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Introduction

In this paper we shall be concerned with a connection problem for the so-
called hypergeometric system of linear differential equations

(0.1) (t-B)=AX (ίeC),

where X is an n-dimensional column vector, A is an n by n constant matrix and B
is an n by n diagonal matrix. This is a Fuchsian system with regular singularities
at diagonal elements of B and infinity in the whole complex f-plane.

The global study of (0.1) was initiated by K. Okubo [9], who investigated
an effective method of algebraic computation of the monodromy group for (0.1)
without accessory parameters, together with the reduction of every single Fuchsian

differential equation to (0.1) ([10], see also [7]). R. Schafke [12] and W. Balser-
W. B. Jurkat-D. A. Lutz [1] cleared up the relation between connection coeffi-

cients of (0.1) and the Stokes multipliers of the Birkhoff system of linear differential
equations

which has a regular singularity at z = 0 and an irregular singularity of rank 1
at z = oo, through the Laplace transformation 7(z) = J X(t)eztdt.

Recently M. Kohno [5] has shown that the connection problem for (0.1)
can be solved by a global analysis of the system of linear difference equations

(0.2) (B - λ) (z + 1 )G(z + 1 ) = (z - A)G(z) (z e C)

which gives the coefficients in power series solutions of (0.1). In [6] he has
also analyzed a case when there appear logarithmic solutions at finite singularities
and has shown the global Frobenius theorem. By means of the method of [5],
the author [14] (see also [13]) has analyzed completely (0.1) in the case when

A is diagonalizable and has only two distinct eigenvalues, and has verified the
following results :

( i ) Principal solutions of (0.2) in the right half z-plane give the solutions of
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(O.I) which are holomorphic everywhere in the finite complex /-plane except at
only one singular point;

( i i ) The non-holomorphic solution of (O.I) near a finite singularity is
given by a solution of (0.2) which has zeros in the left half z-plane; and

(iii) Connection coefficients between such solutions as stated in (i) and
(ii) and a fundamental set of solutions near infinity are expressed explicitly in

terms of solutions of a certain (appropriately determined) hypergeometric system
of dimension n — 1 .

The purpose of this paper is to prove such results (i), (ii) and (iii) in a more
general case when there appear logarithmic solutions not only at finite singularities
but also at infinity. Moreover, we consider especially a new connection problem
between solutions of (0.1) near finite singularities.

In (0.1) let us assume that B has multiple eigenvalues, i.e.,

n\ m np

B = diag [A,,..., A,, A2,..., A2,..., λp,..., λp~\

We write A in the (Λ,, n2,..., n ̂ -partitioned form

A = [_AJk] (i.e., AJk is an nj by nk matrix)

and denote the distinct eigenvalues of A by μ/ (/=!,..., q). For simplicity we

suppose that Akk (fc= !,..., p) consist of only one Jordan canonical block, i.e.,

Λ« = vk + J(nk) ( fc=l,. . . ,p)

and the Jordan canonical form of A has only one Jordan block for each μ, (/ =

1,..., q), i.e., A is similar to

(μί + J(mt)) θ

where J(ni) denotes the m-dimensional shifting matrix, i.e.,

0 1

''•Si eA/JC).

Ό _

Moreover, we assume the following:
[A0] No three λk lie on a straight line.

[Aj] None of the quantities vk ( fc=l,. . . ,/?) and μ/ —μfc ( / , / c = 1,..., <j,

i is an integer.
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[A2] None of the quantities μl (/=!,...,#) and μ{ — vk (/=!,..., q, /c =
1,..., p) is an integer.
The condition [A2] is related to the reducibility of (0.1) (see [10] and [1]). In
more general cases when Akk (/c=l,...,p) consist of several Jordan canonical
blocks or the Jordan canonical form of A has several Jordan blocks for each
μ/ (/ = !,..., 0) (with some generic conditions corresponding to [A0~A2]), we
only need a slight modification of the consideration which will be stated below.

Our development proceeds along the following line. In Section 1 we are
concerned with local solutions of (0.1) near singularities. In Section 2 we
investigate the system (0.2) through the Mellin transformation. In Section 3
we analyze the Barnes integral representations of solutions of (0.1) and clear up
the structure of connection coefficients between solutions of (0.1) near a finite
singularity and near infinity. In Section 4, using the Barnes integral represen-
tations obtained in §3, we investigate the connection coefficients between solutions
of (0.1) near finite singularities.

§ 1. Local solutions

Since (0.1) is a Fuchsian system with regular singularities t = λk (£=!,..., p)
and oo, (0.1) has convergent series solutions at each singularity. As to solutions
near the finite singularities it is sufficient to consider them at one singular point,
for instance, λp. Changing the variable t for t' = t — λp, we may assume that
λp = Q. Moreover, without loss of generality, we may assume that

(1.1) argA t < argA2 <•••< argA p _i < argA t + 2π

by the assumption [A0]. Hereafter we denote vp and np by v' and n', respectively.
Near ί = 0 there exist ri non-holomorphic solutions of (0.1) of the form

(1.2) Xj(t) = Σj -0(y •.*,••), (log t)J-J'r'*r(t)

(7 = 0, l,...,n'-l),

where

(1-3) */0 = Σ£=oG/"0'w 0 = 0, l,...,n'-l)

which are convergent for |/ |<Λ, R = min{\λk\', /c=l,. ..,/?-!}. The coefficient
vectors Oy(m) (m^O, y = 0, 1,..., n'-l) are characterized as solutions of the
systems of linear difference equations

(1.4); + <3, _ι(m) (

Bv'6/0) = - ββ -ΛO), βχθ) * 0 0 = 0, 1,..., n'-l),
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where 6_1(m) = 0. Besides, there exist n — ri holomorphic solutions of (0.1)
whose coefficient vectors are characterized as a solution of the system of linear
difference equations with v' replaced by 0 in (1.4)0, i.e., (0.2) with Λ. = 0.

