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§0. Introduction

We consider the following nonlinear parabolic equation

8)) g—l; = %A (u®), (t>0, xeRY,
for a given real number a > 1, where A is the d-dimensional Laplacian. This
equation was introduced by Muskat as an (empirical) equation of the density u
of a gas flowing through a homogeneous porous medium and is called a porous
medium equation ([1]). Analogously to Kac’s approach to a Boltzmann
equation [10] we introduce a Markov system of many particles as a simple
model of the gas. The porous medium equation (1) is derived from the
equation for the empirical density of the number of particles. We prove that a
macroscopic limit of the empirical density is a solution of (1). We also prove
Kac-McKean’s propagation of chaos for the system as follows.

Let S, = {(hzy,---, hzy): zy,---, z4€ Z} be a d-dimensional lattice of the
width h > 0, and 7 > 0 be a unit time. We define a system of N-particles on S,
with the following stochastic interaction. For each integer n > 0, let

N,1 N,N
Xn 7“',Xn esh

denote the positions of N-particles at time nt. If the number of particles at a
position x(€8,) is m(> 1), then each particle at x jumps to one of the nearest
neighbor lattice points x + (0, -, 0, (?), 0,---,0)(j=1,---, d) with probability
{m/N}*~!/2d and stops on x with probability 1 — {m/N}*~! independently of
the other particles. Thus all N-particles can move at the same time (for detail,
see (M. 1), (M.2) and Remark (3) in §1).

We consider a macroscopic behaviour of this model. Let d(x, y) be
Kronecker’s d-function (i.e. d(x, y) = 0 for x # y and d(x, x) = 1) and define by

= 1 .
X0 =y I8N 0, xes,

the empirical measure of the number of particles (on S,) at time nt. Suppose
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that, for each lattice point x = (xq,-, x)€S,, Uux) =[xy, x; + h) x -
X [x4, x4 + h) is a unit cell in a porous medium and each particle stays in one
unit cell during each time interval [nt, (n + 1)t). Then define by

@ X0 9) =™ Xy(x),  (f yeU,(x) for xeS,)

the empirical density of the number of particles (on R at time ¢ > 0. Here we
assume that N, 7 and h satisfy the following relation

3) c/log(logN) < t = % pie—1+2
for a fixed constant ¢ > 0. We denote by

N, 1, h) — (0,0, 0

(N, % ) > (0, 0,0)

the limit of N, t and h satisfying (3) as N tends to infinity and t, h tend to
zero. Under some initial conditions we will show that

T
f dtf [ XN, x) — u(t, x)|?dx — 0
0 R4

holds in probability as (N, 1, h) Yo (00, 0, 0) for each T > 0, where u = u(t, x) is
a unique weak solution of a Cauchy problem for (1) (see Theorem 1 in §1).

Taking the limit in the same manner, we will show a propagation of chaos
for the sysem of the N-particles. Namely if the initial positions of the N-

particles are chaotic (= independently and identically distributed), then the

processes {X{y;:t >0} (i=1,---, m) become chaotic as (N, , h) (0,0, 0)

for each integer m > 1. Further each process {X[}ji;: t > 0} converges in law to
a d-dimensional diffusion process ({X(t) = (X(?),---, X4(t))}, P) satisfying

4) P(X(t)edx) = u(t, x)dx, (t=>0, xeRY

and

(%) X)) =X,;0)+ J ' u(s, X(s))* " V2dBys), (j=1,--,4d),
0

where {(B(t), -+, B4(t))} is a d-dimensional Brownian motion and u = u(t, x) is
the same unique weak solution of (1) (see Theorem 2 in §1).

The problems about N-particles of this kind were investigated originally by
Kac [10]. Extending Kac’s master equation approach to a Boltzmann
equation, McKean [12] introduced an interacting random system of N -particles
and proved the propagation of chaos by using It6’s calculus of stochastic
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differential equations. For some system of N-particles with an interaction
(depending on the empirical measure), the propagation of chaos can be proved
by the convergence of the empirical measure (see e.g. [15], [16], [17], [18]).
Our first result (Theorem 1) states a convergence of the empirical density
(2) toward the unique weak solution u of (1). To prove this, we will show that
the empirical density XV, converges to a deterministic version u,, as N
— oo (see §3), and u,, converges to u as 1, h—>0 (see §2). To prove the
propagation of chaos as (N, t, h) Yot (00, 0, 0), in §4 we will estimate the rate of
convergence for the propagation of chaos as N — co with fixed 7, h > 0. In §5
we will complete the proof of Theorem 2 by applying the random walk
approach to a Brownian motion (cf. [8], [9]). In §6 we note two
remarks. One is a note for the long time behaviour of the d-dimensional
diffusion process {X(t)} satisfying (4) and (5). That is the convergence of X,
= {k™#X(kt): t > 0} to a self-similar diffusion process X ,, with the exponent f
=(d(a — 1) + 2)~'. Another is a note for the order h = O(f) in (3), which is
concerned with a self-similarity of a sequence of Markov measures.

§1. Formulation and results

Let us consider the following parabolic Cauchy problem

au_l

62
1.1 —=_Vd_ d
(L1) a2 (pwu),  (t>0, xeR?,

u(0, x) = uy(x),  (xeRY,
where ¢ is a given function satisfying the following conditions:

(1.2a) ¢ € C([0, c0) — [0, o0))nC*((0, ©) — (0, 0)) and
¢'(x) >0 for x>0,
(1.2b) there exists a constant pe(0, 1] such that
SUPg<y<1 @'(x):x'7° < o0,

and

(1.20) sup,., 2% o

o(x)

We assume the following conditions for the initial function u,:
(1.3) uo is a bounded probability density function on R? satisfying
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f |x|2ug(x)dx + V(ug) < 00,
R"

where
V(f) = SUPo<h<1 Yes, SUPy,yernin | S (V) — FIH Y,
Sy = {(hzy, -+, hzy): z,, -+, 2,€ Z}, h > 0, and
I(x) =[xy, x; + h] x -+ x [x4, x4 + h] for x = (xy, -+, X)) €S,.

