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§1. Introduction

Let R be a formal power series ring in d indeterminates over an
algebraically closed field, and let L be a finite, abelian Galois extension of the
field K of fractions of R such that the order of the Galois group is prime to the
characteristic of K. Let S be the integral closure of R in L. As proved in [2],
S is a free R-module of rank n = |G|, and hence it is a Cohen-Macaulay local
ring of dimension d.

The R-algebra structure of a free R-module S defines structural constants
d(x, ¥ )€R, where y and y’ run through all characters of G(see §2); our main
theorem in this note, Theorem 7 in §4, gives a condition which characterizes the
invertibility of g(x, x')’s, and consequently, it gives a method to calculate the
embedding dimension and the Cohen-Macaulay type of S. In the case that L is
a cyclic Galois extension, we shall make a detailed discussion in §5; more
precisely, we can compute these two numerical invariants whenever a defining
equation z" = f, feR, of the extension L over K is given.

Notation and terminology.

For a commutative ring A, A* will denote the group of invertible elements
in A.

Throughout this paper, R will be a noetherian domain containing an
algebraically closed field K, L will be a finite Galois extension of the field K of
fractions of R. We denote by G the Galois group of Lover K. S will be the
integral closure of R in L; we say that S is a Galois extension of R. We assume
that R is a unique factorization domain (UFD), G is abelian and n = |G| is
invertible in k.

A character of an abelian group means a group homomorphism from it to
k*. Since the Galois group G is abelian, the set Hom(G, k*) of all characters of
G forms a group which is isomorphic to G; we denote by y,---, x. the
characters of the Galois group G. If H is a finite abelian group such that (|H|,
char k) =1, for a character y of H, we put e(y) = n"*Y,cpx(c™o; e(x) is an
element in the group ring k[H].



310 Shiroh IToH

§2. Abelian Galois extensions

In this section we shall summarize some facts on abelian Galois extensions
of a UFD in order to define structural constants of S over R.
The following lemma is well known.

Lemma 1. (1) e(x)® = e(x;) for every i; (2) e(x)e(x;) =0 if i #j; (3) Lie(xs)
=1

Since Lis naturally a left K[G]-module and S is a left R[G]-module, we
have the following lemma.

LemMA 2. (1) L=e(y,)L @ --- @ e(y,)L, and therefore dimge(y;)L= 1.
(2) e(x)L= {xe Ll ox = x{o)x for all c€G}.

(3) e(x)Le(x j)L= e(Xin)L-

4) e(1)L= K.

Proor. The assertion (1) follows from Lemma 1, and the assertion (2)
follows from the fact that, for every ceG and yeHom(G, k*), age(y)x
= (1/n)Y 2z ™ Yorx = (1/n)y,x(p~'o)px = x(o)e(x)x. The assertions (3) and (4)
follow from the assertion (2).

COROLLARY 3. (1) S=-e(x,)S @ - D e(x,)S, and e(y;)S is a free R-module
of rank one for every i.

(2) e(x;)Se(x;)S is contained in e(y;x;)S.

(3) e(1)S = R.

Proor. (1): The first assertion follows from Lemma 2; therefore, for every
i, e(x;)S is a reflexive R-module of rank one, and hence it is a free R-module
because R is a UFD. (3): Since e(1)L= K, we have ¢(1)S=S(YK =R. On
the other hand, we have 1ee(1)S, because e(1)l =(1/n)}. 01 =1. Therefore
e(1)S =R.

DEFINITION. A G-base of S(over R) is a subset {{(x)|x€ Hom(G, k*)} of S
such that {(1) =1 and, for every character y of G, {(y) is an R-base of
e(x)S. Let {{(x)}, be a G-base of S. For any characters x and x' of G, we
define g(x, x') to be the element in R satisfying

008 = g(e X))
For a character y, we define O(y) to be the ideal of R generated by
{90, Xx" =% x #1 and " # 1}.

Although g(x, ) depends on a choice of G-bases of S, it is uniquely
determined up to units of R; therefore the ideal O(x) does not depend on a
choice of G-bases of S. By definition, g(x,1) = g(1,x) = 1.
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Assume that R and S are local rings with the maximal ideals M and N
respectively such that R/M = S/N. Since N is also G-invariant, we have N
=e())N @D e(x)N. By our assumption, S/N( = e(x,)S/e(x;))N @D - D
e(x)S/e(x)N) = R/M; hence N =M + %, . e(x)S. Consequently,

dim, N/N? = dim,M/(M? + O(1)) + # {y # 1|0(3) # R}
and, if R is regular,

type S =#{x(# Dlg(x.x)eM for all y' # 1},

where type S denotes the Cohen-Macaulay type of S, ie. type S = the
dimension of the socle of S/MS over k(= dim,(MS:gN)/MS). We shall use
these equalities in later sections.