On the other hand, near f = o o there exist n linearly independent solutions
of (0.1) of the form

(1-5) Y"(t) = Σrr>=o_l

(/=!,...,<?, r = 0, 1,..., m,-!),

where

(1.6) y"(ί)= Σ?=oHl'(s)Γ* (/=!,..., g , r = 0, l,...,m,-l)

which are convergent for \t\>R', R' = max {|/lfc|; fc=l,..., p— 1}. The coefficient
vectors Hlr(s) are determined by the systems of linear difference equations

s) = B(s-\-μι)H"(s-l)

subject to the initial conditions

(1.8), (A-μ,)H"(Q) = H' '-'(0) (r=0, 1,..., m,-l),

where H' ~l(s)sO and H'°(0)^0 (/=!,..., 9).
Now, for each / (/=!,..., q) we define

(1-9) /ί'(μ;0)=Σ^o1(/'-rt)rH"(0)

and for s ̂  1

; s-\)

inductively, where μ is a complex parameter. We here observe that H'(μ; 5)
(s^O) are holomorphic at μ = μ/ by the assumption [AJ. We define the differ-
ential operators dr

μ (r = 0, 1, 2,...) by

^— •
Then we have

9 s)],=/lί (s^O, r = 0, 1,..., m f-l).

Therefore, observing that
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)'*"' = δ^[ί"]μ=μι (r = 0, 1, 2,...)

and using the Leibniz rule

we have

Γ"(0 =

Moreover, one can interchange the differentiation and the summation to obtain

These facts are well known as the Frobenius theorem. The 6/m) are also
given by differentiation with respect to a parameter, which will be discussed
in §2.2.

§ 2. Solutions of the system of difference equations

In order to obtain the Barnes integral representations of the solutions of
(0.1) near f = 0, we shall first consider (0.2) with A = 0, which is rewritten in the

form

(2.1) (z-AΓlB (z + l)G(z+l) = G(z),

where z is a complex variable.
Hereafter we use the following notation :

for a polynomial /(z) = Π?l=ι (z~ OΓS which obviously satisfies

Γ/z + l)=/(z)Γ/z).

We also denote the minimal polynomial of A by <p(z), i.e.,

and define

N = deg φ - 2.

Putting

(2.2) G(z)= Γ G(z),
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we can transform (2.1) into

(2.3) φ(z)(z-A)-lBG(z+l) = G(z).

We here put

which is a polynomial matrix of the form

(2.4) A(z) = zN+l - (Σ?=ι mlμl-A)zfl + ••

Writing G(z) and A(z) in the (n —n', n^-partitioned form

Γ S1(z) 1
G(z) = and Ά(z)--

ι X22(z)

respectively, and defining

JGί = diag [I,,..., i,, 12,..., 12,..., Vi' - Vi]'

we can rewrite (2.3) as

and

(2.6) A2l(z)B~lGl(z+\) = G2(z).

Namely (0.2) with A = 0 is reducible to (2.5), since G2(z) can be determined by
solving (2.5). We observe that (2.5) has the dimension n — ri which is equal to
the number of holomorphic solutions of (0.1) near ί = 0. We hereafter denote
n — n' by n".

2.1. Principal solutions in the right half plane

We here investigate the principal solutions of (2.1), i.e., (2.5) in the right
half z-plane by means of the Mellin transformation. For that purpose we first
have to make some preparations.

Let α, (/=!,..., N) be constants such that

(2.7) α f ^ α r (modi) (/, /'= 1,..., N, i*i'),

(2.8) aiφμl (modi) (/ = !,..., N, /=!,..., q),
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(2.9) Λtφvt (modi) (/=!,..., N, fe=l,..., p),

(2.10) α ( ^ 0 (modi) (/=1,...,N),

and define

*(z) = rκ.ι(z-«ι).
LEMMA 1. Ά(z)j\l/(z) is developed as

where

(2.12) Λ = Σ?=ι

(2.13) X, = - Π^iίαi-^r' ΦίαiXαi-^)-1 0' = U»., N).

PROOF. By (2.4) and (2.7), it is obvious that A(z)/φ(z) is developable in
terms of a partial fraction of the form (2.11). Comparing

with (2.4), we obtain (2.12). Moreover, from

At= -lim^βf(z-α|)

together with (2.8), we have (2.13).

We write At (i = 0, 1,..., N) in the (n", n^-partitioned form

Γ A\*

and define

At-BAyB-i (i=o, I.....ΛO.

Putting

and using Lemma 1, we can transform (2.5) into
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We introduce £''(z) (/ = 1,..., N) by

(2.14) g'(z)= * 5(z) (/=!, . . . ,ΛO
Z 1 Ot j

to obtain

(2.15) (z-yϊoXte+1) - Σf=ι ΛAz+1)

We consequently obtain

(2.16) (z-A)G(z+l) = BG(z),

where

A =

7 being the /Γ-dimensional identity matrix, and

G(Z)

G(z)=

All preparations having been made, we now apply the Mellin transformation

AQ Aλ AN

r α,r
r 'α r

, B =

- B
07 .

or _

where p is a complex parameter, to (2.16) and then obtain the system of linear
differential equations

(2.17) = (p-l-A)W

which is a hypergeometric system of dimension (N+ \)n". For the determination
of arguments of ί — λk and f, we introduce cut planes

and

&k = ^\{τlfc; τ^O} (/c=l,..., p—1).

Then, for ί e ^fc we can define the values of arg (t — Afc) and arg ί so that
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arg Ifc — π < arg t < arg Ifc -f π
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(argIk=~-argAΛ), respectively (fc=l,..., p-1). For each k (/c=l,..., p-1),

let WfcΛ(p; 0 (Λ = 0, 1,..., κk- 1) be solutions of (2.17) in 3>k which are developed as

W f c Λ (p; 0 =

w*Λ(p; 0 =

near ί = ίk, where

ι=0, 1,..., nk-l)

- Σ?=ι

The coefficients Ckh(ρ m) are vectors of the form

where Ckh(m) (/ι = 0, 1,..., n k— 1) are the vectors determined uniquely by the

systems of linear difference equations

fc + A)CfcΛ(m)

ew(5> being the s-th unit m-vector (cf. §1). Using these WΛΛ(p; t), we define

(2.18) GkΛ(z) =

for Re(z — p)>0, where the path of integration is the straight line from 0 to λk

(note that arg^^argl^ (mod2π) (k^l) by the assumption [A0]). The para-

meter p is selected so that Re(p + vfc)>0 (for every k=l,..., p~l) and

where

^ = {z; Rez>Rea,+ 1 and zφ^ (mod 1) (/ = !,..., N)} .