We consider a Markov system of N-particles { X% = (XY*,---, X}'N): n > 0}
whose transition rule is given as follows. For each h >0 and NeN, let

Qyp= {0 =(f, of, ) of = (o3, , o) e(S)"}

be a path space and X% = (XX!,.--, X¥'¥) be a function on @y, defined by
XYw) = ol and XYi(w)= o' For each 1>0, let Py, be a Markov

measure on £y, characterized by
(M. 1) (independency of individual transitions)

PN,r,h(XrI:,-f-l =y|X) =x)= ngv=1PN,r,h(XnN4i1 =y XY = x)
for y= (yla ) yN)a xE(Sh)N and
(M.2) (transition rule of each particle)

PN,t,h(XrI:’:i-il =X; hj|XnN =x)= %(ﬂo(h_d‘f(xi))'dfh_z Al), (j=1,..,4d),

PN,r,h(XrI:I:{-il = inX,[.v =x)=1- (‘P(h_d‘f(xi))'dfh—z A1)
for all i=1,--,N, n=0,1,--, and x=(x,,---, xy)€(S,)" where h;

— v — 1 N
- (0, 5 07 (-}})9 0’ s 0) and x(y) - ﬁzk=1 5(xk, y)

We note that all N-particles can move simultaneously. We are concerned
with the empirical measure

= 1 ;
X,’:’(x)zﬁ N 6(XNE x), n=0,1,--, xeS§,,

and the empirical density
(1'4) XZ}:(L X) = h-d' X?[I/t](([xl/h]h7 Tty [xd/h]h))s
t>0, x=(x,,x)€eR?,

where we take 7 > 0 as the unit time of this system.
For ¢ satisfying (1.2a) and u, satisfying (1.3), we choose the unit time 7, the
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width h of the lattice and the total number N of the particles such as
(1.5) C,/log(log N) < © < C,h? |
for fixed constants C,, C, >0, where C, < 1/db(||lugll,) and bu) = ¢’(u)-u
+ ¢(u). We denote by

(N, 1, h H(OO’ 0, 0)
the limit of N, 7 and h satisfying (1.5) as N tends to infinity and t and h tend to
ZEero.

DEerFINITION. A function u = u(t, x) is called a weak solution of (1.1) if u
satisfies

ue L'([0, T] x RYNL=([0, T] x RY)  for all T> 0,
J dt f {ufi+3e@u-Afldx=0 for all feCg((0, o0) x R? and
0 R4

ess lim,ﬂojv lu(t, x) — ug(x)|dx = 0.
R4

THEOREM 1 (convergence of empirical density). Assume (1.2a) and
(1.3). Then there exists a unique weak solution u = u(t, x) of (1.1) satisfying

(16) 0 S u(t’ X) S ” uO ”oo’ (t: X)G[O, OO) X Rd,

(L7 j u(t, x)dx = 1, t>0,
R4

(1.8) J‘ |x|2u(t, x)dx < j 1x12 up(x)dx + do(||ug || )t t>0 and
R4 R4

|6]—0

(1.9) lim, ., supOS,sTf |u(t + &, x + 0) — u(t, x)|dx =0
Q

for all T> 0 and compact set Q = R%, where ¢ belongs to R and & belongs to
R®.  Further if we assume (1.2c) and

(Al) lim(N,r.h) (750){00,0,0) Kl/t EN,t,h [ers;. lh_d : Xg(x) - "_‘O(x)lzhd] = 0

for any fixed K >0 where o(x) = ug(x)/c, and ¢, =Y e, uo(x)h?, then

T

(L.10)  limgy .4 (0.0 EN,r,h[J dtJv | XY,(t, x) — u(t, x)|2dx:| =0
1.5 Rd

0
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holds for each T >0, where XY, is the empirical density (1.4).

THEOREM 2 (propagation of chaos). Assume (1.2)(= (1.2a) ~ (1.2¢)), (1.3)
and (A.1). Let m be a fixed positive integer and u, be the one in Theorem 1. If

(A.2) SUPy,.. xpmesn| PN.cn (Xg’l =X15000, Xg'm = xm)h—dm - H;"=1a0(xi)l

.....

—0 (as (N, 7, h) a?)»(oo, 0, 0)),
then the m marginal process
(X &5+ Xt £ 2 0% Py

converges in law to an md-dimensional process

{(XD@), -, X™(@):t >0}, P)

as (N, 7, h) ;5 (0,0,0) and the d-dimensional processes {(XO@t) =

X9, -, XP(@):t >0} (i=1,---,m) are independently and identically dis-
tributed diffusion processes satisfying

(1.11) P(X9(t)edx) = u(t, x)dx, (t>0, xeRY
and
t
(1.12) XP) = X0 + j o(u(s, XO(s))2dBP(s), (j=1,--, d),
0
where {(B{(t),---, B{(t))} (i=1,---, m) are independent d-dimensional Brownian
motions. Here the function u = u(t, x) is the unique weak solution of (1.1).

REMARK. (1) If the initial positions of N-particles are independently and
identically distributed with the density i (i.e. Py 4(X3' = x1,---, X§V = xy)
=[] 1 @@o(x;)h?)), then we have

EN,r,h [ersh lh_d ‘Yg(x) - ao(x)lz dx] S I/th

and hence the assumption (A.1) is certainly satisfied.
(2) If we can take the limit of N, 7 and h satisfying (1.5) and

(151) Supx:(a(x)dth “2<1 (,D’(X) xdth~ 2 <c

for some constant ¢ >0, then we can prove Theorems 1 and 2 without the
assumption (1.2c).

(3) In case of ou) =u*"' (@>1) and 1 =d *h**~V*2 1 and h satisfy
(1.5) automatically and the transition rule (M.2) is independent of z and h:i.e.
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o(h™4-%(x;))dth™2 A 1 = (&(x;))*"'.

This is the simple case stated in §0.

