barnes integral represen-
tations obtained in §3, we investigate the connection coefficients between solutions
of (0.1) near finite singularities.

§1. Local solutions

Since (0.1) is a Fuchsian system with regular singularities t=4, (k=1,..., p)
and oo, (0.1) has convergent series solutions at each singularity. As to solutions
near the finite singularities it is sufficient to consider them at one singular point,
for instance, A,. Changing the variable t for t'=t—A, we may assume that
A,=0. Moreover, without loss of generality, we may assume that

(1.1 argd, <argl, <---<argd,_, <argi, +2n

by the assumption [Ao]. Hereafter we denote v, and n, by v" and n’, respectively.
Near t=0 there exist n’ non-holomorphic solutions of (0.1) of the form

(1.2) R,(0) = §,=0(—j—_ﬁ(log 1= 2 (1)
(j=0,1,..,n" —1),

where

(1.3) 2,(0)=2%0G,(m)tm  (j=0,1,...,n" —1)

which are convergent for |f| <R, R=min {|4]; k=1,..., p—1}. The coefficient
vectors Gj(m) (m=0, j=0,1,...,n"—1) are characterized as solutions of the
systems of linear difference equations

B(m+1+v)G(m+1)
(1.4); =(m+v —A)G(m) — BG,_(m+1) + G,_,(m) (m=0)
BvG(0) = — BG;_,(0), G(0)#0 (j=0,1,..,n" —1),
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where G_,(m)=0. Besides, there exist n—n’ holomorphic solutions of (0.1)
whose coefficient vectors are characterized as a solution of the system of linear
difference equations with v’ replaced by 0 in (1.4),, i.e., (0.2) with A=0.

On the other hand, near t=oo there exist n linearly independent solutions
of (0.1) of the form
(1.5) Y1) = Tiro gy (108 0 1411 (1)

(I=1,.,q9,r=0,1,...,m—1),

where
(1.6) Yty = T2 Ho ()™ (I=1,..., g, r=0, L,..., m;—1)

which are convergent for [t|>R’, R"=max {|4,]; k=1,..., p—1}. The coefficient
vectors H'"(s) are determined by the systems of linear difference equations

(1.7), (s—u+ A)H'"(s) = B(s— 1 —u)H'"(s—1)
+ HYY(s) — BH!r"(s—1)
(s=1,r=0,1,...,m—1)
subject to the initial conditions
(1.8), (A—p)H'"(0) = H-Y0) (r=0, 1,...,m—1),

where H~'(s)=0 and H'%(0)#0 (I=1,..., q).
Now, for each [ (I=1,..., q) we define

(1.9) H'(u; 0) = gt (u— ) H'"(0)
and for s=>1
HYu; s) = (s—pu+A)"'B(s—1—pwH" (u; s—1)

inductively, where u is a complex parameter. We here observe that H'(u; s)
(s=0) are holomorphic at y=y, by the assumption [A,;]. We define the differ-
ential operators 0, (r=0, 1, 2,...) by

P_ 10
G=rar  =01L2.).

Then we have
H'"(s) = 04 [H'(u; $)]p=p, (520, r=0,1,...,m—1).

Therefore, observing that
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Iogrym = ay(1,,, (r=0,1,2,..)

and using the Leibniz rule
0lf9]l = Xr-0 0" [f107 9],
we have
Yir(t) = Y20 0L[H (u; s)t*~*] =y, (r=0, 1,..., m—1).
Moreover, one can interchange the differentiation and the summation to obtain
Yir(t) = 0j[ X 20 H'(u; )t*~],=,, (r=0,1,...,m—1).

These facts are well known as the Frobenius theorem. The Gj(m) are also
given by differentiation with respect to a parameter, which will be discussed
in §2.2.

§2. Solutions of the system of difference equations

In order to obtain the Barnes integral representations of the solutions of

(0.1) near t=0, we shall first consider (0.2) with A=0, which is rewritten in the
form

@2.1) (z—A)'B-(z+1)G(z+1) = G(2),

where z is a complex variable.
Hereafter we use the following notation:

I'(z) =TT, (Fz=4))y
for a polynomial f(z)=T11, (z—{,)", which obviously satisfies
I'(z+1) = f(2)[ (2).
We also denote the minimal polynomial of A by ¢(z), i.e.,

o(z) = [T (z—p)™

and define

N =dego — 2.
Putting
22) G(z) = 1242 _g(z),

Tz+1)
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we can transform (2.1) into
(2.3) o(z2)(z—A)"'BG(z+1) = G(z2).
We here put
A2) = p(2) (z— A)!
which is a polynomial matrix of the form
2.4) A(z) = 2N — (D8, myy— A)zV + .-+,
Writing G(z) and A(z) in the (n—n’, n')-partitioned form
~ G'(z) All(z) A1%(2)
G(z) =[ _ J and /T(z)=[ R R },
G*(2) A?(z) A% (z)
respectively, and defining

n, ny np-1

B =diag [1,,..., Ay, Agyeres Aayerey Apeyyenr, Ay,
o= (k=1,..,p-1),

we can rewrite (2.3) as

(2.5 A(2)B-'G\(z+ 1) = G'(2)
and
(2.6) A2(2)B G\ (z+1) = G¥2).

Namely (0.2) with 4=0 is reducible to (2.5), since G*(z) can be determined by
solving (2.5). We observe that (2.5) has the dimension n—n’ which is equal to
the number of holomorphic solutions of (0.1) near t=0. We hereafter denote
n—n’ by n".

2.1. Principal solutions in the right half plane

We here investigate the principal solutions of (2.1), i.e., (2.5) in the right
half z-plane by means of the Mellin transformation. For that purpose we first

have to make some preparations.
Let o; (i=1,..., N) be constants such that

2.7 o; #Fapy (modl) (i,i'=1,...,N,i#i),

(2.8) o % (modl) (i=1,...,N,I=1,..,q)),
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(2.9) o Fv, (modl) (i=1,..., N, k=1,...,p),
(2.10) o0 (modl) (i=1,...,N),
and define

Y(z) =TT, (z—a).
LemMA 1. A(2)/Y(z2) is developed as

(2.11) w(lz) Aiz)=z -4, - TV, -z—_%iA.-,

where

(2.12) Ag=2limuy -V 0~ A

and

(2.13) A= = TLipi (=) o) (;— 4" (i=1,..., N).