Concerning these GkΛ(z), we have the following
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PROPOSITION 1. (i) For each fc, h (/c=l,..., p- 1, /ί = 0, l,...,nk-l), Gkh(z)

is holomorphic and is a solution of (2.16) /n Re(z — ρ)>0. Therefore Gkh(z)
is analytically continued into C\{a;+l —s; /=!,..., N, s = 0, 1, 2,...} 0/?d
satisfies (2.16). The points af +l— s (/=!,..., JV, s=0, 1, 2,...) are simple

poles of Gkh(z).
(ii) Forzetf,

(2.19) GJz) = linw,,e*k W fcΛ(z; ί)

Λo/ds ( fc=l, . . . ,p— 1, /ι = 0, 1,..., n f c— 1). Therefore Gkh(z) does not depend on p.
(iii) As z-»oo, |argz|<π/2 + ε /or sufficiently small ε>0, f/ie asymptotic

expansion

Gkh(z) ~ FkΛ(z)

/10/ds, w/iere FΛΛ(z) /s a formal solution of (2 .16) of the form

(k=l,...,p-l, Λ=0, l,...,n k~l).

PROOF, (i) The system (2.17) has n" linearly independent solutions for
each of the exponents Oand p—l-α, (/=!,..., N) at f = 0 (note that p^^ (mod 1)
and (2.7) holds). Since Re(p- 1 -α^O (i= 1,..., N), we have

WkΛ(p; ί) = 0(l) as * - > 0, ίe^.

Therefore GfcΛ(z) is well defined and holomorphic for Re(z — p)>0. By a simple
calculation we can easily see that Gkh(z) satisfies (2.16) in Re(z — p)>0. The
desired analytic continuation of GkΛ(z) can be obtained by means of the equation

(2.16), i.e., (2.15) and (2.14). We here observe that the first n" components of
Gkh(z) are holomorphic at z = a,.-h 1 (i= 1,..., N).

(ii) For t e ̂ fc, Re (z — p) > 0, we define

G*"(z; ° = Γ(z-p) f/τ-O^^W^p; τ)dτ,

where the path of integration is a curve in ®k from ί to lk and arg (τ — ί) is taken
continuously along the path of integration with arg (lk — t) = arg (t — λk) + π at
the endpoint λk. For \t — Ij sufficiently small, we obtain

by term wise integration. Moreover, since both GfcΛ(z; t) and W fcΛ(z; t) are holo-
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morphic in ^k, this formula is valid for every te@k, Re(z — p)>0. Hence, for
Re (z — p) > 0 we have

Gkh(z) = lim,_0Gtt(z; ί) = lim^0W fcΛ(z; t).

Furthermore, combining the facts that

-|-Wu(z;0=-Wu(Z-l;r),

which is verified by termwise differentiation and analytic continuation, and

lim^o, tε®k 'WfcΛ(z - 1 ί) = 0 for z e «f

with (2.17), we can easily see that lim f^ 0WΛ Λ(z; ί) satisfies (2.15) and (2.14) for
zeίf. Hence lim f_+0 W fcΛ(z; t) is holomorphic in ze«f . Therefore, we have
(2.19) for ze<f ( U {z; Re(z-p)>0}) (cf. [12]).

(iii) We apply the following

LEMMA 2. Let g(i) satisfy the following two conditions:
(a) g(i) is holomorphic in the sector {ί; |argί|<0}, and

9(t)=Σΐ=oast* (\t\<6)ι

(b) g(t) = O(ebt)for some b as f->oo in the sector { t ; |argf |<0}.

Then

G(z)= Γ°° e-zt(\ogt)mt'-*g(t)dt (Reσ>0)
J o

has an asymptotic expansion of the form

G(z) ~ ΣZl=o

as z->oo,

PROOF OF LEMMA 2. The asymptotic expansion for |arg (z — b)\ g π/2 — ε
(ε>0) can be proven in a standard manner by expressing g(t) as a finite part

of the expansion plus an error term whose Laplace integral can be easily estimated.
Then, rotating the path of integration, we obtain the desired asymptotic expansion

in the sector stated above (see [11, Chap. 4 §3 and Chap. 9 §1]). Q

Changing the variable t for τ by t = λke~τ in (2.18), we have
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-Λ* Γ(z-p) ^* ' -<>(Λ-A') !

Joo
e-<z-,

0

where

which satisfies the conditions in Lemma 2 with sufficiently small 0>0 (fc=l, . . . ,

p — 1 , /ι = 0, 1 , . . . , nk — \ ). Therefore, writing

wΛΛ(p; τ) = Σs°°=o ίkftίp; Φs at τ = 0,

we obtain an asymptotic expansion of the form

l l

Γ(z_p) -=o v z - p v = v k =

as Z->ΌO, |argz|<π/2 + ε for sufficiently small ε>0, where

5kf^(p; 5) (5^

Then, developing again the right hand side of the above formula in terms of z"1,

we obtain the required asymptotic expansions. As to the initial vectors fΛΛ(0),

we have

UO) = Up; 0) = Σί'=o^-

(/c=l,..., p-1, /? = 0, 1,..., nk-\).

This completes the proof of (iii) (cf. [4]). Π

We denote by Gkh(z) the ^''-vector which consists of the first n" components
of Gkh(z) (/c=l,. . . , p— 1, /? = 0, 1,..., nk— 1). Besides, we define

Gkh(z)= gfc/,(z) ( f c = 1 , . . . , p - l , Λ = 0, 1,...,n f c-l),

which are entire solutions of (2.5) (note that Gkh(z) are holomorphic at z = α, + 1
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(/=!,..., N)). Moreover, we denote by Gkh(z) the solution of (0.2) with /ί = 0
constructed by G\h(z) with (2.6) and (2.2) (k=l,..., p-1, Λ = 0, 1,..., ΛΛ-1),
which are the principal solutions in the right half z-plane. Namely Gkh(z) has

the asymptotic exapnsion

(2.20) Gkh(z) ~ Fkh(z) as z - > oo, |argz| < π/2 + β (ε>0),

where FΛΛ(z) is a formal solution of (0.2) with A = 0 of the form

These GfcΛ(z) will be used for the Barnes integral representations of the holomorphic
solutions of (0.1) near f = 0 in §3.1.