§2. Difference approximation of parabolic equation

On the finite difference approach to the porous medium equation, several
difference schemes to (1) in §0 with d =1 were studied precisely (see e.g.
Mimura, Nakaki and Tomoeda [13]). In this section we solve the Cauchy
problem (1.1) (d > 1) by the following difference approximation. For 7, h >0
let us consider the difference equation

@1 {lln+1(x) — 8,0 }/1 = 2(Dp@@)E)(x),  (x€S), n>0),

where ¢ is a given function satisfying (1.2a) and (A,f)(x) = Y4_, {f(x + h)
—2f(x) + f(x — h;)}/h*. For a function u, satisfying (1.3), put

22 to(x) = ug(x)/cy, (xeSy),
where ¢, = ) s, Uo(X)h? is a normalized constant. Then we have
(2.3) Y es, Bo(X)h? =1 and Y ., |x]2(x)h? < 0.

Let C,>0 be a fixed constant satisfying C, < 1/db(||u,[ ), where b(u)
= @'(u)-u + @(u) (see (1.5)). Since ¢, » 1 as h— 0, there exists a constant h,
> 0 such that

24) l<ce, <2 and C, < 1/db(|| @)
hold for all he(0, hy). Put
(2.5) B={(t,h):0<t<C,h* 0<h<h}.

For each (1, h)e B, let {i,(x)} be a solution of (2.1)—(2.2) and u,, be a function
on [0, ) x R? defined by

t

(2.6) U p(t, X) = ity ([x]4) + <; - [%]) {41 ([X]1) — g ([XD0) }

where [x], = ([x,/h]h, -, [x,/h]h) for x = (x,---, x))eR% Then we can
approximate the weak solution u of (1.1) by u,, as follows.

ProroSITION 1 (difference approximation). Assume (1.2a) and (1.3). Then
there exists a unique weak solution u = u(t, x) of (1.1) such that for each T >0

(2.7) Supmsrj et x) — u(t, x)|dx — 0
R4
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holds as t and h tend to zero keeping (t, h)e B and u satisfies (1.6) ~ (1.9) in

Theorem 1.

To prove this proposition we first show the stability of the sequence {u,(x)}

as follows.

LEMMA 2.1 (stability). Assume (1.2a). For each (1, h)eB, let u, be a
bounded non-negative function on S, satisfying (2.3) and b(|| iy ) < 1/dC,, where
b(u) = ¢'(uyu + @(u). For this t, h and uy, let {u,(x): x€S,, n >0} be the

solution of (2.1) with the initial function u,. Then we have

(2.8) 0 < 1,(x) < ||t o5

29) Y xesn Un(H =1,

(2.10) Yvesn | X By (X)h? < Y ses,, | X2 o (x)h + dop(l1 5, | )
and

(2.11) 921 Loxes, [dn(x + hy) — i, (x)|h*

<V Y ey o (x + hy) — dl(x)[h? ™1
for all n=0,1,---.
PROOF. Put &(u) = @(u)-u. By (2.1), we have
(2.12) ey (%)

= ty(x) + %h_22§= 1 (P(,(x + hy)) — 2P (@,(x)) + Pltu(x — hy)).

By (2.3) we have (2.9) for all n > 0. Put
aj(x) = {@(i,(x + hy)) — P(,(x))}/{it,(x + h;) — it,(x)}
for n=0,1,---,xeS, and j=1,---, d, then (2.12) is rewritten as
(2.13) iy (x) = [1 — g -1 {af(x) + aj(x — h)}]i,(x)
+ 4= {d(x) @y(x + b)) + @j(x — hy)-d@,(x — hy)},

where q=1th"2/2<(d-b(|iy|l,))"'. We note that b(u)= ®'(u).

0 <u,(x) <|ltgl|l, for all xeS,, then
0 < ga}(x) < g (|t .0) < 1/2d
for all xeS,. By (2.13) we have

min {iz,(x), #,(x £ hj)} < 1,4, (x) < max {i,(x), 4,(x + h)}

If
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which implies 0 < i, (x) < || 4], for all xeS,. Therefore we get (2.8) for all
n>0. By (2.12), (2.8) and (2.9) we have (2.10). Finally we show (2.11). Put
ej(x) = a,(x + h;) — 4,(x). Since

&t () = [1 — 2dga}(x)] €)(x)

+ qu=1 {af(x + hy)-ej(x + h) + aj(x — hy)-ef(x — hy)},

we have

h Y esa €] T HOOI < BT Y s, 1€ (X)),
which implies (2.11). O
LEMMA 2.2 (compactness). Let U be a set of functions u: [0, ) x R - R
satisfying
SUPyep (| 41l Lo (10, 0)x R + SUPr20 V(ulL, +))) < 00

and that

{(u*f) (t, x) = Jnd u(t, y)f(x — y)dy : ue U}

is equicontinuous for each fe CY(R?), where the notation V(f) is defined in
(1.3).  If U is an infinite set, then there exist a function uy: [0, c0) x R* > R and
a sequence {u,} < U such that

inf {u,(t, x): xeR%, n > 1} < u,(t, x) < sup{u,(t, x): xeR4, n>1}, t>0,

limn—'oo “ U, — Uy, ”T,Q =0
and

limy o U (- + & - +0) —uglre=0
|8|-0

for all T>0 and compact set Q = R, where

lullre = SUPOstTJ |lu(t, x)|dx.
Q

ProOOF. Choose a function peCF(R*— R) satisfying 0<p(x)<1,
f p(x)dx =1 and supp(p) =[—1, 1]% Put
R4

1/d 1/d

X4)

pu(X) = np(n*xy, -, n

for x=(x;, -, x)eR% Then {u*p,:ueU} is uniformly bounded and
equicontinuous for each ne N. Hence we can choose a sequence {u,} = U such
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that {u,*p,:n>T} is a Cauchy sequence with respect to the norm
” ”L"”([O,T]X[—T,T]d) fOr eaCh T> 0. SlnCC

luxp, —ulrg
< SupOstsTJ Pn()’)(limh—»o ers.‘ 'u(t’ X — y) - u(t’ x)'hd)dy
R4

<dn™ ' supocr V(u(t, -)) — 0 (as n— o0)

for any ue U, T> 0 and compact set Q = R? we get the lemma by putting u,
=lim,_, , u,*p,. O

LEMMA 2.3 (existence). Assume (1.2a) and (1.3). Then there exist a weak
solution u = u(t, x) of (1.1) satisfying (1.6) ~ (1.9) and a sequence {(z,, h,)} = B
such that t,, h,—>0 as n— oo and

(2.14) lim,, supoS,sTf [u,, p(t x) — u(t, x)|dx =0
R4

holds for each T> 0.