PROOF. By (2.4) and (2.7), it is obvious that A(z)/y(z) is developable in
terms of a partial fraction of the form (2.11). Comparing

ML, z—a){z—A4e—2 N (z—a) 14} = 2V — (X, o+ Ag)zN +--
with (2.4), we obtain (2.12). Moreover, from
Ay = = lim,,, (z— ) A(2)Y(2)
together with (2.8), we have (2.13). 0
We write A; (i=0, 1,..., N) in the (n", n’)-partitioned form
Al A2
A; ={ . } (i=0,1,...,N),
and define
A, = BAnB-* (i=0,1,...,N).

Putting

Gl(z) = I‘T,l(_z—) &(z)

and using Lemma 1, we can transform (2.5) into

(z A, -3, 1 L) G(z+1) = BG(2).

=17 —q,
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We introduce Gi(z) (i=1,..., N) by

(2.14) Giz) = ﬁ]_aia(z) (i=1,..., N)
to obtain
(2.15) (z=Ay)G(z+1) = YV, AGi(z+1) = BG(2).
We consequently obtain
(2.16) (z—A)G(z+1) = BG(z),
where
A, A -4, B
A=[‘7 o1 , B=[ 07.. ,
L I ol L o
I being the n”-dimensional identity matrix, and
G(2)
G(2) = { G'(2) 1
&N (2)
All preparations having been made, we now apply the Mellin transformation
G = iy [ W,

where p is a complex parameter, to (2.16) and then obtain the system of linear
differential equations

2.17) (t—B) dthV = (p—1—-A)W

which is a hypergeometric system of dimension (N +1)n”. For the determination
of arguments of t—/, and t, we introduce cut planes

2 = C\\UzHtl; 121}
and
D, = D\ {th; 10} (k=1L,.,p—1).

Then, for te 2, we can define the values of arg (t—4,) and arg ¢ so that
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arg 1, — 2n < arg(t— 1) < arg 1,
and

argl, —n<argt<argl, + 7

(arg 1, = —arg 4,), respectively (k=1,..., p—1). For each k (k=1,..., p—1),
let W,(p; 1) (h=0, 1,..., n,—1) be solutions of (2.17) in 9, which are developed as

Wiip; 1) = 2 Thioo 007 [(e™(t = 1) [ )P4 ]y =5 Win (05 1),
WP 1) = Lo Culps m)(t=4)m  (h=0, 1,..., n,— 1)
near t=/,, where
o=+ Xl — Xhomuy.

The coefficients C,,(p; m) are vectors of the form

Cun(p;m) = Xh o037 [mlwk Cup (m)

(m=20, h=0, 1,..., n,—1),

where ék,,(m) (h=0,1,...,n,—1) are the vectors determined uniquely by the
systems of linear difference equations

B—1)Cu(m+1) = (m+ 5+ A)Co(m) + Cpp_((m)
(m20, €, _,(m)=0)
Cir0) = e s (g4 +m_ +h+1)
(h=0, 1,..., n,—1),

e,(s) being the s-th unit m-vector (cf. §1). Using these W, (p; t), we define

Ak
@18) 6 = Ty | 7 Wanles s
(k=1,..., p—1, h=0, 1,..., n,—1)

for Re (z—p)>0, where the path of integration is the straight line from 0 to 1,
(note that arg 1, #arg 1, (mod 27) (k#1) by the assumption [A,]). The para-
meter p is selected so that Re(p+¥,)>0 (for every k=1,..., p—1) and peé,
where

¢ ={z;Rez>Rea;+1and z#£a; (mod 1) (i=1,..., N)}.

Concerning these G,,(z), we have the following
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ProposITION 1. (i) Foreach k, h (k=1,...,p—1, h=0, 1,..., n,—1), G,(2)
is holomorphic and is a solution of (2.16) in Re(z—p)>0. Therefore G, (z)
is analytically continued into C\{a;+1—s; i=1,...,N,s=0,1,2,...} and
satisfies (2.16). The points oa;+1—s (i=1,...,N,s=0,1,2,...) are simple
poles of Gy(2).

(ii) Forzeé,

(2.19) Gyu(2) =1lim, g rea, Win(z; 1)

holds (k=1,..., p—1, h=0, 1,..., n,—1). Therefore G,,(z) does not depend on p.
(iii) As z—>o0, |arg z|<m/2+¢ for sufficiently small €>0, the asymptotic
expansion

Gu(z) ~ Fi(2)
holds, where F,,(2) is a formal solution of (2.16) of the form

Fin(z) = 3 (z) ' Thoo 0" [277] v=ri 2sz0 Fin(8)275,
fn(0) = en+ )N+ +n +h+1)
(k=1,...,p—1, h=0,1,...,n,—1).
PrOOF. (i) The system (2.17) has n” linearly independent solutions for

each of the exponents 0 and p—1—¢; (i=1,..., N) at t=0 (note that p#a; (mod 1)
and (2.7) holds). Since Re(p—1—0a;)>0(i=1,..., N), we have

Wulp;)=0(1) as t— 0, te2,.

Therefore G,(z) is well defined and holomorphic for Re (z—p)>0. By a simple
calculation we can easily see that G,,(z) satisfies (2.16) in Re(z—p)>0. The
desired analytic continuation of G,(z) can be obtained by means of the equation
(2.16), i.e., (2.15) and (2.14). We here observe that the first n” components of
G,,(z) are holomorphic at z=a;+1 (i=1,..., N).

(ii) For te g, Re(z—p)>0, we define

Ak
Gz 0 = gy | G077 Waylps 0,

where the path of integration is a curve in 9, from t to 1, and arg(z—t¢) is taken
continuously along the path of integration with arg(l,—f)=arg(t—1,)+n at
the endpoint 4,. For |t— 1| sufficiently small, we obtain

Gulz; 1) = Wy(z: 1)

by termwise integration. Moreover, since both G,,(z; t) and W,,(z; t) are holo-
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morphic in 9,, this formula is valid for every te 9,, Re(z—p)>0. Hence, for
Re (z—p)>0 we have

Gi(2z) = lim,_o G(z; 1) = lim,o Wy(z; 1).

Furthermore, combining the facts that
O W(zi 1) = — Wz —1;
3t w(z3 1) = — Wi(z—1;1),

which is verified by termwise differentiation and analytic continuation, and
im0 rea, tWi(z—1;1) =0 for zeé&

with (2.17), we can easily see that lim,_, W,,(z; t) satisfies (2.15) and (2.14) for
ze&. Hence lim,_ o Wy(z; t) is holomorphic in ze&. Therefore, we have
(2.19) for ze & (U {z; Re(z—p)>0}) (cf. [12]).

