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Introduction

Let C be the field of complex numbers. Let V= F1>Π(C) (n ̂  1) denote
the vector space Cπ+1, together with the unitary structure defined by the

Hermitian form

Φ(z*, w*) = -zJX5 + zjwf + + z*w*

for z* = (z$, zf,..., z*) and w* = (H$, wf,. . . , w*) in F. An automorphism #
of F, that is, a linear bijection such that Φ(g(z*\ #(w*)) = Φ(z*, w*) for z*,
w* e F, will be called a unitary transformation. We denote the group of
all unitary transformations by 17(1, n; C). Let F0 = {z* e F|Φ(z*, z*) = 0} and

F_ = {z* e F|Φ(z*, z*) < 0}. It is clear that F0 and F_ are invariant under
17(1, n; C). Set F* = F_ u F0 - {0}. Let π: F* -> π(F*) be the projection

map defined by π(zg, z?,..., z?) = (zfzj'1, zjzj"1, , ̂ S'1)- Set Hn(C) =
π(F_). Let Hn(C) denote the closure of Hn(C) in the projective space π(F*).
An element 0 of £7(1, n; C) operates in π(F*), leaving //"(C) invariant. Since

Hn(C) is identified with the complex unit ball Bn = Bn(C) = {z = (zl, z2,..., zn) e
Cn|||z||2 = ΣJ|=1 |zfc|

2 < 1}, we regard a unitary transformation as a transfor-
mation operating on Bn. Therefore discrete subgroups of (7(1, n; C) are con-
sidered to be generalizations of Fuchsian groups.

Our purpose in this paper is to extend results for Fuchsian groups to those
for discrete subgroups of 17(1, n; C).

Our work is divided into four sections. In Section 1 we consider the
Laplace-Beltrami equation. We show in Theorem 1.4 the relation between the
type of a discrete subgroup of 17(1, n; C) and the existence of a certain auto-
morphic function in Bn. Using this fact, we shall prove in Theorem 1.6 that

if G is a discrete subgroup of convergence type, then Σ^eG(l - ||0(z)||)n is
uniformly bounded in Bn. In Section 2 we shall discuss the properties of

M-harmonic and of M-subharmonic functions. Section 3 is devoted to giving

sufficient conditions for a discrete subgroup to be of convergence type. In
Section 4 we define a point of approximation and show in Theorem 4.6 that if a
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discrete subgroup G is of convergence type, then the measure of the set of all
points of approximation of G is equal to 0. The corresponding results for
Fuchsian groups and discrete groups of Mobius transformations in higher

dimensions can be found in [1] and [10].
The author wishes to express his deep gratitude to Professors M. Ohtsuka,

H. Sato and H. Yamamoto for their encouragement and advice.

1. Discrete subgroups of convergence type

Throughout this paper G will always denote a discrete subgroup of
17(1, n; C). First we recall the definition of a discrete subgroup of convergence
type.

DEFINITION 1.1. A discrete subgroup G of C7(l, n; C) is said to be of
convergence type if ΣgeG(l — ||^(z)||)π converges for some point z e Bn.

We note that this definition does not depend on the choice of z (see [6;
Theorem 5.1]).

For later use we shall quote criteria for a discrete subgroup to be of
convergence type from [6] and [7].

THEOREM 1.2 ([6; Theorem 5.3] and [7; Theorem 3.2]). The following
statements are equivalent to one another:

(a) G is of convergence type;

(b) Σ.mβc|α??r2 < «>, where gm = (α£%=1,2 ..... n+1;
(c) Jo(l — 0Λ ln(t> z) dt < oo, where n(ί, z) is the number of elements f in G

such that ||/(z)|| < t for z e Bn.

Now we consider the Laplace-Beltrami operator relative to the metric

gfc) = 0^(1 - \\z\\2Γl + ziZj(l - \\z\\2Γ2 for z = (zlf z2, ..., zj e Bn. This
operator is given by

We shall show that this operator commutes with the action of all elements
in £7(1, n; C).

PROPOSITION 1.3. Let Bn = {(w1? w~l9..., wπ, wn)\Σn

k=1 \wk\
2 < 1}. If ue

C2(Bn\ then Δ(u o /)(z) = A(u(w))w=f(z) for any element f of 17(1, n; C).

PROOF. We need to prove the following equation
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- ||z||2){Σ, DjDj(u o /)(z) - ΣM Zj

where £>; = d/dzί; D; = 5/δz,, Df = d/dwi and £>/* = d/dwt.

Note that

We consider the coefficients of DfiDfu for 1 ̂  Λ, i ^ n. To prove our proposi-

tion we have only to show

Let / = K )/,./=ι,2,...,n+ι» ^* = (1, ^i, ̂  ---^J and w* =/(z*) = (wJ, wf, ..., w*+1).
Nothing that Φ(w*, w*) = Φ(z*, z*), we have 1 - ||z||2 = |vv#|2 - |wf | 2 - ••• -
|W*|2 = |w*|2(i _ ||w||2)β We see that

= ah+ί

Using these equalities, we obtain

Σj-i Zj(Djfh) = w*

It follows that

Σj.kVk(Dj.

To compute ΣJ^^D^ίΦj/i) we use the relations ΣJ=1αΛ+1>J +1αί+1)j+1 = 5Λί +

l t l, Σ;=1|α l j+1|
2= -1 + l f ln l 2 , ΣJβl5ϊ7ίίflΛ+1J+1 = δΠα f c + l f l which

follow from the fact / e C7(l, n; C). We have

Σ"-ι ΦjfkWft = |w0*Γ4{|w0*|2

|αn|
2)
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Thus

Our proposition is now proved.