PROOF. By (2.2), (2.4), (2.6) and (2.8) ~ (2.11), we get for (z, h)e B

(2.15) 0 < uu(t, x) < lldolle < 2ltho o

(2.16) J U, u(t, x)dx =1,
R4

(2.17) f X2 uep(t, X)dx < Y es, X [P o ()1 + do(l ol 0)t, ¢ 20,
R4

(2.18) V(e u(t, ) < V(u (0, -)) < 2V(up)
and
(2.19) [(uen*f) (& X) — (e pf) (s, V)

<d" A;lx -yl +1B,o(liollo) e —sl,  feCERY,

where A, = max, ;<. 1|0f/0x;ll,, and B, =Y4_,[0*f/0x}|.. By Lemma 2.2,
there exist a function u satisfying (1.6), (1.9) and a sequence {(,, h,)} = B such
that t,, h, >0 as n— oo and

(2.20) lim, ., g, p, — Ullro =0

for each T> 0 and compact set Q = R By (2.16) and (2.17), the limiting
function u satisfies (1.7) and (1.8). For each fe C¥((0, o) x R?), we have from
(2.1
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Z:o=0 TZIES}. an(x) {fn+ 1(x) _fn(x)}f_ ! hd
= — D0 T xes, @ n(X)) (%) - 3L f ) (),

where f,(x) = f(nt, x). Therefore we have

jwdtj {u-f, +3ou-Afldx =0,
0 R4

which implies that the function u = u(t, x) is a weak solution of (1.1). By (2.17)
and (1.8), the equality (2.20) holds with R? in place of Q. Therefore we have
(2.14). O

On the uniqueness of the Cauchy problem (1.1), Brezis and Crandall [4]
proved the following

LEMMA 2.4 (Brezis-Crandall). Fix T>0 and put H=[0, T] x R%. Let
ze LY(H)nL®(H) and we L*(H). Assume

z,— Aw=0 in 9'(H),
zw >0 a.e. in H,
meas {(t, x)e H: |w(t, X)| > &} < o0

for each ¢ > 0, where meas A is the Lebesgue measure of A, and

ess lim,wj |z(t, x)|dx = 0.
R4

Then z=0 a.e. on H.

Putz=u—vand w=2""{p(u) -u — ¢(v)-v} for weak solutions u and v of
(1.1), then by Lemma 2.4, u = v a.e. on [0, T] x R for each T> 0. If follows
that the weak solution of (1.1) is unique. By Lemma 2.3 we complete the proof
of Proposition 1.

§3. Convergence of empirical density

In the previous section, we have proved (1.6) ~ (1.9) in Theorem 1. In this
section we complete the proof of Theorem 1. We firstly prepare some
notations. For h>0 and f, g: S, - R, put

Ss Dw = ershf(x)g(x)hd, ISl = (<f9f>(h))1/2-
Let ¢ be a function satisfying (1.2). For r >0 put
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@, [f1(x) = min{o(lf/)])-r, 1},
Ky (f; 9)(x) = g(x) + 2d) " h? 9, [f1(x)- (L 49) (x)
and
K (f; 9)x) = g(x) + 2d) h*(L4(0, L1+ 9))(x).
Then we have
e, K (f59)m = <Ki)(f5 €, 9w

for all functions e, f, g: S, - R. Put r =dth™2 We note that the transition
rule (M.2) is rewritten as

(3.1 Py (X34 = x| X} = x)
= Ky, (h™°%; 6(x)) (x) = K}, (h™"%; 6(x) (%),

for xeS, x=(x;,-,xye(S,), where (x)(y)=05(x,y) and x(x)
=Y~ 0(x;, x)/N. Let BN" be the o-field on €y, generated by
{X¥:k<n}. By (3.1), for each f: S, > R and i =1,---, N, the process

(3.2) {FQXY) = YAZ6Kn, (WX /) (XR7): n > 0}
is a #)"-martingale on (Qy,, Py..x)-

For each (t, h)e B (see (2.5)) we note that r = dth™? <dC,. We will use
the following two inequalities later

(3.3) SUPo<rsac, |0, LS1(X)f (x) — ¢,[9](x)g9(x)| < C(@) | f(x) — g(x),
(34 SUPo<rsac, |2:[/1(X) — @, [9](x)| < D(@)|f(x) — g(x)I*,
for f, g: S, —» [0, ) and xeS,, where
C(@) = sup.so {@'(X)x/0(x)} + 1

and

D(p) = {supo<x<1¢'(x)x' *dC, + sup,,; @' (x)x/0(x)}/p.
The inequality (3.3) is obtained by the assumption (1.2a), (1.2c), and the
inequality (3.4) is obtained by (1.2a) ~ (1.2¢) and the inequality

b 1
j x? " ldx < —|b—al’.
p

a

The following lemma is a basic lemma to prove Theorems 1 and 2.