REMARK 1. According to the general theory of difference equations (e.g.
[2, pp. 270-271]), a solution of (0.2) with A = 0 which has the asymptotic expansion
(2.20) is uniquely determined. Hence GkΛ(z), and also G£Λ(z), (fc=l,..., p— 1,

Λ = 0, 1,..., n f c— I) are independent of αf (ί = l,..., N).

2.2. Solution having zeros in the left half plane

In this section, in order to construct solutions of (1.4)y O' = 0, 1,..., ri — 1),
we consider a particular solution of (2.5) which has zeros in the left half z-plane.
In view of their asymptotic behavior in the right half z-plane, we construct these
solutions by means of a linear combination of the principal solutions with constant
coefficients.

We first calculate the determinant of [GiΛ(z)] = [G}o(z) Gj > Π l _ 1 (z)
G^_1>0(z).-.Gi_1>llp.1_1(z)]. It is obvious that det [GJΛ(z)] satisfies the difference
equation

dety?11(z) det5-1 det[Gj[Λ(z-hl)] = det [GiΛ(z)] .

Since

(2.21)
0

Al2(z)
(z-A) =

φ(z)l 0

*

/ being the ^'-dimensional identity matrix, we have

det λl \z) = φ(z)n" det (z - App)/det (z - A)
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Therefore, denoting the last polynomial by d(z), we obtain

where q(z) is a periodic function with period 1. By virtue of the asymptotic
expansions of Gkh(z) (i.e., GfcΛ(z)) and the Stirling formula, we can easily see that

q(z) ~ 1 as z - > oo, |arg z| < π/2 + ε (ε>0).

Hence q(z) is indeed a constant and is equal to 1 . Thus we have

(cf. [10, Chap. 2 §2] and [6, Theorem 2]).
Let us define ykh(v) (k= 1,..., p— 1, /z=0, I,..., nk— 1) as the solution of

the system of linear equations

."

L VI,P J

where v is a complex parameter. Since det [G£Λ(v' + 1)]^0, ykh(v) are uniquely
determined for every v in a neighborhood of v'. Using these y*Λ(v), we define
a solution G !(v; z) of (2.5) by

Then, G'(v; v) has a zero of order n' at v = v'. In fact, since

A lp

from the (1, 2)-block of (2.21), we have

GHv; v) = Άll(v)B-lGl(v; v+1)

(note that vV — 1, —2,...). Moreover, since we have

G !(v; v-s) = ^Π(v-s)S-1G1(v; v-s+1)

by (2.5), G'(v; v — s) (s=l, 2,...) also have a zero of order n r at v = v'. Hence
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G*(v'; z) has zeros at z = v'-s (5=0, 1, 2,...).
Now let us define solutions of (1.4) j O' = 0, l, . . .,w' — 1). We denote by

G(v; z) the solution of (0.2) with A = 0 constructed by G^v; z) with (2.6) and
(2.2), and define

(2.22)

= Σ?=i ΣKiΓo1 Σj o (Jlr)l yίi-''}(V) ̂ IΠz+v)

0 = 0, l , . . . ,w'-l).

Then, <5/z) (7 = 0, 1,..., κ'-l) satisfy

(; = 0, 1,..., n'-l, 6.̂  = 0).

Moreover, since G(v; v — s) (5 = 1, 2,...) have a zero of order ri at v = v', 6/z)
O' = 0, 1,..., n'-l) vanish at z= -5(s=l, 2,...). As to (3/0), we have

since

; v) =

and hence

G(v; v) = Σ5LV(v-O'>n(

hold. Therefore, 6/z) O' = 0, 1,..., n'-l) are solutions of (1.4); (j = 0, 1,...,
n' — 1), which will be used for the Barnes integral representations of the non-
holomorphic solutions Xj(t) (; = 0, 1,..., π'-l) of (0.1) near ί = 0 in §3.2. In
addition, it will be shown in §4 that for each k (k=l,..., p— 1), ykh(v) (/ι = 0, 1,...,
nk— 1) give the connection coefficients between ί"/ί) O' = 0, 1,..., n' — 1) and
non-holomorphic solutions of (0.1) near t = λk.

§ 3. The Barnes integral representations

3.1. The Barnes integrals for holomorphic solutions

We consider the Barnes integral
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where

p(z) = πe~πl'2/sin πz

and the path of integration ^ is a Barnes contour running along the straight
line z = — ia from + oo — ia to 0 — /α, a curve from 0— ia to 0-h ia and the straight
line z = ia from 0+/0 to -foo + iα such that the points z = m (m = 0, 1,2,...)
lie to the right of V and the points z = μt-s (s = 0, 1, 2,..., /=!,..., g) lie to the
left of #. The constant a is taken as α>max { |Imμ/|; /=!,..., #}. By virtue
of the asymptotic behavior of GΛΛ(z), the above integral is absolutely convergent

for |ί |<|λ f c | and is equal to the sum of residues at z = /n (m = 0, 1, 2,...), i.e.,

Xkh(t) = Σ£=o Gkh(m)Γ (|f|<μj),

which is a holomorphic solution of (0.1) near f = 0.

Now let ξ be an arbitrary negative number not equal to Re(μ, — s) (5 = 0, 1,
2,..., /= 1,..., q). We take the poisitive integers Nt (/=!,..., q) such that

Replacing the path ^ by the rectilinear contour & = &(ξ) which runs first from

H-oo — ia to ξ — ia, next from ξ — /0 to ξ f / α and finally from ξ + ia to -f oo-f /α,
we obtain

Guίz)p(z)t*dz - Σ Res [GkΛ(z)/>(z)f*] ,

where the summation covers all poles in the bounded domain encircled by 3?
and the curve from —ia to ia of #. Since, by (2.2), Gkh(z) has poles of order
m{ at z = μl — s (5 = 0, 1, 2,..., /=!,..., g) and has zeros of order 1 at z= — s (s=l,
2,...), the integrand has poles of order ml only at z = μt — s (s = 0, 1,..., Nl9 1 =
1,..., q) in that domain. Hence we obtain

ΣRes[GΛΛ(z)p(z)r]

= Σ?=ι Σs%Res[

= Σ?=, Σ^o^'^C

= Σ?=, Σr^o1 3"--1

where

(s = 0, 1, 2,..., /=!,..., q, r = 0, 1,..., m,-!).