(ili) We apply the following

LEMMA 2. Let g(t) satisfy the following two conditions:
(@) g(t) is holomorphic in the sector {t; |argt| <80}, and

9() = T2oat (tI<R);

(b) g(t)=0(e®") for some b as t— o0 in the sector {t; |arg t| <6}.
Then

G(z) = f: e~*t(log y"7~'g()dt (Re 5>0)
has an asymptotic expansion of the form
G(z) ~ Tio( § Jlog 2™z o ™ Do+ )a,z™
as z— oo, larg(z—b)|=n/2+0—¢ (¢>0).

PrROOF OF LEMMA 2. The asymptotic expansion for |arg(z—b)|<n/2—¢
(¢>0) can be proven in a standard manner by expressing g(t) as a finite part
of the expansion plus an error term whose Laplace integral can be easily estimated.
Then, rotating the path of integration, we obtain the desired asymptotic expansion
in the sector stated above (see [11, Chap. 4 §3 and Chap. 9 §11]). 0

Changing the variable ¢ for 7 by t=/1,e7* in (2.18), we have
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Gkh(z) = Zi —l—'-‘(zl—_p)—fo e—(z—p)rwkh(p; Ike_t)df

=Bty Sheo GimiyT ¥
X I: e~ z=P(log )t e 1% w,,.(p; 1)dT,
where
Wen(p5 ) = Tho AW [0 g LW, (05 ke ™)
= b0t M ((1=e7) /1)1 ] oy Wi (P 5 Aie™)

which satisfies the conditions in Lemma 2 with sufficiently small 6>0 (k=1,...,
p—1, h=0, 1,..., n,—1). Therefore, writing

Win(p; 1) = 220 finlps 9)v* at 1 =0,

we obtain an asymptotic expansion of the form
¥, 1 —h - v © N -
Gun(2) ~ A 5y Zh=0 O [(z=p) " ) vms ZZo fuw (05 5)(2— p)
as z— o0, |arg z| <n/2+¢ for sufficiently small é>0, where
f(p3 8) = Shco OV [M(p+v+5)], <5, funlp; 5)  (520)
(k=1,...,p—1, h=0,1,..., n,—1).

Then, developing again the right hand side of the above formula in terms of z~!,
we obtain the required asymptotic expansions. As to the initial vectors f,,(0),
we have

fn(0) = f,(p: 0) = X h. o 4" [T (p+v)],=s, Win(p; 0)
=h oo 4" [T(p+V)]v=5,Winl(p; &)
= ékh(o) =en+im(M+-+tnm_ +h+l)
(k=1,...,p—1, h=0,1,...,n,—1).
This completes the proof of (iii) (cf. [4]). 0
We denote by G,,(z) the n"-vector which consists of the first n” components
of Gy(z) (k=1,...,p—1, h=0, 1,..., n,—1). Besides, we define
Gi(2) = iy Cuna) (k= p=1,h=0, Lo m— 1),

which are entire solutions of (2.5) (note that G,,(z) are holomorphic at z=a;+ 1
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(i=1,..., N)). Moreover, we denote by G,,(z) the solution of (0.2) with 1=0
constructed by G},(z) with (2.6) and (2.2) (k=1,..., p—1, h=0, 1,..., n,—1),
which are the principal solutions in the right half z-plane. Namely G,,(z) has
the asymptotic exapnsion

(2.20) Gu(z) ~ Fi(z) as z—> o0, |argz|<m/2+¢ (e>0),

where F,,(z) is a formal solution of (0.2) with A=0 of the form

Fin(z) = 27 Zhzo 00" [277' ]y 2o fun (8)275,
fu(0) = e, (ny+-+m_;+h+1)
(k=1,...,p—1, h=0, 1,..., n,—1).

These G,,(z) will be used for the Barnes integral representations of the holomorphic
solutions of (0.1) near t=0 in §3.1.

RemARK 1. According to the general theory of difference equations (e.g.
[2, pp. 270-271]), a solution of (0.2) with A=0 which has the asymptotic expansion
(2.20) is uniquely determined. Hence G,,(z), and also Gl,(z), (k=1,..., p—1,
h=0, 1,..., n,—1) are independent of a; (i=1,..., N).

2.2. Solution having zeros in the left half plane

In this section, in order to construct solutions of (1.4); (j=0, 1,..., n"—1),
we consider a particular solution of (2.5) which has zeros in the left half z-plane.
In view of their asymptotic behavior in the right half z-plane, we construct these
solutions by means of a linear combination of the principal solutions with constant
coefficients.

We first calculate the determinant of [G},(2)1=[Gle(2):- G} ,-1(2)

Gl i o(2)*Gloy,n,_,-1(2)]. It is obvious that det [G},(z)] satisfies the difference
equation

det A'1(z)-det B-!.det [Gl(z+1)] = det [G},(2)].
Since
A(z) A'%(z) eI 0
(2.21) [ }(Z—A)= [ }
0 1 * z—A,,

I being the n’-dimensional identity matrix, we have

det A'1(z) = @(z)"" - det (z— A,,,)/det (z— A)
= (z=v) Ty (z— )" =Dm.
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Therefore, denoting the last polynomial by d(z), we obtain

det [G}u(2)] = q(2)-TTf=} Ape /T (2),

where ¢(z) is a periodic function with period 1. By virtue of the asymptotic
expansions of G,,(z) (i.e., G,,(z)) and the Stirling formula, we can easily see that

q(z) ~1 as z—> o0, |argz|<m/2+¢ (¢>0).
Hence g(z) is indeed a constant and is equal to 1. Thus we have
det [Gl,(2)] = T4} Az+*/T (2)

(cf. [10, Chap. 2 §2] and [6, Theorem 2]).
Let us define y,(v) (k=1,...,p—1, h=0, 1,..., n,—1) as the solution of
the system of linear equations

Pl 2" vin(V)Gha(v + 1)

4,
=_FL:(VVL+11)TBI: jp :lz;l;Bl (V—V’)ie",(j_*_l)’

p—1,p

where v is a complex parameter. Since det [G},(v'+1)]#0, y,,(v) are uniquely
determined for every v in a neighborhood of v'. Using these y,,(v), we define

a solution G'(v; z) of (2.5) by
G'(v; 2) = X8z} Zhes! 1n(MGhi(2)