LeMMA 3.1 (basic lemma). Assume (1.2a) and (1.2¢). Let 7, h, iy and i, be
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those of Lemma 2.1. Let u be a finite Markov measure on Qy , satisfying (M.1)
and (M.2) with p in place of Py.,. Then we have

J”h‘"fﬁ' — U, ||(2h)dIJ < (Ko)nJ‘”h_dXIov — U ||(2h)d# + 2|/J|(K0)"/th,

where Ko =2+ 9C(¢)? and |p| = u(Qy.,)-

PrROOF. Put r = dth™2, then we note r < dC, < 1/b(||ity|l ), Where b(u)
= ¢'(uu + @(u). Further by (2.8) we have

r < 1/b(llu,ll) < Vo(lt,lle)  and o, [@,](x) = @@, (x))r.
Therefore, by (2.1), we have
(3.5) Uy 11 (x) = Kif, (6,5 ) (x)

for all n=0,1,--- and x€8§,. By (M.1) and (3.1) with y in place of Py, we
have

(36) B = xp, e, XN = x,)

= J( KR (AXY S(X D)) (x) du
for all integers me[l,N], 1<o(l)<:---<om<N, n>0 and
Xy, Xu€S,. Since the map g— Kj¥,(f; g)(x) is linear for each function f: S,
— [0, o0), we get from (3.6) with m =1
3.7 J<h—dX’nN+1» f>(h)dﬂ = J<K}tr(h_dX,nN; h—df?:l)a f>(h)dl‘~

By (3.6) with m =2 or 1, we have

(3.8) j({h_‘fﬂl}z, fomdu
= j<{K;‘l‘,r(h_")_(nN; h™ XD} fomdu
+ J(N_Zh'“Z?Ll K (™0 X0 5 o) {1 = Kk, (b4 X005 (M), [ .

By the definition of Kj¥,, we have
B9 Ves, Kb, (X5 (X)) {1 — K, (h™9 XY $(X3) (%)}
= Y oresn X, )0, [ X0 (x) {2 — (3/d) o, [h™* X1 (x)}.
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Therefore using (3.7) with f=a,, (3.8) with f=1, (3.9) and (3.5), we have
j“h_diﬁln — U4y ||(2h)dﬂ
= JII Kt (W™ X5 h ™4 X)) — Kt (@5 )11 due

+N7! h‘”foes,,)?ﬁ(x)-cor[h“’)?ﬁ] () {2 = @G/, [h X} (x)} du.
Using the inequalities (37, |x;)> <m) ™, |x;/* and (3.3), we finally have
f|lh_dfﬁ+1 — e [fydu < {2+ 9C(€0)2}J||h_dif — i, ||y dp + 2| ul/NhH?,

as was to be proved. [
Proor oF THEOREM 1. By Lemma 3.1 with y = Py, we have
(3.10) EynlIlh™ XY — d,13)]
< (Ko)"En,enLIh™4 XY — g 1G] + 2(Ko)"/NH,
where Ko, =2 + 9C(p)>. By (1.4), (2.6) and (3.10), we get

GAl)  Ey.ul f T f XVt %) — uep([1/e] 7, )| dx]
0 R4

< (Ko) TP (Ey, e [Yoxesn |h ™1 X3 () — dlo(x)|*h] + 2/Nh)z.

By the assumption (A.1), the right hand side of (3.11) converges to zero as

(N, 1, h)(TS—;(oo, 0,0) for all T>0. By Proposition 1 we have (1.10) in

Theorem 1. O

§4. Propagation of chaos as N — oo

In this section we consider the propagation of chaos for the Markov
system of N-particles {(XY'!,.--, X}*¥): n > 0} on (2y,, Py.s) as N tends to
infinity with fixed (t, h)e B (see (2.5)). Let #y(x) and #,(x) be those of Lemma
2.1. By Lemma 3.1 and (2.8), if 1~ ?X}(x) converges to #y(x) as N — oo, then
the empirical density h~¢X¥(x) converges to i,(x) (< ||#,l,) and so

o(h™ 4 XN(x))dth™2 A 1 — @(ii,(x))dch ™2

This means the convergence of the transition probability of each particle (see
(M.2) in §1). Therefore each process {X: n >0} converges in law to the
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following Markov chain {Y,} on (2,, P.,).
Let Q, = {y = (yo, ¥1>***): Y»€S,} be a path space and Y, be a function on
Q, defined by Y,(y) =y, Let P, be a Markov measure on 2, satisfying

@) Py(Yes =x 2 h|Y, =x) = 0@()th 22, (j=1,-,d),

P (Vs = x|Y, = x) = 1 — @(g,(x))dth™?
and

(4.2) P, 4(Yy = X) = dp(x)h?
forall n=0,1,--- and xeS§,. By (2.1) and the Markov property of P_,, we
have

(4.3) P (Y, = x) = i1,(x)h*

for all n=0,1,--- and xeS,. We prepare the following Proposition 2, which
estimate the rate of convergence for the propagation of chaos as N — oo, for the
proof of Theorem 2 in the next section.

PROPOSITION 2. Assume (1.2). Let uy(x), T and h be those of Lemma
2.1. Then for each integers 1 <m < N, ¢ >0, ny =0 < - <n, and functions
fi:RI'>[0,1]1(=1,---,m k=0,--, &), we have

@4)  |Ey al[Ti=o [T fiX0D] =TT Ecn [T Té= o0 fi(Y, )11
< le ..... XmESh {H;"=1f6(xi)}|PN,t,h (XSt =xp, 0, XO™ = X,,) — H;"=1 {lio(x,.)hd}|
+ Yk=12mD(@)K™-h™ ¥ (Ey .y [I1h™% X§ — tiolIF] + 4/Nh?y,

where K = (Ko), y=p/2, Ko=2+9C(p)* and C(p), D(p) are positive
constants defined in (3.4), (3.5).

To prove this proposition, we prepare the following

LEmMMA 4.1. Assume (1.2). Let 7, h, 0, and u are those of Lemma 3.1 with
0, in place of u, Let v}(x),---, vl(x) be non-negative bounded functions on
S, Let vi(x)(i=1,---,m) be the sequence defined by the following linear
difference equation

(4'5) {vin+1 n(x)}/‘c = % h(p(ﬁn)v:l) (X), (XE Sh’ nz 0}’
with the initial function vi. Then we have
46) Y rmesn MY =X, X = X, 7oy {on ()} |

< Zk; ..... xmeSh“J'()(g'x =Xy Xgm = xm) - ;n=1 {Ué)(xi)hd}l

— 7
+ Y= 2mD (@) || W( J 1%y~ 5, l!ﬁ.,dy) B
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where |l = p(Qy,).
Proor. By the same argument as (3.5), (4.5) is rewritten as
@.7) vhe 1 (OB = K3, (5,5 vhh) (x)
=Y oe (0. 2. tha) r(Dn; 0)(X) v3(x + o)
for xeS§,, n >0, where r = dth™?,
a(f;0x)=1—-9¢,[f1(x) and a(f; £ h)(x)=e,[f](x £ h)/2d.