We here observe that for each / (/= 1,..., 4), H(r

h(s) (r = 0, 1,..., m|-l) satisfy
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the systems (1.8)r and (1.7)Γ (r = 0, l,...,m|— 1). This fact is easily verified by
applying dr

z (r = 0, 1,..., W j — 1) together with the Leibniz rule to

and letting z tend to μ/ — £ (note that GΛ/f(z) is holomorphic at z = μ,4 l.) (cf.
[14, p. 233]). In particular, we have

Since H/r(0) (r = 0, 1,..., m| — 1) (which are given in §1) form a basis of the
kernel of (A — μ,)mι (/=!,...,#), there uniquely exist the constants ηl

k

r

h (/=!,..., q,
r = 0, 1,..., m,- 1) such that

Then, multiplying this formula by (A — μ/)mι~1~Γ and taking account of (1.8)r, we
obtain

(3-D ^(θ) = Σ;
(/=!,..., q, r = 0, l,...,m,-l).

Therefore, we have

(/ = !,..., ί fr=0, l,...,m,-l),

since the right hand sides of these formulas also satisfy (1.7), (r=0, 1,..., m( — 1).
We thus obtain

where

(/=!,...,«, r = 0, l,...,m,-l).

We now estimate the last term. Observing that

(3.2) as y - > + oc

uniformly in 0e[0, π/2], and using the asymptotic behavior of GfcA(z), we can
see in a standard manner that the integral
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Γ*'" Gkh(z)p(z)t*dz
J ξ-loo

is the analytic continuation of the above integral to a sector

Sk = {ί; arg AΛ + ε'^arg ί^arg λk + 2π — ε'} (ε'>0).

Moreover, we have

-ξ+,'00u;:; for teS'k,

where || || means the maximum norm of a vector and K is a positive constant

independent of t (but depending on ξ and ε') (see [3, Lemma 6 and Lemma 6a]).

Hence Xkh(t) is analytically continued into C\{τλk\ τ^ 1} and

(f->oo,

holds, where ξ' is an arbitrary positive number. Since t= oo is a regular singularity

of (0.1), we actually obtain

where Sk = {t; arg^ fc<arg ί<arg AΛ-h2π}. In order to obtain the connection

formula in another sector, we anew take e2πiδzGkh(z) (δεZ) instead of Gkh(z).

Then we have the connection formula with T(r

h replaced by T(r

h(δ) in the above

for t e Sk(δ)9 where

and

(3.3) Sk(δ) = {f; argAΛ-2π^<argί<argA J t-2π5-h2π}

Actually, for each / (/=!,..., <y), >/ίr

Λ (r = 0, 1,..., m,— 1) are determined

successively from >fj$. Let HO = HO(/), I^n 0 gn", be a number such that the

/70-th component of ///0(0) is not zero. (Note that if an n-vector H whose the

first n" components are all zero satisfies (A — μ,)// = 0, then // = 0 by virtue of the

assumption [A2].) We define

0)]ΠO,

where [ ],,0 denotes the n0-th component. Then, we have
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since

[(Ai-ftJ 'Guίμ^-ίΣW Oί-ftyiίlr*}[«'(/ι; 0)]πo

has a zero of order m, at μ=μ, by (1.9) and (3.1). Hence, by using the Leibniz

rule, we obtain

0.4) πr.(«) = - ̂
(r = 0, l,...,m,-l).

Observing from Proposition 1 (ii) that η'kll(μ) has a representation of the form

; o)L0,

where φι(μ) = φ(μ)/(μ — μι)mι and αf (/ = 1,...,N) are taken so that μte^, we
can conclude that the connection coefficients between Xkh(t) and Ύ l r ( i ) (/=!,..., g,

r = 0, 1,..., mj-1) are given explicitly by the solution WkΛ(p; ί) of (2.17) (with

the factor consisting of exponential- and Γ-functions).

3.2. The Barnes integrals for non-holomorphic solutions

For the non-holomorphic solutions of (0.1) we first consider the Barnes

integrals

(,/ = 0, l,...,n'-l),

where the path of integration <% is a Barnes contour similar to # stated in the

beginning of §3.1 (note that the integrands have poles at z = m (m = 0, 1, 2,...)

and z = — v'+μ, — 5 (s=0, 1, 2,..., /=!,..., q)). Observing that the asymptotic

expansions for G$(z) (j=\, 2,...) are given by differentiating that for Gkh(z),

i.e., (2.20), we can see that these integrals are absolutely convergent for \t\<R and

*/0 = ΣS ofymX" (\t\<R,j=0, 1,..., n'-l)

hold. Moreover, since

Res [6/z)Xz)ίz : z = - v' + μ, - s]

= aί[Res[G(v; z + v)p(z)ίz: z= -

= d'v[r» Res [G(v; z)p(z-v)ίz: z=^-
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we obtain

?=, ΣΓJ?1 f '•""-'-' (v)χ

where we have replaced •£ by the rectilinear contour & = &(%) for a negative
number ξ. Besides, in the above, $, (/ = !,..., <j) are positive integers similar to

JV,ίn §3.1 and

f "(v) = - Σ?=! Σϊ^o1 Σ -oδΓ'ΈXit-v)],,.,, y»(v) jK

(/=!,.. . , ή i , r = 0, l,...,m,-l).