Then, G!(v; v) has a zero of order n’ at v=yv'. In fact, since
- Aip -
An)| = A'(z)(z - 4,,)
Ap-l,p

from the (1, 2)-block of (2.21), we have
Gli(v; v) = AM\(WB-'G'\(v; v+ 1)

T Fr(p((—vvill)) A1) (v=Ap,) T5 (= Ve (j+1)

- e _TOv+1) 2 ,
= —(v=v) 'r—w(‘mTAz(V)en'(")

(note that v'# —1, —2,...). Moreover, since we have
G'(v; v—s) = A" (v—5)B-'G'(v; v—s5+1)

by (2.5), G'(v; v—s) (s=1, 2,...) also have a zero of order n’ at v=v'. Hence
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G!(v'; z) has zeros at z=v'—s (s=0, 1, 2,...).

Now let us define solutions of (1.4); (j=0,1,...,n'—1). We denote by
G(v; z) the solution of (0.2) with A=0 constructed by G!(v; z) with (2.6) and
(2.2), and define

(222)  Gi2) = 3i[G(v; z+W)],=y
= I B S o (gyr 000 FTOE G HY)
(j=0, 1,...,n =1).
Then, G(z) (j=0, 1,..., n’—1) satisfy
B-(z+14V)G(z+1) = (z+Vv' = 4A)G(z) — BG;_(z+1) + G,;_,(2)
(j=0,1,...,n"—1, G_,(2)=0).

Moreover, since G(v; v—s) (s=1, 2,...) have a zero of order n’ at v=v, Gj(z)
(j=0, 1,...,n"—1) vanish at z=—s (s=1, 2,...). Asto Gj(O), we have

G(0) =e,(n"+j+1) (j=0,1,.,n'-1),
since

(v—A)G(v; v) = B-(v+ 1)G(v; v+1)
= (V= A) I (= Ve n" +j+1) — =V e,(n),
and hence
Gv; v) = 255! (V=) e (n" +j+1) — (v—=v)" (v—A) e (n)

hold. Therefore, G(z) (j=0, 1,...,n’—1) are solutions of (1.4); (j=0, 1,...,
n’—1), which will be used for the Barnes integral representations of the non-
holomorphic solutions X,-(t) (j=0,1,...,n"—1) of (0.1) near t=0 in §3.2. In
addition, it will be shown in §4 that for each k (k=1,..., p—1), y(v) (h=0, 1,...,
n,—1) give the connection coefficients between X i (j=0,1,..,n"—1) and
non-holomorphic solutions of (0.1) near t=A4,.

§3. The Barnes integral representations

3.1. The Barnes integrals for holomorphic solutions

We consider the Barnes integral

Xu(®) = = 57 [ Gu@p@redz

(k=1,...,p—1, h=0,1,...,n,—1),
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where
p(z) = me™"%/sin nz

and the path of integration ¢ is a Barnes contour running along the straight
line z= —ia from + 0o —ia to 0—ia, a curve from 0—ia to 0+ ia and the straight
line z=ia from O+ia to +oo+ia such that the points z=m (m=0, 1, 2,...)
lie to the right of € and the points z=y,—s (s=0, 1, 2,..., [=1,..., q) lie to the
left of #. The constant a is taken as a>max {|Im y|; I=1,..., q}. By virtue
of the asymptotic behavior of G,,(z), the above integral is absolutely convergent
for |t| <]4,| and is equal to the sum of residues at z=m (m=0, 1, 2,...), i.e.,

X(t) = Zm=0 Gu(m)t™  ([t]<|4]),

which is a holomorphic solution of (0.1) near t=0.
Now let £ be an arbitrary negative number not equal to Re (g,—s) (s=0, 1,
2,...,1=1,..., q). We take the poisitive integers N, (I=1,..., q) such that
—(N+1)<é—Rey < - N, (I=1,...,9).

Replacing the path ¥ by the rectilinear contour ¥ =.2(£) which runs first from
+ o0 —ia to & —ia, next from &—ia to ¢+ ia and finally from ¢+ia to + oo +ia,
we obtain

Xul) = = 327 | Gu@p(a)rdz - 5 Res[Gu@p2)r,

where the summation covers all poles in the bounded domain encircled by ¥
and the curve from —ia to ia of ¥. Since, by (2.2), G,,(z) has poles of order
m;at z=y,—s (s=0, 1, 2,..., I=1,..., q) and has zeros of order 1 at z=—5s(s=1,
2,...), the integrand has poles of order m, only at z=yu,—s (s=0, 1,..., N, I=
1,..., q) in that domain. Hence we obtain
> Res [G(2)p(2)t7]

= 211 2o Res [G(2)p(2)t*: z=py~5]

=21 XX 07T [z i+ )M G2 P21 ] =y s

= X1y Zrst 0p T [p() )=y k=0 0" [1¥] =y Lo Hiy ()72,

where

Hi(s) = 03[z — py+ )" Gip(2) )= s
(s=0,1,2,...,1I=1,.,q,r=0,1,...,m—1).

We here observe that for each | (I=1,..., q), Hi5(s) (r=0, 1,..., m;—1) satisfy
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the systems (1.8), and (1.7), (r=0, 1,..., m;—1). This fact is easily verified by
applying 7, (r=0, 1,..., m;— 1) together with the Leibniz rule to
(—z+A4)-(2—p+s)"Gy(z) = — Bz +1)-+1—p+s—DMGy(z+1)

and letting z tend to p,—s (note that G,,(z) is holomorphic at z=yu,+1) (cf.
[14, p. 233]). In particular, we have

(A—p)mHEm='0) =0 (I=1,...,q).

Since H'"(0) (r=0, 1,..., m;—1) (which are given in §1) form a basis of the
kernel of (4 —u)™ (I=1,..., q), there uniquely exist the constants n}, (I=1,..., q,
r=0, 1,..., m;—1) such that

Hm=1(0) = i nfn ™1 HY(0) (I=1,..., 9).