§3. g% x)---Part one

As we have discussed in the last part of the above section, it is very
important to find good conditions which characterize the invertibility of g(y,
x)’s.  Throughout this section, we fix a G-base {{(y)}, of S over R. The first
fact to be remarked in this section is the following

LEMMA 4. The discriminant ideal of S over R is generated by
+ [Ling(xs x:~ "), and therefore S is unramified over R if and only if g(x,x ') is
invertible for every character y of G. Moreover S is unramified over R if and
only if g(x, x') is invertible for any characters y and y' of G.

Proor.  Since {(x:)l(x)(x) = 90 x)9 (X x)E0xsx), we  have  Tr(C(x:)
() =0 if xix; # 1 and Tr(C()l(x)) = ng(x x:™ ") if xix; = 1. Therefore det
TrC()o(x) = £ [ling(x ;™ '); thus the first assertion follows.  Since

906 1~ e = L™ ML) = 906 gl 1)), we have g(x, x~ = gt X)
g(x~Lxx); thus the second asserton follows.

We first consider the case that R is a DVR with the maximal ideal M and G
is the inertia group of a maximal ideal of S. In this case S is, in fact, a DVR;
since (n, char k) =1, the residue field of S is canonically isomorphic to the
residue field of R and the ramification index of the maximal ideal of R is n(cf.
[3, Chap. V, §10]). Let N be the maximal ideal of S. We have H'(G, 1 + N)
=1: Let (u,), be a l-cocycle in 1 + N, and put v=n"'Y,u;!; since
=n"1Y,t(u; ') = (n" 'Y, u,"u, = vu, we have u, = tv/v; this shows that H'(G,
1+ N)=1. It then follows from the exact sequence 1 - 1 + N — S* — (S/N)*
— 1 that the natural homomorphism H*(G, $*) — H!(G, (S/N)*) is injective; since
G acts on S/N trivially, we have H(G, (S/N)*) = Hom(G,(S/N)*). Moreover
the natural homomorphism Hom(G, $*) - Hom(G, (S/N)*) is an isomorphism,
because both groups are naturally isomorphic to Hom(G, k*). Therefore Z'(G,
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S*) is generated by B}(G, S*) and Hom(G, S*) @ Hom(G, k*). Choose now an
element u in S so that N = Su. For every s in G, o(u) = a(6) 'u for some
a(c)e S*. 1t is easy to see that {a(¢)™ '}, is a 1-cocycle, and hence there exist an
element ¢ in Hom (G, S*)( =@ Hom(G, k*)) and an element b in S* such that
a(o)” ! = @(o)ob/b for every o. Then o(b™ 'u) = o(b) 'a(c) 'u = @(c)b~ u(cf.
[1]). We may thus assume that there exists a character ¢ of G such that o(u)
= @(o)u for all o in G. Such a character ¢ is unique (and is called the basic
character of the inertia group G at the maximal ideal of S): Assume that there
exist a character ¢’ of G and a generator v of N such that a(v) = ¢'(o)v for all @
in G, and write v = au with ae S*; it is then easy to see that a(a) = ¢(0) " '¢'(0)a
for all o; since G acts on S/N trivially and ¢(c)” !¢’(c) is an element in k for
every o, we must have ¢(0) '¢'(c) =1 for every o; hence ¢ = ¢’, and, in
particular, a is an element in R.
Summarizing the above argument, we have

LEMMA S. With the same notation and assumption as above, we have the
following assertions.

(1) There exists a unique character ¢ of G such that, for some generator u
of N, ou = ¢@(o)u for all o in G.

(2) G is cyclic and Hom(G, k*) is generated by .

B) S=e@”S D e(@)S D@D e(p"™ VS, and e(¢p’)S = Ru' for every i
with 0 <i<n. In particular,

(4) for integers i and j with 0 < i, j < n, g(¢', @) is invertible if and only if
i+j<n.

(5) g(¢', ¢ %) generates the maximal ideal M of R for every i =1,---,n — 1.