Then we have

(48) le,...,xmes;.
< le,...,meal ..... ome{0,%hy,...,Thg) {nz 1(1 n’ z) l)}
X |WXyt =x; + 04,0, X,I:J'm = X + ) — [ ['2 1 {vh0x; + a) 1%}
:le ..... xm'“(XrIIV’l :xla"',XrI:J'm=xm)_ ;n=1{vil(xi)hd}|'

On the other hand, using trianglar inequalities successively, we have from (3.4)

ﬁ—l?é 1 Kot @5 0(X) () dp — [T 1 K, (8,5 007 (x)

.....

49 ). xmes,,ljﬂ Kt (h79X0 5 0(X00) (x) du
- fﬂ?ﬁ 1 Kty (85 6(X3) (x;)dp]
<Y1 Yiesn 2 ler[h X0 (x) — @, [3,1(x) 0 (X, x)du

Y
< 2mD(<p)IuI‘2"’/2< f |4 XY 5, ||5,,du) e,

y (3.6) and (4.7) ~ (4.9) we have
le,...,xmes;. I.u(XrIy;ll =Xg5 XrI:’-'i-ml = xm) - l—[:n= 1 {U;+1(X,-)hd}'
SZX: ..... x,,.eS;.I.u()(rIlV'1 = X157 X'I:I,m =xm)— ;n=1{vil(xi)hd}|

Y
+ 2mD(<P)IﬂI‘2_””2(fllh_"z\_’f." — U Ilﬁ,)du> h™®,

as was to be proved. [

PrOOF OF ProPOSITION 2. The idea of this proof is based on Uchiyama
[18]. Put
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Fe = le ..... xmeS;.IEth[{l—[k 01_[ Ifk(X }l—[m 1 5()6,, th:lzi)]
- H:n= 1 Et,h [{Hlf=0f;c(ynk)} 5(X,~, Yn[)]l

and
G, =2mD(p)K"-h™ ' (Ey ., [I1h~* XY — i, 13,] + 4/Nh%).

To prove (4.4) we show that
4.10) F,<F,_,+G,

forall ¢=1,2,---. Let pu be a finite Markov measure on Qy , satisfying (M.1)
and (M.2) with the initial distribution

HXS = x) = Ey o [{T[i0 [T ST TS 10X L x)]
for x = (x;,-+, xx)€(S)". Then |u| = u(Qy,) <1. Put
vo(x) = E., [{] [£=0 filYn)} 0(Y,,— 1, x)1071
and
Uo(x) = thy,_,(x),

where #,(x) is the solution of (2.1) with the initial function #,(x). Let
,(x) (resp. vi(x)) be the solution of (2.1) (resp. (4.5)) with the initial function

o(x) (resp. vh(x)). By the Markov property and the uniqueness of the solution
of (4.5), we have

ENth[{l_[k on lfk XN’ 1_[ 15(quN']
= [Tt e, x29)

and

[T B T -0 fi(%0} 00k, Y,)1 =TT (fi (e vix) %)
where n=n, —n,_,;. By Lemma 4.1 and Lemma 3.1, we have

S Yerimesn X = xq, 00, X = x,,) — [T {o(e) b7}

S Yerimesn X G = xq, 0, X§™ = x,) — [ 1Ly {v6(x)h?}|

+ 2oy b [0 %y - A

< Fy_y +2mD(@)K" h™ (Ey 4 [I1h™*- X3 — dolI)] + 4/NheY,

which implies (4.10) and therefore (4.4). Thus Proposition 2 has been
proved. O
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§5. Proof of Theorem 2

In this section we prove Theorem 2 as a limit theorem of probability
measures by applying the random walk approach to a Brownian motion. For
each integer m (> 1), let W™ be the metric space of all continuous functions
w: [0, 0) > R with the distance d(w, W) =2, 27" {Supgq,<2n|W(t)
—W(t)| A 1} and #™ be the o-field generated by all cylinder sets in W™ Let
P(W™) be the space of all probability measures on (W™, &™) with the topology
of weak convergence. Let X}|™ be the W™-valued random variable on (Qy,
Py .. such that X" is the polygonal function whose value at a point ¢ > 0 is
given by

(5.1) Xum(e) = (X', -, XGm),
where
XG0 = XN+ (/0 — [/ D{X b+ — XD

Let Pyjn.s» be the probability measure on (W™ #™) such that Py, .(4)
= Py.»(XMme A) for all AeF™ Let B, be the set of (N, 1, h) satisfying (1.5)
with N > m and (z, h)e B (see (2.5)).

LEMMA 5.1(tightness). For each sequence {(N,, t,, h,)} < B,, satisfying N,
— o0 and t,, hy—>0 as v— oo, the family of the probability measures

{PNyimeoty: V=1,2, -+ }
is tight in P(W™).
ProoF. We write N, =N, 7,=1 and h,=h. For each M >0, put

Com= Z[x|25M2/m to(x) h

xeSh
and
ey = |Pnoen(IXN?2 < M?/m for all i=1,---,m)— {C, }"I.
Then, by (A.2) and (1.3), we have
lim,, ¢&,,=0 and lim, ,C,,= f ug(x)dx = C o iy
|x|2sM2/m
for each M > 0. Therefore we have
(5.2) lim sup, _, , PN,,,,,(IXQ}"'(O)I >M)<1—{Cy ™

which converges to zero as M — oo.
Next we show the equicontinuity of the trajectory. By (3.2) with f(x) = |x
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— X% or f(x) = |x — X%, we have for n>k>0and i=1,---, m

(53)  EnenllX2 — X310

h? . . . .
=En.h [Z’;liﬁq)r (A X31(XT){® + 4d) | X7 — X{|* + 2dh?}]

and
) ) h? = )
(54) Enon[1 XN — X¥?] = Ey s [Z'zliﬁ% (R XY1(X7)-2d]