Then, multiplying this formula by (4 —y,)™~'-" and taking account of (1.8),, we
obtain

(3.1) H5(0) = X5 —oniy™ H'"(0)
(I=1,...,q,r=0, 1,..., m—1).
Therefore, we have
Hn()=Zr-omr™ H"(s) (s20)
(I=1,...,49,r=0,1,..., m—1),

since the right hand sides of these formulas also satisfy (1.7), (r=0, 1,..., m;—1).
We thus obtain

X(t) = 2oy 20! T 7" 20 =00 [1#] =y 220 H' (8)17°

1
- o5 |, Gu@p@rdz <ii,
where
T = — Zr=0 03" [P(1)] =, Nih
(I=1,...,4,r=0,1,...,m—1).
We now estimate the last term. Observing that
p(é+ia+ ye'®) = O(1)
3.2) as y— 4+
p(é__ia_’_ye—ie) —_ O(e—ZnsinB-y)

uniformly in 6 € [0, n/2], and using the asymptotic behavior of G,,(z), we can
see in a standard manner that the integral
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E+io
I Gul(2)p(2)t7dz
&—io
is the analytic continuation of the above integral to a sector
Sy ={t; arg \,+¢'Zargt<arg 4, +2n—¢'} (¢'>0).
Moreover, we have

§+i™
[ Guamredz]| < Kie for resi,

where || - | means the maximum norm of a vector and K is a positive constant
independent of ¢ (but depending on £ and ¢’) (see [3, Lemma 6 and Lemma 6a]).
Hence X,,(t) is analytically continued into C\ {t4,; =1} and
Xn(t) = Xl X! Ty~ '7r YI(1) + o(17%)
(t— o0, teS,)
holds, where £’ is an arbitrary positive number. Since t= oo is a regular singularity
of (0.1), we actually obtain

Xu(t) = iy 2mg ' Timt=rYi(1) for teS,,

where S,={t; arg ), <argt<argl,+2n}. In order to obtain the connection
formula in another sector, we anew take 272G, ,(z) (6 € Z) instead of G,,(z).
Then we have the connection formula with T, replaced by T},() in the above
for t € S;(6), where
Ti(0) = — Xi=0 0" [€2™% p(u)] =y, M
(I=1,...,49,r=0,1,...,m—1)
and
3.3) S(0) = {t; arg A, —2nd<argt<arg A, —2nd+2n}
(beZ k=1,...,p—1).

Actually, for each | (I=1,...,q), ni, (r=0,1,..., m;—1) are determined
successively from nid. Let no=ny(l), ISny<n”, be a number such that the
no-th component of H'9(0) is not zero. (Note that if an n-vector H whose the
first n” components are all zero satisfies (4 — p)H =0, then H=0 by virtue of the
assumption [A,].) We define

Nien() = (=)™ Ge(1) 1o/ [H (5 0) 11

where [ ], denotes the ny-th component. Then, we have
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'hl(';l = a;[nih(#)]u=u| (r=0’ l""a ml— ])’
since
(=)™ G 1o — {2720 (=) i} [H' (1 0)],,

has a zero of order m, at u=y, by (1.9) and (3.1). Hence, by using the Leibniz
rule, we obtain

(34 Ti(8) = — o[> p(nin(1) )=,
(r=0,1,..., m—1).
Observing from Proposition 1 (ii) that ni,(u) has a representation of the form

Mha ) = T IYL(;‘I‘;)[:"AF:)(“) limy—.o [Wia(tt; 0)1no/CH" (115 0) ] »

where ¢, (u)=@(u)/(u—pw)™ and «; (i=1,..., N) are taken so that y,eé, we
can conclude that the connection coefficients between X,,(t) and Y (¢) (I=1,..., q,
r=0, 1,..., m;—1) are given explicitly by the solution W,(p; t) of (2.17) (with
the factor consisting of exponential- and I'-functions).

3.2. The Barnes integrals for non-holomorphic solutions

For the non-holomorphic solutions of (0.1) we first consider the Barnes
integrals

£ = — o L G (2)p(2)tdz
(’=05 1,“'3 n/_l)’

where the path of integration ¢ is a Barnes contour similar to ¢ stated in the
beginning of §3.1 (note that the integrands have poles at z=m (m=0, 1, 2,...)
and z=—v'+y—s (s=0, 1, 2,...,1=1,..., q)). Observing that the asymptotic
expansions for G{}(z) (j=1, 2,...) are given by differentiating that for G,,(z),
i.e., (2.20), we can see that these integrals are absolutely convergent for |t/ <R and

240 =X ,G,(mym (t|<R,j=0,1,..,n —1)
hold. Moreover, since
Res [Gj(z)p(z)t’: z=—v' +pu—s]
= Res [0I[G(v; z+V)],=, P(2)t7: 2= —V'+ p;—5]
= 0I[Res [G(v; z+V)p(2)t*: z=—v+pu;—s]],=
= 31 Res [G(v; D)p(z—WI: z=py—5T]ymy»
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we obtain
Ri(t) =0i[t™ Xhy Xug? Thm=1-r (v) x
X Z"=o ar—r [t”]u=u1 s— Hl’ (S)t s]v v’
2m f G,(2)p(z)t7dz  (|1|<R),
where we have replaced ¢ by the rectilinear contour 2 =2(&) for a negative

number £. Besides, in the above, N, (I=1,..., q) are positive integers similar to
N, in §3.1 and

Tir(v) = = 202 Tps! Th oo 0577 [P( = V) u=pes Yen(WINk
(I=1,...,q, r=0,1,..., m-—1).

Therefore, the non-holomorphic solutions

R0 = Theo T [PLey () (=0, Loy n'=1)
of (0.1) near t=0 have a representation of the form

X;(0)= i Zmgt HLTI =17 (0)],=yr X

X Zhoo 0y [y, Zo HY (8)175+ 1,(0)
(ItI<R, j=0,1,....,n"=1),

where

1) = = b7 Theodl T [ ms 6 @ p2)17d2
= = g TH ER' Shao 00 T Dey 7 [ L GG+ )Pz
(j=0,1,..,n' -1
which are analytically continued into the sector
NE=1 S, = {t;arg A,_ <argt<arg i, +2m}
(note (1.1)) and have the following estimates:

I(n)] < Rlf|3*Rev+e  for te NPl S;
J 1
(j=0,1,...,n -1),

R and ¢ being positive constants. Hence, X(t) (j=0,1,...,n"—1) are also
analytically continued into NJZ1 S, and satisfy the connection formulas
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Xj(1) =3k, Tpg! Thm=1ryr(s) (tenfzl Si)
(j=0,1,..,n -1),
where
Tir=0i[T"(")],=
= =030 [ X8z Tt p(u= V)V v=vr =y
(j=0,1,.,n"-1,1=1,...,4q,r=0,1,...,m—1).