ProoOF. The assertion (1) has been proved already. (2): If o is an element
in ker ¢, then ou =u, and hence o induces the identity mapping of the
completion of S, because ¢ induces the identity mapping of S/N; therefore o
=id. This shows that ¢ is an injective homomorphism. Thus G is
isomorphic to a finite subgroup of k*; therefore G is cyclic, and hence so is the
character group of G. Let y be any character of G. For a moment we denote
by o a generator of G. Since ¢(g) is a primitive n-th root of 1, x(o) = ¢(c) for
some integer I/, and therefore y = ¢'. (3): The first assertion follows from
Lemma 2. It is clear that «' is an element in e(¢)S, and this implies that e(¢%)S
= Ru’ because S = Y ,Ru’. (4) follows from (3). (5): We have MS = N" = u"S
because the ramification index of M is n. Since u"eR and S is a free R-
module, u" generates M, and this proves the assertion.

Consider now the case that R is not necessarily a DVR. Let P be a height
one prime ideal of S at which S is ramified over R, and let H be the inertia
group of P; H is not trivial. Put §' =S¥ and Q = P(\S. Appying Lemma 5
to Sy, So and H, we have a character ¢ of H satisfying the condition (1) of
Lemma 5.
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DerFINITION.  With the same notation as above, we say that ¢ is the basic
character at P, and we define, for every character y of G, the order of y at P,
denoted by ord,(x), to be a unique non-negative integer r satisfying x|y = ¢",
0<r<|H|.

§4. g(x. x)--- Part two

Throughout this section we fix a G-base {{(x)}, of S over R.
We first make some remarks: Let H be a subgroup of G, and put S’ = S¥.
Then S has two representations:

S= le/:char.ofﬂe(lp)s
= Zx:char.ofGe(X)S'

For a character  of H, it is easy to see that

e('/’)S = Zz:char. of G such that x|H =u//e(X)S~

It is clear that

S = lechar. of G such that y|H= 1e(X)S

and, for a character y of G with x|z =1, if we denote by y* the induced
character of G/H, then

e(x)S = e(x*)S’

Moreover B’ = {{(x)|x € Hom(G, k*) such that y|4 = 1} is a G/H-base of S’ over
R; therefore, for characters y and x' of G such that y|g = y'|p =1, we have
90 1) = g(x*, x'*)(with respect to B).

LEMMA 6. Let H be a subgroup of G such that H contains every inertia
groups of the maximal ideals of S. Let y, and y, be characters of G, and assume
that g(x., ) is invertible. Then for any character y of G such that x|y =1,
901 X~ Yx2) is also invertible.

Proor. Note first that g(x;, x2)g(x x ™ (1x2) = L)l () COC( ™)
= g0 0902 X VC0DE2x™) = 9t 0902 2~ g0x 1™ 12 (X1 x2)-
Therefore it is sufficient to show that g(y, x~') is invertible if y|; = 1. Note
next that S¥ =Y, g-1e(0)S = Y yu=1e(x*)S”, where x* is the character of G/H
induced from y. Since S¥ is unramified over R, it follows from Lemma 4 that

g x~H(=g(x*, x* 1)) is invertible

For a height one prime ideal P of S at which S is ramified over R, we
denote by H(P) the inertia group of P.

THEOREM 7. g(x1,X2) is invertible if and only if ordp(x,) + ordp(x,)
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< |H(P)| for every height one prime ideal P of S at which S is ramified over R.

ProOOF. To prove the assertion we may assume that R is a DVR and S is
ramified over R by Lemma 4; let M be the maximal ideal of R. Let H be the
inertia group of the maximal ideals of S; H # (1) by our assumption. We put
S’ = S®. For simplicity, we put r = |H|. By Lemma 5 (4), ordp(x;) + ordy(x,)
< r for every maximal ideal P of S if and only if e(y;|g)Se(x2|u)S = e(x1X2|u)S-

Assume first that ordy(x,) + ordy(x,) < r for every maximal ideal P of S,
that is, e(x,|g)Se(x1x2u)S- Since e(x,x,)S is isomorphic to R, and is a direct
summand of e(xx,|x)S, there exist characters y' and y” of G such that y'|4
= x1lw X"la = X2ln, X'x" = x1x2 and g(x', x") is invertible; since ¥’ = yx, and y”
=y !x, for some y with |4 = 1, it follows from Lemma 6 that g(x,, x,) is
invertible.