Therefore, the non-holomorphic solutions

*/0 = Σ^o^'M^vV) ( '̂ = 0' 1'-, n'-D

of (0.1) near f =0 have a representation of the form

*ΛO= Σ7-ι ΣK1 aίCί' -'-'ίv)],,,. x

x Σ -o &ϊ" ['"],=„ Σίio ff'r'(s)t-s+ ίj(t)
(\t\<R,j = Q, l,...,n'-l),

where

?=! ΣK1 Σί- =o5r;"

0 = 0, !,...,/!' -1)

which are analytically continued into the sector

^k=\Sk = {f; arg/l p _ 1 <argί<argA 1 -f2π}

(note (1.1)) and have the following estimates:

^|ί|l+Rev'+ε for terM=\S'k

0 = 0, l,...,n'-l),

^ and ε being positive constants. Hence, %j(i) (j = 0, l,...,n' — 1) are also
analytically continued into Γ\%=\ Sk and satisfy the connection formulas
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= Σf-i ΣS51 f J --'-' Y"(t) o en£! s,)

(;=0, l,...,ιt'-l),

where

0 = 0, 1,..., n'-l, /=!,..., ί,r = 0, 1,..., m,-l).

In order to obtain the analytic continuation of £/ί) into another sector, we anew

take

where 5k (fc = 1,..., p— 1) are suitable integers, instead of (2.22). Then we obtain

the connection formulas with f ' f replaced by f'f(δί,..., δf-1)'m the above for

ter\^lSk(dk), where

(3.5) f^!,...,^,,)

(7 = 0, 1,..., n'-l, /=!,..., ί, r = 0, l,...,m,-l).

3.3. Connection problem for (2.17)

In order to obtain another characterization of f ' f and ytA(v), we shall

consider the connection problem between solutions of (2.17) near ί = oo and

near ί=0. In this section we assume that pφv' (mod 1) and pfέα ( (mod 1) (/ =

1,...,JV).
Let V/p; ί) (7=0, 1,..., n'-l) be solutions of (2.17) near ί=oo for the

exponent — (p — 1 — v') of the form

V/P; 0 = ΣJj =o8i-J'ίt"-l-^f=v yr(p , 0,

v/p;<) = Σr

K/p; s) = Σ

.A

The K/s) (;'=0, 1,..., ri — 1) are the vectors determined uniquely by the systems

of linear difference equations

(3.6), (s + v'-A)Ky(s) = BK/s- 1) - K,._ ,(5) (s^ 1)

(;=0, ^....n'-l.K.^s
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subject to the initial conditions

(3.7), (v'-A)K/0) = -K -^O) 0 = 0, l, . . . ,n'-l,K_,(0) = 0).

Observing that (3.6)0 is equivalent to (2.16), we here define

K/s) = di[G(v;s+l+v)]v = v, 0 = 0, l,...,n'-l),

where

G(v; s+l + v) = Σt! ΣϊK1V«k(v)Gω(5 + 1+v).

Then these K/s) 0 = 0, 1,..., n'-l) satisfy (3.7); (7 = 0, 1,. ..,«'-!) as well as
(3.6)y (7 = 0, 1,..., ri — 1), since G(v; v — m) (m = 0, 1, 2,...) have a zero of order
ri at v = v' (note (2.14) and (2.9)). (This guarantees the existence of V/p; i)
0 = 0, 1,. ..,«'-!).)

As to the solutions near f = 0, we define for the exponent 0

; 0 = Σ£=o - ^ Gtt(p-m)f»

and for the exponent p — I —

; 0 = t'

where

Rύ(m) = Res[GJz): z = α,+ l-m] (m = 0, 1, 2,...)

(/=!,. ..,N, fc=l,...,p-l, Λ = 0, l,...,nk-l).

By virtue of the equation (2.16) for GΛΛ(z) we can easily see that these UΛΛ(p; ί)

and UίA(p; 0 also satisfy (2.17) (cf. §1).
Defining

we have the following

PROPOSITION 2. Let δk (k= 1,..., p- 1) be integers such that Γ\l=\
Then V/p; 0 (7 = 0, l,...,n'-l) are analytically continued into Γ\l=\
and satisfy the connection formulas
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V/P; ί)

]v = v.UtΛ(p; ί)

- Σf=, ΣΣ=! ΣZIΓo1 5i[e2«i*-("-v)p(ai-v)7w(v)]v=v,UiA(p; ί)

0 = 0, l,...,n'-l)

PROOF. We consider the Barnes integrals

v/p; 0 = - J- J,5ί[Γ(z+l + v-p)G(v; z+ 1 +v)]v=v,p(Z)rz

ί/z

0 = 0, 1,..., «'-!),

where

(3.8) G(v; z) = Σl-\ Σί£o' ykh(v)e™**^ GfcΛ(z)

and the path of integration -̂  is a Barnes contour such that the points z = s (s = 0,

1, 2,...) lie to the right of & and the points z = p — 1— v' — m (m=0, 1, 2,...) and
z=α f — v' — m (m = 0, 1, 2,..., i = l,..., N) lie to the left of <g. These points are
poles of the integrands. By an analysis similar to §§3.1-3.2, we obtain

v/p;0=Σ s

0 0=oK/p;s)r s for |ί| > 1/Λ,

and for t e Λj£} &k(δk), \t\ < l/R',

v/p; 0 = - Σ^o

0 = 0, l,...,n'-l),

where

R''(v; m) = Res[G(v; z): z = α (+l-m]

(m = 0, 1,2,..., /=!,..., N).

Hence, Vy(p; ί) 0=0, 1, , n' — 1) are analytically continued into Λ j

and for ί ε Λj£i (̂̂ ), |f| < l/R',

V/p; ί) = - Σ£=o - - ^ [ p ( p - v ) G ( v ; p-m)]v = v, r

-vmv;

0 = 0, l,...,n'-l)
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hold. Noting that G(v; z) is given by (3.8) in the above, we have the desired

connection formulas. D

Using this proposition, for p e β we have

V/p; ί) - > - ΣZ=! Σ^o1 δi^"i^"-^p(p

as /-»0, f e Γ\ί=! •Ŝ /J. Hence, by combining this with (3.5), we can conclude
that the connection coefficients f'f(δt,..., δp-t) between #,(<) O' = 0, 1,..., n'— 1)

and y'r(ί) (/=!,..., ήf, r = 0, 1,..., m,— 1) are also given explicitly by the solutions
of (2.17) with α, (/=!,..., N) so that μ, e S as follows:

(3.9) f>f(δ,,...,δp^)

* lim

0 = 0, 1, ...,«'-!, /=!,. . . , f l f , r = 0, l,...,m,-l),

where ί is let tend to 0 in the sector r\{£! ^(<5k).