In order to obtain the analytic continuation of X ;(1) into another sector, we anew
take

Gi(2) = BLTh=] Tiks van(v)e2 062 Gz + V)], =0,

where 6, (k=1,..., p—1) are suitable integers, instead of (2.22). Then we obtain
the connection formulas with T replaced by T(é,,...,,-,) in the above for
te Nzl Si(6,), where

(3.5) T'.r(a,,...,a,,_l)
- 616’ [Zp—l Z"k— ezmt’k(ﬂ—“)p(‘u—v)-ykh(v)r,“l(ﬂ)]v =v' , u=u
(j=0,1,..,n'—1,1=1,...,q, r=0, 1,..., m;—1).

3.3. Connection problem for (2.17)

In order to obtain another characterization of T¥ and y,(v), we shall
consider the connection problem between solutions of (2.17) near t=o0 and
near t=0. In this section we assume that p#v' (mod 1) and p#a; (mod 1) (i=
1,..., N).

Let Vip; 1) (j=0,1,...,n"—1) be solutions of (2.17) near t=o0 for the
exponent —(p—1—v') of the form

V,(P; t) = j"=0_ 6£—j’[tp_l—v:]v=v'vj’(p; t) s
Vip; 1) = 2o Ki(p; s)ts,
K(p; $) = T @77 [T(s+1+v—p)],, K, (5)
(j=0, 1,...,n"—1).
The K j(s) (j=0, 1,..., n"—1) are the vectors determined uniquely by the systems
of linear difference equations

(3.6); (s+v—A)K(s)—BK(s—1)— j-1(s) (s21)
(j=0,1,...,n" —1, _I(S)EO)
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subject to the initial conditions
(3.7); (v —AK0) = —K,;_,(0) (j=0,1,....,n'—1, K_,(0)=0).
Observing that (3.6), is equivalent to (2.16), we here define
K,(5) = B[G(v; s+ 14+W)]yoy (j=0, 1,...,n"—1),
where
G(v; s+14v) = 2021 205 1in(MG(s+ 1+ v).

Then these f(j(s) (j=0, 1,..., n’—1) satisfy (3.7); (j=0,1,...,n"—1) as well as
(3.6); (j=0, 1,..., n'—1), since G(v; v—m) (m=0, 1, 2,...) have a zero of order
n’ at v=v' (note (2.14) and (2.9)). (This guarantees the existence of V(p; 1)
(j=0,1,..,n —1).)

As to the solutions near t=0, we define for the exponent 0

Ulps ) = 220 (jnl_,)'" G, (p— m)m

(k=1,..., p—1, h=0,1,...,n,—1)
and for the exponent p—1—uq;

Uialp: 1) = #2714 Sio o+ 1= p—m)Rf(m)em
(i=1,...,N, k=1,....,p—1, h=0, 1,..., n,— 1),
where
Ri,(m) = Res [Gy(2): z=a;+1—m] (m=0,1,2,..)
(i=1,...; N, k=1,...,p—1, h=0, 1,..., n,—1).

By virtue of the equation (2.16).for G,,(z) we can easily see that these Ug(p; ?)

and Ui, (p; 1) also satisfy (2.17) (cf. §1).
Defining

F8) = {te 2; arg 1, +2nd —2n <arg t <arg A, + 216}
(6eZ, k=1,...,p—1),
we have the following

PrROPOSITION 2. Let 8, (k=1,..., p—1) be integers such that N\JZ} F(,) #9.
Then Vip;t) (j=0, 1,...,n"—1) are analytically continued into N[z F(6;)
and satisfy the connection formulas
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Vip;t)
= — Y02l Yt 0l[e2m 00 p(p —v)y(M)]y = Ups 1)
— T it Skt alle2mion e plo— )y, (1], - Uklps 1)
' (j=0,1,...,n'—1)
for te N\EZ} F(dy)-

PrOOF. We consider the Barnes integrals

Vo0 = = b [ LG+ 14y =p)G0s 24140, po)2d
(j=0,1,...,n" 1),
where
39 G0 2) = TEE TR Y G2

and the path of integration ¢ is a Barnes contour such that the points z=s (s=0,
1, 2,...) lie to the right of € and the points z=p—1—v'—m (m=0, 1, 2,...) and
z=a;—v' —m (m=0, 1, 2,...,i=1,..., N) lie to the left of ¢. These points are
poles of the integrands. By an analysis similar to §§3.1-3.2, we obtain

vip; ) = TZoKi(p; s)t™  for |t > 1/R,

and for te NEZ} F(6y), |tI<1/R,

vips ) = — Zio 65[(7"1!)"' Pp—V)G(v; p—m)t"'"’“”l:v,
— XX, Zimo O[T (a+ 1= p—m)p(ay — VRH(v; mym=*+v],_,
(j=0,1,...,n"—1),
where
Ri(v; m) = Res [G(v; 2): z=a;+ 1 —m]
(m=0,1,2,...,i=1,..., N).

Hence, V(p; 1) (j=0, 1,..., n’—1) are analytically continued into Nz} S(dy),
and for te N\{z} L6y, ItI<1/R’,

Vo 1) = = o C D 0lp(p— )G p—m)l,y 17

— X Ero Mo+ 1—p—m)- 5[ pla;— VIR¥(v; m)],—, - gmHe1=%
(j=0,1,...,n —1)
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hold. Noting that G(v; z) is given by (3.8) in the above, we have the desired
connection formulas. 0

Using this proposition, for p e & we have

Vilp; ) — — Xk=t Ziks! 05[22~ p(p — v)yu(¥)], = v Gia(p)
(j=0,1,...,n" —1)
as t—0, te N\Z1 S(d,). Hence, by combining this with (3.5), we can conclude
that the connection coefficients T(8,,..., 6, ) between X (1) (j=0, 1,...,n"—1)

and Y"(t) (I=1,...,q, r=0, 1,..., m;— 1) are also given explicitly by the solutions
of (2.17) with a; (i=1,..., N) so that y, € & as follows:

(3.9) T"j.’(él,...,ép_l)
A Tutl=p)™r, (p) .. . o ]
- alll: r(#+l)rw(#) ll‘l_rf(l) [VJ(#, t))no/[H (”s 0)]no u=u
(j=0,1,..,n" =1, 1=1,...,q,r=0,1,..., m—1),

where ¢ is let tend to 0 in the sector NE=! #(3)).