Conversely assume that g(y,, x,) is invertible, and suppose, on the contrary,
that e(x,|u)Se(x.]u)S is properly contained in e(x,x,|x)S; since S’ is a PID, there
exists a non-invertible element a in S such that e(x,|y)Se(x:|n)S
= ae(x,x2|x)S. Write a=Ya,l(y) with a,eR, where y runs through all
characters of G with x|, = 1. It then follows from our assumption that the
ideal generated by {a,g(x, x~'x1x2)|x such that x|, = 1} is R, and hence there
exists a character x of G such that a,g(x, x~'x1x2) is invertible. Let now Q be
a maximal ideal of S’ such that ae Q. Since every maximal ideal of S’ is of the
form oQ with ¢ in G, and since e(x,|y)S, e(x2|n)S and e(y;x.|u)S are all G-
stable, we see that e(y,|4)Se(x,|5)S is contained in J(S")e(x;x2|x)S, where J(S') is
the Jacobson radical of §. (Note here that e(x,x,|x)S is a free S'-module of
rank one.)Since S’ is unramified over R, J(S') = MS’. where M is the maximal
ideal of R, and hence a is an element in MS = Y M{(y), where yx runs through all
characters of G wih x|y =1. Therefore a, is not invertible; this is a
contradiction.

COROLLARY 8. g(x, x~ 1Y) is invertible if and only if x|y = 1 for every inertia
group H of height one prime ideal of S at which S is ramified over R. Therefore
if G is the inertia group of some height one prime ideal of S at which S is ramified
over R, then g(x, x~') is not invertible for all non-trivial character y of G.

COROLLARY 9. Assume that R and S are local rings with the maximal ideals
M and N respectively such that R/M = S/N, and let xy be a character of
G. Then the image of {(x) belongs to the socle of S| MS if and only if, for every
character Y'( # 1) of G, there exists a height one prime ideal P of S at which S is
ramified over R such that ordp(y) + ordp(x’) = |H(P)|.

PROPOSITION 10. Let P be a height one prime ideal of S at which S is
ramified over R, and let y be a non-trivial character of G. Assume that

gt x~ep = PNOR(e, X uwp) # 1). Then g(x, x~")R» = pRs.
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PrOOF. To prove the assertion we may assume that R is a DVR and p is
the maximal ideal of R. We put H = H(P). Since S¥ is unramified over R,
pSH is the Jacobson radical of S¥. Hence, by Lemma 5(5), e(x|y)Se(x *|u)S
= pSH, multiplying this with e(1), we see that p is generated by {g{xs, x1 )11
such that x|y = x|lg}. On the other hand it follows from the proof of Lemma
6 that g(xy, x1 Vg0 62~ 21) = 90 x1 090 S x ™ x)g(x x ™ 1) hence if x, |4
= x|y then ¥ !y;|y =1, and hence, by Corollary 8, g(x:,x1 eg(x x )R
Thus the assertion follows.

§5. Cyclic Galois extensions

In this section we assume that G is a cyclic group (of order n). Let h be a
positive integer with A > 2. We consider the case R = k[ [x,, x,,--, x,]], and
therefore S is also a local ring. Let M and N be the maximal ideals of R and S
respectively. For every fe R, we put o(f) = min{l|fe M'}.

Since Lis a cyclic Galois extension of K, there exists an elenent z in Lsuch
that L= K(z) and z"e K. Put z" =f. Let { be a primitive n-th root of 1, and
let ¢ be an element in G such that gz ={z. Then o is a generator of
G. Without loss of generality we may assume that f is an element in R and has
no multiple factors of order n. Let

f=afifgd 20, acR*,

be an irredundant prime decomposition of f. It is easy to see that if p is a

height one prime ideal of R such that p # f;R for all i, then S is unramified over

R at p and S, = R,[z]. Throughout this section, we maintain these notations.
We first show the following

LEMMA 11. Let V be a noetherian local domain of dimesion one whose
maximal ideal M’ is generated by two elements x, and x, such that x® = axp!
for some invertible elemnt a. Put d= GCD(n(0),n(l)). Assume that d is
inverrible in V, n(0) > n(1) and there exists an automorphism o of V such that ca
= a, 6xy = Xy and ox, = {x,, where { is a primitive n(0)-th root of 1. Let W be
the integral closure of V. Then the Jacobson radical of W is generared by an
element t in W such that ot = (°t, where v is an integer satisfying vn(1) = d(mod
n(0)). Moreover the order of x, at the maximal ideals of W is n(0)/d.