We summarize all results derived in §3 in the following

THEOREM 1. Let Ύlr(i) (/=!,..., q, r = 0, 1,..., m/- l ) be solutions of (0.1)
of the form (1.5) w/ί/i (1.6) near ί=oo, αnrf /eί Sk(δ) (δe Z, /c= 1, . ..,/?- 1) fre
sectors defined by (3.3).

(i) For eflcfc /c, /? (/c= 1, . . . ,/?— 1, /ϊ = 0, 1,..., n k — 1), r/?^ holomorphic
solution Xkh(i) of (0.1) near ί = 0 wft/c/i is characterized by Xkh(Q) = GfcΛ(0),
where Gkh(z) is a solution of (0.2) w/ί/i A = 0 characterized by the asymptotic
expansion (2.20), is holomorphic in C\{τAΛ; τ^ l } and satisfies the connection

formula

XM = Σf=, Σ^o1 Tί f -*-'(δ)Y*'(t) (teSk(δ)).

The coefficients T[r

h(δ) (δeZ, /=!,..., q, r = 0, 1,..., m^-1) are given by (3.4).
( i i ) Let δk (k= 1,..., p- 1) ί?e integers such that Γ\%=\ Sk(δk)^φ. The

non-holomorphic solutions %j(i) (j = 0, l , . . . ,n '— 1) of (0.1) near ί = 0 o/ ί/ie

/arm (1.2) with (1.3), w/ιm> 6</(θ) = βll(n1 + - + n p _ 1 + j + l ) 0 = 0, l,...,n/-l),
are analytically continued into the sector Γ\%=\ Sk(δk) and satisfy the connection
formulas
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The coefficients f I f ( δ ί 9 . . . , 5 p _ t ) 0 = 0, 1,..., w ' - l , / = 1,..., q, r = 0, l,...,m,-l)
are 0/ϋen fry (3.5) (or (3.9)).

(iii) Xkh(t) (/c=l,...,p-l, fc = 0, l,...,n f c-l) and ί/ί) 0 = 0, 1,...,«'-!)
/orm a fundamental set of solutions o/(0.1).

The statement (iii) follows immediately from the fact that det [(

§ 4. Connection coefficients between solutions near finite singularities

In this section we consider the connection coefficients between solutions of
(0.1) near f = 0 and near another finite singularity. These coefficients, of course,
can be calculated in terms of the connection coefficients between solutions near
finite singularities and near infinity. However, in order to clear up the meaning
of ykh(v) for (0.1), we here investigate them directly.

We consider particular solutions Xj(t) (./ = 0, 1,..., n' — 1) of (0.1) defined by

0 = 0, l,...,n'-l)

(cf. [8, §5]). We first observe that £,•(*) O' = 0, 1,..., n'- 1) have a representation
of the form

where <%' is the contour obtained by removing <% by v'. This can be verified by
the change of variables and the integration by parts. Therefore, by virtue of the
Cauchy theorem, we have

(4.1) Xj(t) = - - -

( | ί |<jR,7 = 0, I,..., n'-l),

where the path ^* is a Barnes contour running from 4- oo — ia to 4- oo 4- /Λ such
that the points z = m (m = 0, 1,2,...) and z = vr + m (m = 0, 1,2,...) lie to the

right of #*, and the points z = μ,-s (s = 0, 1, 2,..., /=!,..., q) lie to the left of
#*. The constant α is taken as α>max {|Im v'|, l ί m μ / l (/= 1,..., ^f)}.

Now, in (4.1) we replace the path #* by the contour ^ which runs first
along the imaginary axis from — /oo to — ia, next along #* from 0— ia to

and finally along the imaginary axis from + ia to -f /oo. Then, noting that
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p(z-v) - p(z) = p(z-v)p(-z)/p(-v),

and

(4.2)

as y-+ + cQ uniformly in 0e[0, π/2] (7 = 0, 1, 2,...), we can easily see that the

integral obtained by replacing #* by 3$ in (4.1) is the analytic continuation

of Xj(t) into the sector

S = {f; argΛ p _ 1 -2π<argί<argΛ 1 +2π}

(compare (4.2) with (3.2)). Namely, Xj(t) (7 = 0, l,...,n' — 1) are holomorphic

in S and have the following representations :

Xj(t) = - - j - /v[C(v; z)p(z-v)/X-v)]v=v,p(~z)ί*</z

(feS,7 = 0, 1,..., ii'-l).

For each / (/=l,...,g), we denote by Xl

kh(t) (/c= 1,..., /- 1, /+ 1,..., p,

/ι = 0, l , . . . ,n f c — 1) and ^J(ί) (7 = 0, 1,..., nt— 1) the holomorphic and the non-
holomorphic solutions of (0.1) near t = λt which are defined in a way similar

to Xkh(t) and £/(0 near ί = 0, respectively. In addition, we denote by Gl

kh(z)

(k=l,..., /-I, /+!,..., p, /ι = 0, 1,..., w k — 1) the principal solutions of (0.2) with
λ = λt in the right half z-plane defined in a way similar to Gkh(z) for /I = 0. Namely,
C[Λ(z) is characterized by the asymptotic expansion

as z-^oo, |argz|<π/2 + ε (ε>0), where

/i*(0) = βB(Λ1 + -+πk.1+

and Xl

kh(i) is characterized by the expansion

at f = λ,

/, fc = o, I,. ..,«,-!).

As for A"j(0» w^ have

xlj(t) = Σi'=o^-7"[(ί-^)v]v=vf *J'(0
(7=0, ι,...,Λ|-i)

near t = λh where JcJ.(ί) (7 = 0, 1,..., nt— 1) are holomorphic at ί = A/ and

(7 = 0, l,...,n!-l).
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Concerning these solutions we have the following

THEOREM 2. If λl satisfies

(4.3) argA p _! - π < arg^ < argA t + π,

then we have

xl

pj(t) = Σi'=o^-;'[^vn-v)]v=v^(0

- ΣZ=! Σ^
(7 = 0, l,...,n'-l)

/or f e{ί; |f|<Λ}\{τλ,; τ^O}, where arg f e (arg λ{ - π, argλ/ + π).