We summarize all results derived in §3 in the following

THEOREM 1. Let Y (t) (I=1,...,q, r=0, 1,..., m;—1) be solutions of (0.1)
of the form (1.5) with (1.6) near t=00, and let S(6) (6€ Z, k=1,..., p—1) be
sectors defined by (3.3).

(i) For each k, h (k=1,...,p—1, h=0,1,...,n,—1), the holomorphic
solution X,,(t) of (0.1) near t=0 which is characterized by X,,(0)=G(0),
where G, (z) is a solution of (0.2) with A=0 characterized by the asymptotic
expansion (2.20), is holomorphic in C\ {tA,; t=1} and satisfies the connection
formula

X)) = Xiey 2! Tm ™1 77(9) Y1 (1) (1€ 59)).

The coefficients T () (€ Z, I=1,...,q, r=0, 1,..., m;— 1) are given by (3.4).

(ii) Let 6, (k=1,...,p—1) be integers such that Nz} Si(6,)#¢d. The
non-holomorphic solutions Xj(t) (j=0,1,...,n"—1) of (0.1) near t=0 of the
form (1.2) with (1.3), where Gj(0)=e,,(n,+---+n,,_1+j+1) (j=0,1,...,n'=1),
are analytically continued into the sector N\{Z} S\(6,) and satisfy the connection
formulas

Xj(t) =3k XZng! T}’""—lvr(éh---, 0,-1)Y"(1)
(te NPZ1 86, j=0,1,...,n"—1).
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The coefficients T'y(él,..., 0,-1) (j=0,1,....,n"—1,1=1,..,q,r=0,1,..., m;—1)
are given by (3.5) (or (3.9)).

(i) Xu(®) (k=1,...,p—1, h=0,1,...,m,—1) and Xt) (j=0, 1,...,n" —1)
form a fundamental set of solutions of (0.1).

The statement (iii) follows immediately from the fact that det [G},(0)]#0.

§4. Connection coefficients between solutions near finite singularities

In this section we consider the connection coefficients between solutions of
(0.1) near =0 and near another finite singularity. These coefficients, of course,
can be calculated in terms of the connection coefficients between solutions near
finite singularities and near infinity. However, in order to clear up the meaning
of ,,(v) for (0.1), we here investigate them directly.

We consider particular solutions X D (j=0,1,...,n"—1) of (0.1) defined by

Xj(t) = Xj(t) — X Xt O ()] = X (D)
(j=0,1,...,n"—1)

(cf. [8, §5]). We first observe that X D (j=0, 1,..., n’—1) have a representation
of the form

A0 = = ohp [, ACO; 240+, w2z

me d[G(v; 2)p(z—V)], = t?dz
(ltl<R, j=0,1,...,n'—1),

where ¢’ is the contour obtained by removing ¢ by v'. This can be verified by
the change of variables and the integration by parts. Therefore, by virtue of the
Cauchy theorem, we have

@.1) 20 = = 557 [ . 9U060: Db =)~ p@)], - 17dz
(<R, j=0, 1,..., W 1),

where the path €* is a Barnes contour running from + oo —ia to + 00 +ia such
that the points z=m (m=0, 1, 2,...) and z=v'+m (m=0, 1, 2,...) lie to the
right of €*, and the points z=y,—s (s=0, 1, 2,..., I=1,..., q) lie to the left of
%*. The constant a is taken as a>max {|{Im v/, |[Im y,| (I=1,..., q)}.

Now, in (4.1) we replace the path €* by the contour # which runs first
along the imaginary axis from —ioo to —ia, next along €* from 0—ia to 0+ ia
and finally along the imaginary axis from +ia to +ico. Then, noting that
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p(z—v) — p(z) = p(z—v)p(—2z)/p(—V),
and
4.2) pUNtia+ yeti®—v)p(Fia— yeti®) = O(e 2nsind-y)

as y— +oo uniformly in 6 €[0, n/2] (j=0, 1, 2,...), we can easily see that the
integral obtained by replacing €* by # in (4.1) is the analytic continuation
of X (1) into the sector

S = {t;argl,_,—2n<argt<argi,+2m}

(compare (4.2) with (3.2)). Namely, )?j(t) (j=0, 1,..., n’'—1) are holomorphic
in S and have the following representations:

A0 = = 37 |, 06O D0z = p(= )]y~ 2)rodz
(teS, j=0,1,...,n'—1).

For each | (I=1,...,q), we denote by XL,(t) (k=1,...,1—1,1+1,..., p,
h=0,1,..., n,—1) and Xﬂ-(t) (j=0, 1,..., n,—1) the holomorphic and the non-
holomorphic solutions of (0.1) near t=A4, which are defined in a way similar
to X(t) and Xj(t) near t=0, respectively. In addition, we denote by G},(z)
(k=1,...,1-1,1+1,..., p, h=0, 1,..., n,—1) the principal solutions of (0.2) with
A=1, in the right half z-plane defined in a way similar to G,,(z) for A=0. Namely,
Gi,(z) is characterized by the asymptotic expansion

Gin(2) ~ (A=) Xl oo O3 W[z, o fin(9)27°
as z— o, |arg z| <n/2+¢ (¢>0), where
fin0) =e(ny+-+n_,+h+1) (k#l, h=0,1,...,n,—1),
and X},(t) is characterized by the expansion
X)) =22 ,Gh(m)—=A)" at t=],
(k#1, h=0, 1,..., n,—1).
As for )?}(t), we have
Xit) = T 0l 1= 2)"], =y, £5(D)
(j=0,1,...,n—1)
near t=J4,, where £4(t) (j=0, 1,..., n,—1) are holomorphic at =4, and

REA) = e(ny+-+n_,+j+1) (j=0,1,..,n-1).
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Concerning these solutions we have the following

THEOREM 2. If A, satisfies
4.3) argl,_; —n<argi <argi, +m,
then we have

X4 (1) = oo 617 AT T(=)]y=y X (1)
= 252t Eake! OAT T (= V)71 = v X )
(j=0,1,..,n" 1)

for te{t; [t| <R}\{14;; t<0}, where arg te (arg 4,—, arg A, +7).