<&+ o(lugll)(n — k) dr,
where r = dth™? and
&= YNk Ey o [h XV1XYY) — o, [3, (XTI
For each t > s >0, put
I = (Ey.n[IXfg — Xal* D2,
then by (5.3), (5.4), (3.4), (3.10), (A.1), (1.5) and Holder’s inéquality we have
P<&I+&6+ 2+l —s)?d

for some negligible constants &,, &, > 0. It follows that
(5.5)  lim sup, .o Ey. [| X{h — X{nl*] < (4 + 2d)o(lluo |l 0)*(t — 5)*d.
By the definition (5.1) we have for each T, ¢ >0

Py on(Maxog <7 | X3"(0) — X" (6)* > €2)
lt—s|<é

= Z:’L 1 Py en(Maxoo o ot IXEY/‘,’} - Xﬁii)lz + 8h* > ¢2/m)

lt—s|<é

< z:n= 1 Z‘}=OPN,1:J| (maxkjSlSHjlxllv‘i - X’I‘Vj,i|2 > 8,2)’
where & = {(>/m) — 8h2}V2, k; = [j§/2c], n; = [(j + 2)6/2t] and J = [2T/5]

— 1. By the martingale inequality and (5.5) we have

(5.6) lim Sup, -, o, Py,cn(MaXy,ser0,my | X (4™ (8) — X"(s)| > €)
lt—s|<é

< lim sup, ., Z:"= 1 ,J'= o€ * Enn [IX:’,I - XkNj’i 1]

< m(2T/8)(m*/e*)(4 + 2d) ([l uo |l .)*6°d | O (as 6] 0)
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for each T> 0 and & > 0. Then the tightness of the family {Py i, 4,} follows
from (5.2) and (5.6). O

By Lemma 5.1 there exist a probability measure P on W™ and a sequence
{(N,, t,, h,)} = B,, such that Py, , converges to P weakly as v— co and
N,—> o, 1,0, h,»0. For each t>0 and i=1,---, m, let X“(t) be the
function on W™ defined by X9 w)=w() for every w
= {(wP(t),---, w™(t)): t >0}e W™ Foreacht,=0<--<t, and 7> 0, put
n, = [t/t] k=0,---, ¢). By Proposition 2, (A.1) and (A.2) we see that, for
each fieCo(R* - [0,1])(i=1,---,m, k=0,---, £), each of the following terms

|En,en [T Té=o [T 1 fe (X0 T Eu[[ Té=ofi(Ya)]l

and
|Et,h[Hlf=Of;;(Ynk)] — En [Hlf=ofk XN l)]| (i=1,--,m)

converges to zero as (N, 1, h) — (00, 0, 0). By the weak convergence of the

(1.5)
probability measures {Py . 4,: V> 0}, we have

E[[I= [ Li=ofiX @)1 = [T~ 1 EL] [¢= o0 fx(X O(20)],
which implies
P((XD, -, X™)edw, x -+ x dw,) =[], P(X©Pedw).

To prove that the d-dimensional processes X (i = 1,---, m) are identically
distributed, we will show that distribution of X is characterized by the
following nonlinear martingale problem (cf. Funaki [6]). Let W= W' be the
space of all continuous functions w: [0, co) —» R? and & = #! be the og-field
generated by all cyclinder sets in W. Let P; be a probability measure on
(W, ) defined by Pi(A4) = P({(wy, -, w,): w;e A}) for all AeF. Let F? be
the o-field in W generated by {X?(s): 0 < s <t} and all P;-null sets. Then we
have the following

LEMMA 5.2 (martingale problem). For each i€{l,---, m} and t > 0, we get
(5.7 P(X9()edx) = u(t, x)dx, (xeR?Y

where u = u(t, x) is the unique weak solution of (1.1). Further for fe C3 ([0, o0)
x R*— R) the process

(5.8) {f(t, X9)) — Jt L(u; f) (s, X9(s))ds: t > 0}
0

is an FY-martingale on (W, F©, P,), where
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L(u; ) (s, x) = fils, x) + 30 (uls, X)) (A f) (s, x)
and A is the d-dimensional Laplacian with respect to the variable xe R".

Proor. Firstly we show (5.7). Fix geCy(R*—>[0,1]) and t>0. By
(A.1), (A.2), (4.3) and Proposition 2 with m = ¢ =1 and n = [t/t], we have

IEN wnlg (X [t/t] - ers,. g(x) Uy (x) hd|
< ers,,g(x)hdIPN,z,h(Xg’i =x)h™? — to(x)]
+ 2D(@)K"*h™ (Ey ., [I1h™%- XY — i1 I3)] + 4/Nh7y,

which vanishes as (N, T, ){1—5;(00 0,0). By the weak convergence of the

probability measures {Py ...} and Proposition 1 we have

E[g(x“®)] = E[9(X(t))] = j g(x)u(t, x)dx,

R4

which implies (5.7). Next we show the martingale property. For ge C,(R*
— R) and ¢t > s > 0, we show

(59 ELf@t, XO1)g(X(s)]
= E[{fGs, X“’(S))+J L(u; f)(6, X©(6))d0} g(XV(s))].

By (3.2) we have for n >k >0
EyaLf(n7, X)) g(X{)]
= Eyal{f(kt, X¥) + X025 (f((€ + D, X)) — f(er, XT40)
+ Y0 2kQd) T R o, [h XTI (XY (AS) (6T, X} g(XYH)],

where r =dth™2 Put n=[t/r] and k =[s/tr]. By (3.4) and Theorem 1 we
have

EN,t,h[IZ (2d) lhz(Pr[h dXN] XNI) 24 k2€0(u 1, XN '))Tl]
—0 (as (N, 1, h) —(IT (00, 0, 0)).