PrOOF. We take the continued fraction expansion
n)/n(1) =ro + 1/(ry + 1/(ry + -+ + 1/ry))
with ;> 1, and we define n(2),---, n(s + 1) inductively as follows:
n@/ni+ 1) =r;+ 1/(rivy + 1/(ris, + - + 1/1y))

fori=0,---, s. By definition n(i) = rn(i + 1) + n(i + 2) for i =0, ---, s-2, and
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moreover n(s) = n(s + )ry, =dr, because d = GCD(n(0),n(1)) = GCD(n(s),
n(is+1))=n(s +1). We then put x;,;, =x;_,/x/"—1 for i=1,---, s+ 1;
inductively, we can see that x!~ Y = ¢x"),, where c; = a or a™ !, for every i
=1,.--, s + 1; thus each x; is integral over V; moreover W = V[x,, -+, X;4 ] IS
a local ring whose maximal ideal is generated by x, and x,, ,, and W'[x,,,] is a
homomorphic image of W’ = W/[T]/(c,+:T% —1). Since W’ is unramified
over W”, so is W'[x,,,] over W'. Therefore x,, W'[x,,,] is the Jacobson
radical of W'[x,,,], and hence W= W'[x,,,1= V[x,, -+, x;1,]. We put v(0)
=0,v(l)=1land v(i+ 1)=0v(i— 1)+ r,_v@)for i=1,---, s+ 1. Moreover
we put v(@)=(—1*10{@) for i=0,---, s+ 1. Since x;,; = x;_/x{ — 1,
we easily see that ox; = ("Px; and x, = x?*Vx?®, for every i by the induction
oni. Therfore ox,,; = ("“*Vx,,; and x, = x!$T2x°6+ Y, It follows from [4,
Theorem 2.2 and Theorem 2.3], that n(0) = v(s + 2)n(s + 1) and (— 1" n(s
+ 1) = — o(s + )n(1)(mod n(0)). Since n(s + 1) = d, the lemma follows.

We now put d(i) = GCD(n, e(i)) and choose a positive integer v(i) so that
v(ie(i) = d(i) (mod n) for i=1,---, r. Let ¢ be the character of G satisfying
Y(o) = {. Let H(i) be the inertia group of the prime ideals of S lying over f;R,
and let V; be the localization of R[z] with respect to R-f;R. V;is a local ring,
and whose maximal ideal is generated by z and f; satisfying the following
conditions: z"? = ¢, xe V;*, 6a = a. Thus by Lemma 11 and [3, Chap. V,
Theorem 247, we see that H(i) is generated by ¢® and the basic character at
the prime ideals is ¥*®| g,

PROPOSITION 12.  Assume that d(i) = 1 for all i (e.g., n is a prime number),
and that, if r=1, f, is contained in M>. Then the following conditions are
equivalent:

(1) S is a Gorenstein ring,

(2) S is a hypersurface,

3B) e(l)=--- =e(r).

Proor. Note first that, for every height one prime ideal P of S at which S
is ramified over R, G is the inertia group of P, and hence ordy(y) # O for all
non-trivial characters y of G; thus by Corollary 9, the image of {((¥*®)""!) in
S/MS is an element in the socle of S/MS. Therefore if S is a Gorenstein ring,

then v(1)(n — 1) = --- = v(r)(n — 1)(mod n), i.e. v(1) = --- = v(r); since v(i)e(i) = 1
(mod n) for i=1,---, r, we have e(l)=---=e(r). Hence (1) implies
(3). Assume now (3). Then, by definition, v(l)=...=v(r). We put v

= p(1). By Corollary 8, O(1) is contained in every f;R, and therefore O(1) is
contained in M2. By Lemma 11 above, Y’ is the basic character at the prime
ideal of S lying over f;R for every i. It then follows from Theorem 7 that O(y)
=R if y # 1, y*. Therefore S is a hypersurface.

We now consider the case that d(i) > 1 for some i.
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For integers i and [ such that 1 <i<r and 0 <! < n, we denote by w(i, )
the integer satisfying the conditions 0 < w(i,]) < n/d(i) and le(i)/d(i) = w(i, [)(mod
n/d(i)); in other words, w(i, l) is the order of ¥ at the prime ideals of S lying over
f;R. We also denote by {~(y") the image of {(¥") in S/MS.

The next proposition then follows from Theorem 7 and Proposition 10.