PROOF. We first observe that each X O (j=0,1,...,n" —1) can be expressed
by a linear combination of X} (t) (j=0, 1,...,n'—1) (note that (4.3) holds).
In order to determine the coefficients we calculate the asymptotic expansion for

44 OrLX(1)]4=a,

=___1_rf 0i [G(v z) p((z ))] _p(=2) F(r(”)’")ﬁdz }( 113_1"')

as m— o (j=0, 1,...,n'—1). Let B be an arbitrary positive number not equal
to Rev' +s (s=0, 1, 2,...), and let M be a positive integer such that

M<B—Rev <M+ 1.

Observing that the points z=s (s=0, 1,..., m—1) are no longer poles of the
integrand in (4.4), we deform the path & in (4.4) with m > f to be the straight line
from f—ioo to B+ ico plus a closed curve which circles the points z=v'+s5 (s=0,
1,..., M) in the negative direction. Then we have

orLX (1)]i=a,

= (A" XMy [G(v v+9) 1 r(ms);(_r:)ﬂtl) mlw

2 AN Y ROl Gy

-F(z+1)(m—2z)(e™A)*dz-(—A)™™/[[(m+1).
By virtue of the condition (4.3) and the inequality
|F(x+iy)| < I'(x) for x>0, yeR,

we can easily estimate the last term, which we denote by | j(m), as follows:
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I m)ll < RI=4="I(m—B)/F(m+1)  for m > B,

where K is a positive constant independent of m (but depending on §). This
implies an asymptotic expansion of the form

oK j(0)],=s,
~ (=AM 01T ImT T ) oy T xjAs)mS
as m— o0, where
x0) = 3[G(v; VAT (=V)],=,
= 2} = O TAT(=)]y=yenny + -+, 4] +1)
(j=0,1,...,n" =1).

Comparing this with the asymptotic expansions of G.;(m) (j=0, 1,...,n"—1),
we have

Rj1) = 2907 AM(=)]y=y XL (1)
(j=0,1,...,n"=1)

for te C\ {t4,;; t<0}. Multiplying both sides of this formula by &/ ~/[i;"-
r'(—v)],-, and summing them over j, 0<j<;”, we obtain the desired connection
formulas (j"=0, 1,...,n'—1). ]

In general, taking
G(v; z) = 2h=1 Zhk0! yin(v)e2ri0xz=NG(z) (O, e Z),
we have

THEOREM 2. Let 6, (k=1,..., p—1) be integers such that NPzl S,(6,)=
{t; 0,<argt<0,}#g.
(i) The solutions of (0.1) defined by

Xj(él’--w Op-151)
= R0 — Tizl Tt dife 2 0y, ()] 2y XD
(j=0,1,...,n" —1)

are holomorphic in the sector {t; 6, —2n<argt<6,}.
(ii) If A, satisfies

0, <argi —2nd, + 1 <0,

for some integer &, then we have
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X4i(t) = Thog 0179 [e2000 7 T (= )] oy R (1)
— Thal Tt 01 [e2m o3 v L (= )y (V)] y=yr Xin(2)
(j=0,1,.,n-1)
for te{t; |t|<R}\{t4;; 1=0}, where argt e (arg 4,—2nd,—r, arg A,—2ndy + ).
As an immediate consequence of this theorem, we have

CorOLLARY. If A4, ¢Q,,={t(tA+(1-1)); 150,07 L1} for every
k#1,I', p, then we have

X5 i(t) = X920 037 [(€2 90y [ A)*], = X} (1)
(j=0,1,...,n" —=1)
for te C\ Q,,, where 0 is the integer such that |arg A, —arg A+ 2nd| <.

REMARK 2. In the case when A, 4;~,...€Q,,, by repeated application of
Theorem 2’, we can see that X} ;(t) (j=0, 1,..., n’—1) are represented by means

’

of a linear combination of X1 (1), X} ,(t), X}~4(?),... in which the coefficients
are expressed in terms of y;.,(v), Y- u(v),... (cf. [1, §3]).

As to the non-holomorphic solutions, defining
P = \Upeo,n) {t; 1t=pAl <r}\{t4;; 10}
and
Py=P\{t4; 121} (I=1,..,p-1),

where r=r(l) is a positive number such that 4, ¢ P, for every k=1,..., p, we have

THEOREM 3. For each | (I=1,..., p—1), we have

R (1) = Zie' a0 ei(v, )] v=vr v, X(1) + @5(2)
(j=0,1,...,n"—1)
for te P, where
v, 1) = (e )™ I(—p) Zho" yu(v) (u—v)re=th,

4.5) argh, — m < argt < argi, + =,
(4.6) arg A, < arg(t—41,) < argi, + 2n
and ®4(t) (j=0, 1,..., n’—1) are holomorphic in P}.

PrOOF. In Theorem 2’ we take 6, (k=1,..., p—1) so that arg 4,+7m €(0,, 0,)
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(6o=0). Then we have §,=0, since Ae™ e NPzl S(6,)=S(J,). Therefore,
for t e P, with (4.5) we have

Jr=0 O AT T(=9)]y= X (1)
= 2t GILAT T (= v)yu(V)], = Xu(t) + ii(t)
(j=0,1,...,n" —1),
and hence

4.7) X0 = T156' v y=y X () + (1)
(j=0,1,...,n" —1),

where &4(t) and (1) (j=0, 1,..., n’—1) are holomorphic in P;. On the other
hand, in the theorem for 4, corresponding to Theorem 2’ for 0, we take d, and
O, (k#1) so that arg (—A)—2nd,+n=arg 4;+2ne(0,, 6,). Then we have

(4.8) Xi(D) = Th—o 07" [(e™2) I (= 1)],=y XhA(1) + ¥i(D)
(h=0, 1,..., m,—1)

for te P, with (4.6), where ¥i(t) (h=0, 1,...,n,—1) are holomorphic in Pj.
Substituting (4.8) for X () in (4.7), we thus obtain the desired connection formulas.
a

Comparing Theorems with Propositions, if (N+1)n”"<n, we can consider
our procedure to be a reduction of connection problems for hypergeometric
systems. Moreover, applying again our method to (2.17), we can think of the
hierarchy of connection coefficients in some cases. In the case when n"=1 (i.e.,
n'=n—1), for example, (2.17) has the dimension n—1. Moreover, the quantity
corresponding to n” in the connection problem for (2.17) is also equal to 1. Hence
we can obtain the successive reduction of connection problems and the hierarchy
of connection coefficients in this case. See also [13] and [14].
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