PROOF. We first observe that each Xj(t) (7 = 0, 1,..., n' — 1) can be expressed
by a linear combination of Xl

pJ(t) O' = 0, l,...,w' — 1) (note that (4.3) holds).
In order to determine the coefficients we calculate the asymptotic expansion for

(4.4)

nf -Λ Γ(-

as m-^oo (j = 0, 1,..., n' — 1). Let j8 be an arbitrary positive number not equal

to Re v'-hs (s = 0, 1, 2,...), and let M be a positive integer such that

M < β- Rev' < M + 1.

Observing that the points z = s (s = 0, l,...,m — 1) are no longer poles of the
integrand in (4.4), we deform the path ^ in (4.4) with m>β to be the straight line
from β — loo to β + /oo plus a closed curve which circles the points z = v' + s (s = 0,
1,..., M) in the negative direction. Then we have

Γ(m— V — .?) 3v+s, = o v , Γ(

; z)p(z-v)/p{-v)]v=v,.
/5-joo

• Γ(z + l)Γ(m - z) (e^λύ'dz - ( - ̂ )-m/Γ(m -hi).

By virtue of the condition (4.3) and the inequality

\Γ(x + iy)\ ^ Γ(x) for x > 0, y e /?,

we can easily estimate the last term, which we denote by 7/m), as follows :
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||7/m)|| < £|-Λ,|-™Γ(m-«/Γ(m+1) for m > β,

where K is a positive constant independent of m (but depending on β). This
implies an asymptotic expansion of the form

as w->oo, where

(7 = 0, l,...,n'-l).

Comparing this with the asymptotic expansions of Gl

pj(m) O' = 0, 1,..., n' — 1),
we have

(7=0, ι,...,n'-i)

for te C\{τλι', τ^O}. Multiplying both sides of this formula by dj

v"-j[λjv -
Γ( — v)]v=v, and summing them over j, O^j^y", we obtain the desired connection
formulas (/ = 0, 1, ...,«'-!). D

In general, taking

G(v; z) = Σί=! Σ^o1 ytt(v)*2«Wfc<«-v>Ctt(z) (54e Z),

we have

THEOREM 2'. Lβί ^fc (/c= 1,..., p- 1) f?e integers such that Λ?=i 5fc(^) =
{ί;01<argί<02}^0.

(i) The solutions 0/(0.1) defined by

= ίy(0 - Σf=! Σϊ

α=o, ι,...,Λ'~
are holomorphic in the sector {ί; βj — 2π<arg

(ii) //>!/ satisfies

θί < arg A/ - 2π<50 H- π < 02

/or some integer δ0, then we have
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(7 = 0, l,...,n'-l)

for te{t; \t\<R}\{τλt 9 τ^O}, where arg t e (arg A, - 2π50 - π, arg A, - 2π<50 + π).

As an immediate consequence of this theorem, we have

COROLLARY. // λk£ Qu—Wτ'^ + ίl-τ')^); τgO, O^τ'^1} /or
, /', p9 then we have

0 = 0, l,...,n'-l)

/or f e C\Q/>Γ, w/ier^ 5 is the integer such that |arg λt> — arg A

REMARK 2. In the case when λk>, A Λ », . . . eQιr, by repeated application of
Theorem 2;, we can see that Xl

pj(i) (7 = 0, 1,..., n' — 1) are represented by means
of a linear combination of Xlpj(t)9 Xlί>h(i), Xlί»h(i),... in which the coefficients
are expressed in terms of γk>h(v), yk»h(v\... (cf. [1, §3]).

As to the non-holomorphic solutions, defining

P'ι = Wp 6 ( ( U ){f; l*-p^l<r}\{τλ/; τ^O}

and

Λ^PίVτ^ τ^l} (/=!,..., p- 1),

where r = r(/) is a positive number such that λk£Pt for every /c= 1,..., p, we have

THEOREM 3. For each I (1=1,..., p— 1), we

/or 1 6 Pj, where

φ, μ) = (^'λl)-"Γ(-μ) ΣίL-o1

(4.5) arg A^ - π < arg t < arg λt + π,

(4.6) arg A, < arg(ί-A/) < arg^ + 2π

ΦJ (f) (7 = 0, 1,..., n' — 1) are holomorphic in PJ.

PROOF. In Theorem 2' we take (5Λ (k=l,..., p- 1) so that arg λι + πe(θl, Θ2)
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((50 = 0). Then we have (5, = 0, since λ^'e Γ\p

kl\ Sfc((5Λ) c S/05,). Therefore,
for ίePj with (4.5) we have

0 = 0, l,...,n'-l),

and hence

(4.7) *χo = ΣZL-o1 δ;'[y,Λ(v)]v=v,χ/Λ(θ 4- ί J(θ

(7 = 0, 1,. ..,n'-l),

where Φj(f) and Φy(0 O' = 0, 1,..., n'— 1) are holomorphic in PJ. On the other
hand, in the theorem for λ{ corresponding to Theorem 2' for 0, we take <50 and
δk (k + /) so that arg ( - λ,) - 2ττ(50 + π = arg A, + 2π e (0j , 02). Then we have

for tePt with (4.6), where Ψ[(i) (ft = 0, l , . . . ,n/- l) are holomorphic in P\.
Substituting (4.8) for Xih(t) in (4.7), we thus obtain the desired connection formulas.

D

Comparing Theorems with Propositions, if (JV+l)n"<n, we can consider

our procedure to be a reduction of connection problems for hypergeometric
systems. Moreover, applying again our method to (2.17), we can think of the
hierarchy of connection coefficients in some cases. In the case when n"= 1 (i.e.,

ri = n — 1), for example, (2.17) has the dimension n— 1. Moreover, the quantity
corresponding to n" in the connection problem for (2. 1 7) is also equal to 1 . Hence
we can obtain the successive reduction of connection problems and the hierarchy
of connection coefficients in this case. See also [13] and [14].
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