Suppose N = N,, t =1, and h = h,. By the weak convergence of {Py imc..n}
we have

ELf(t, X)) g9(X?(s)]
= limv—*co EN,t,h[{f(kti XkN’i) + Z';_'—'lk Tf,(el', le'i l)
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+ Y sew(er, X)) (L)t X))} g(X¥)]

= E[{f(s, X“(s) + ff,(e, X0(0))do

+ J 70O, XO0))(A )6, X9(0))do} g(XV(s))],

s

which implies (5.9). By the same method as above, we get the same equation
as (5.9) with g,(X%(s,)) --- g,(X“(s,)) in place of g(X“(s)) for all integer p > 1,
non-negative numbers s; <--- <s,=s<t and functions g,,---, g,€Cy(R*
— R). Hence we have

t

ELf(t XO0)F P =1(s, X)) + J L(u; )(6, X©(6))d0,

s

as was to be proved. O

To prove the uniqueness (in the law sense) of the nonlinear martingale
problem (5.7)—(5.8), we show the following

LEMMA 5.3 (Markov property). The process X9 = {X9()} on (W, Z,
P;; F9) is a Markov process with the generator

(5.10) (9 =1, x)A:t>0).
Proor. To prove the Markov property of X, we will show
(5.11) E;Lf(XD(t6))g0(X V(s0)) -+ 9, (X(s5,))]
= E[[ELf(XD(t6))| X D(50) 190 (X (s0)) -+ g, (XV(s,))]

for each integer ¢ > 1, real numbers t, > s, > --->s, >0 and functions
feCF(R*>R), go,-+-,g,eL'(R*-> [0, 1]). For each t >0, let v,(t, dx) and
v,(t, dx) be measures on R? defined by

j FX)vy(2, dx) = E[F(XO(t + 50)) 9o (X (50)) - 9, (XV(s,))]
R4
and

J fGva(t, dx) = ELELf (XDt + 50))| X D(50)190(X D (50)) -+ 9 (X V(s,))].

By (5.7) we see that v,(t, dx) and v,(t, dx) have densities v,(t, x) and v,(t, x)
satisfying

0 < vy(t, x), v,(t, X) < u(t + 5o, x),
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where u(t, x) is the unique weak solution of (1.1). It follows from (5.8) that v,
=v,(t, x) and v, = v,(t, x) satisfy the following linear differential equation

Z_’t’(t, x) =3 A (u(t + so, x)v(t, x))

in the distribution sense. By the definition of v; and v, we have v,(0, x)
=0,(0, x). Put z(t, x) = v,(t, X) — v5(t, x) and  w(t, x) =27 L (u(t + so,
x))z(t, x). Then, by Lemma 24, z(t,x) =0 a.e. on [0, T] x R? for all T
> 0. Hence we have v,(t, — So, X) = U,(to — So» X) a.€. xe R% which implies
(5.11). Thus the Markov property has been proved. By (5.8) with f(t, x)
= f(x)e CZ(R?), the generator of the process X is

(@100 = im,.o {ELFXO + ) X0 = 5] = 1)

- limwo%Ei[ f T Lo, XOE) (A S)(XOE)ds| XO(0) = x}

=30t x)) (A f) (),
as was to be proved. 0O

By the martingale representation theorem (see e.g. Ikeda and Watanabe
[71 p.90), the d-dimensional diffusion process {X®(1) = (XP(1),---, X{(1)}
satisfies the stochastic differential equation (1.12).

Finally we note that the limit of the probability measures {Py,.,} as N
tends to infinity and t, h tend to zero satisfying (1.5) is unique in 2(W™),
because if there exists a probability measure P on (W™, &™) as a limit of the

probability measures {Py,.,} along some subsequence of B,, then the
distribution

P((XD,-., X™)edw, x - x dw,) = [, P(XDedw,)

is determined by the same generator (5.10) and therefore coincides with the
distribution

§"=1P,-(X(“€dw.-) =P((X"Y, ..., X""))edwl X oo X dw,).

Thus we complete the proof of Theorem 2.

§6. Remarks

A) Self-similar diffusion process. Let u, be a continuous function on R*
satisfying the condition (1.3). Fix o > 1. Let X = {X(t)} be a d-dimensional
diffusion process satisfying (4) and (5) in §0 with the initial density u(0, x)
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=uy(x). Put f=(d(@—1)+2) ! and X,(t) = k™% - X (kt) for k > 0. Then the
process X, = {X,(¢)} converges in law to a d-dimensional diffusion process X,
= {X (1)} satisfying (4) and (5) with ug, in place of u and X, (0)=0 (R’
with probability 1, where u, is Barenblatt’s function ([2]) described by
Ug(t, x) = L™~ P ({1 — x> (J1) 2P} )M D,
J=xkA"*Y L=xk%A4% x = oa/f(a — 1),

o

A= r((l%l) {r(l/z)}'*/z"(oc S+ %) and {x}, = max{x, 0}.

The function u,, satisfies the d-dimensional porous medium equation

ou 1 .
*a‘t‘—iﬂ(“)

in the domain {(t, x)e(0, o) x R*: |x| < (J#)’} and

J Ug(t, x)dx =1, (£ >0).
Rd

The limiting diffusion process X is self-similar with the exponent f:i.e.
X (kt)y ~kPX_(t) for all k, t > 0. This limit theorem follows from the analytic
results for the weak solution u of (1) (see Friedman-Kamin [5] and Veron [19]).

B) Self-similar sequence of Markov measures. In case of ¢(u)=u*"!
(¢ > 1), the transition rule (M.2) is independent of 7, h if and only if 7
= ah®~1*2 for some constant a > 0. If Py ,(Xy'=--=XN¥=0)=1 for
all N, T and h, then

PN,r,h(hA) = PN,a,l(A)

holds for all 1 =ah® V*2 h>0, N>1, a>0 and Ae#(Qy,,), where hA
= {ho = (hwy, hw,): © = (0, w1, -)€A} and ho, = (hwy, -, hod)e(S,)N
for w,=(w}, -, wY)e(S;)". In this sense the sequence of the Markov
measures

{PN,t,h: T= ahd(a_l)+2, h > O}

may be called self-similar. In the case (¢(u) = u*~ !, XN = 0), if each process
{Xi4:t >0} on (2y,, Py..4) converges in law as N — oo and t, h — 0 satisfying
T = ah®®~Y*2 then the limiting process is self-similar with the exponent S
= (d(« — 1) + 2)~'. We think that the limiting process is the same process X ,,
={X,(t)} as above.
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