ProrosITION 13. (1) The following two conditions are equivalent:
(El) OW)=R.
(E2) There exist integers 1, and I, such that
(@ O<li<nforj=1,2,
(b) l; +1,=1 (mod n), and
(©) w(,1ly) + wi,l,) < n/d@i) for every i.
(2) Moreover the following two conditions are equivalent:
(S1) (™" is an element in the socle of S/MS.
(S2) For any integer ' with 0 <l < n, there exists an integer i such that
1 <i<r and w(i,l) + w(i,l') > n/d().
() 9W', ¥~ = a[lwan=o f; for some aeR*.

By using the above proposition, we can compute the embedding dimension
and the Cohen-Macaulay type of S. In the rest of this section, we shall give
some examples.

EXAMPLE. z° = f2f3.

Since d(1) = d(2) = 1, e(1)/d(1) = 2, e(2)/d(2) = 3, and n/d(1) = n/d(2) = 5, we
easily have the table of w(i, I)’s:

i~ ' 0 1 2 3 4 } nld(i)
1(fR) |0 2 4 1 3| 5
26 |0 3 1 4 2| 5

It then follows from Proposition 13 that O()') # R for all | with 0 <[ <5,
£~ (Y is an element in the socle of S/MS and 0(1) = M2. Therefore type S = 4
and emb. dim S =h + 4.

EXAMPLE. z¢Ve@ = fe)fe2) with (e(1)), e(2)) = 1.

Note first that n/d(1) = e(2), n/d(2) =e(l) and e(i)/di)=1 for i=1,
2. Hence | = w(l,))(mod e(2)) and | = w(2,])(mod e(1)) for every . Choose
now positive integers r and s so that 0 <r <e(2), 0 <s<e(l) and re(l)
+ se(2) = 1 (mod e(1)e(2)). It is clear that, by definition, w(l, re(1)) = w(2,se(2))
= 1 and w(2,re(1)) = w(l, se(2)) = 0; and moreover w(l, ire(1)) = i and w(2,ire(1))
= 0 for every integer i such that 0 < i < ¢(2); similarly, w(2, ise(2)) = i and w(l,
ise(2)) = 0 for every integer i such that 0 <i < e(1).
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We shall show that, for an integer | with 0 <1 < e(1)e(2), O(}") = R if and
only if 1 #re(l), se(2). Let I be an integer such that 0 </ < n. Then there
exist integers i and j such that 0 <i < e(2), 0 <j < e(l) and ire(l) + jse(2) = |
(mode(1)e(2)). If ij#0, we can write ' = yreWyise2; since w(l,ire(1)) +
w(l,jse(2)) =i < e(2) and w(2,ire(1)) + w(2,jse(2)) =j < e(1), it follows from
Theorem 7 that g(y/"e®), y7**?) is invertible, and hence O(y") = R. Ifi > 1 and
j =0, we can write y' = i~ Dre)yre). by ysing the same argument as above,
we see that g(y~Dre@) yre) is invertible, and hence O(Y') = R. Similarly if i
=0 and j > 0, we have O(Y') = R. Suppose that we can write "V = y*y® so
that g(y° P is invertible; by our assumption, w(2,a) + w(2,b) < e(1). Since
w(2, re(1)) = 0, we have w(2, a) + w(2, b) = w(2, re(1)) = 0 (mod e(1)), and hence
w(2,a) = w(2,b) =0. Hence we can write a = a're(1)(mod n) and b = b're(l)
(mod n) with 0 < d’, b’ < e(2); thus we have 1 = a’ + b’ (mod ¢(2)) and, by our
assumption, a’ + b’ < e(2); this is a contradiction. Therefore O("V) # R, and
similarly O(y*“®) # R. As for O(1), it is easy to see that O(1) = (f;, f>)R.

We put t =n —1; then t = (e(2) — Dre(1) + (e(1) — 1)se(2)(mod n). Since
w(l,t)=e(2) — 1 and w(2, t)=¢(1) — 1, {T(Y") is an element in the socle of
S/MS. Conversely assume that {~ ('), with 0 < I < n, is an element in the socle
of S/MS, and choose integers i and j so that 0 < i < e(2), 0 <i < e(1) and ire(1)
+ jse(2) = l(mod n). Since w(1,]) =i and w(2, ]) =j, our assumption on V'
implies that w(1,]) + w(1,re(1)) > e(2) and w(2,]) + w(2,se(2)) > e(1); hence i
=e(2)— 1 and j=e¢(1) — 1. Therefore | =t.

Consequently, S is a Gorenstein local ring with emb.dimS =nh
+ #{ilo(f) # 1}.
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