Let u(t) be a positive function of ί, 0 < t < 1, such that Jw(||w||2) = 0, where

w(||z| |2) is regarded as a function of z. We shall determine u. After a little

computation we obtain

where ί = ||z||2. If u'(t) Φ 0, then this differential equation can be written as

ιΓ(ί)/ιι'(ί) + n/t + (ii - !)/(! -ί) = 0

or

- [log ιι'(ί) + n log ί - (n - 1) log (1 - ί)] = 0 ,
at

which gives

u'(t)tn(l - ί)1'" = K (constant) .

As a normalized solution, we have

u(t) = I (1 - sy-V

We shall show the relation between a subgroup of convergence type and

the function u.

THEOREM 1.4. Let u be the function defined as above and let {g0, gί9 . . .} be

the complete list of elements of G. Then the following statements (a) and (b) are

equivalent to each other:

(a) G is of convergence type;

(b) Σ0weGw(||0m(z)||2) converges at some point z in Bn.

Furthermore, if (b) is satisfied, then the series in (b) is uniformly convergent on

every compact subset in Bn — (Jm^00m(0)

PROOF. Since



(1 - s)"-1 ds ̂  (1 - s)n-ls'n i
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lds

— s)"~1ί"n ds for t < s < 1 ,

we have

(l/n)(l-\\gm(z)\\2r^u(\\gm(z)\\^

^(ΐ/n)\\gm(z)\\-2\l-\\gm(z)\\2γ.

From these inequalities it follows that (a) and (b) are equivalent to each other.
Now we denote the ball {||z|| < r|0 < r < 1} by D. Since G is discon-

tinuous in Bn, there exist an integer N and a real number r1 > r such that
||0m(z)|| > r1 for every z e D and m > N. Hence we have

(l/n)||^m(z)||-2M(l - ||0m(z)||2r ^ (l/n)rΓ2ll(l - \\gm(z)\\2)n.

Thus the series in (b) is uniformly convergent on every compact subset of

REMARK 1.5. When G is of convergence type, we put

Then F(g(z)) — F(z) for every element g in G.

Using the above theorem, we shall show that Σ^e G(l — ||#(z)||)π is uni-
formly bounded in Bn.

THEOREM 1.6. // G is of convergence type, then ΣgeG(l — ||gf(z)||)" ^ K for
z e Bn, where K is a constant that does not depend on z.

To prove Theorem 1.6, we recall

LEMMA 1.7 (cf. [9; Theorem 4.3.2]). Suppose Ω is an open subset of B".
Let u be a real-valued continuous function in Ω. If 2u = 0 in Ω and u ̂  0 on
dΩ, then u^QinΩ.

From the proof of [6; Theorem 5.1] we obtain

LEMMA 1.8. // g is an element of 17(1, n; C), then

g 4(1 - \ \ z \ \ 2 Γ l ( l - \\g(z)\\)

for z e Bn.
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REMARK 1.9. The latter inequality will be used later.

PROOF OF THEOREM 1.6. Using [3; Proposition 3.2.2] and the fact that G

is a countable set, we see that there is a point in Bn which is not fixed by

any element of G except the identity. Therefore we can find an element

h = (α0 );j=ι,2 n+i m ^(1» n\ C) such that the stabilizer (hGh~l)0 of the origin 0
consists of only of the identity. Let z be a point in Bn and set w = h(z). Then

^Σ,eG(l - \\hgh~i (w)\\)n2n(l -

= Σ.eG (1 - ll%fc->)lir2Ί«ιι + al2Z, + 013Z2 + + altn+lZn\
2n ,

where gh'^w) = (Zl9 Z2, Z3, ..., ZJ e £". We note that |αn -h al2Z^ +

α13Z2 + ••• + α1)Π+1Zn|
2n is bounded in 5n. Hence, if Σ f f e G(l - ||%ft~1(w)||)π is

uniformly bounded in Bn, then so is ΣgeG(l — ||0(z)||)w. Thus we have only to

prove our theorem in the case where the stabilizer G0 = {identity}.

We note that

o

= (1 - r)"n(r, z) - n(0, z)

+ n\ (1 - ί)""1 ,̂ z) dt for r e (0,1).
Jo

By [6, Proposition 4.1], (1 — r)"n(r, z) is bounded. Therefore we need to prove

only that Jo (1 - f f ~ l n ( t 9 z)dt^M for any point z in Bn. Let {00> 0ι » - - - } be
the complete list of elements of G. Since G is of convergence type, we can
define the function F(z) as in Remark 1.5. Set

where u is the function defined before Theorem 1.4. It is obvious that Ff(z) ̂

F(z) for any point z in F1.

We use d(-) for the distance which is induced from the metric g$. Namely,

d(z9 w) = cosh'1 [|Φ(z*, w*)|{Φ(z*, z*)Φ(w*, w*)}~1/2] ,

where z* e π-1(z) and w* e π~1(w).

Let Ω be an open ball with center at 0 included in the Dirichlet poly-
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hedron D0 = {z e Bn\d(z, 0) < d(z, 0(0)) for any element g in G - {identity}} (see
[6; p. 181]). Let 0m(ί2) be denoted by Ωm. It follows from Proposition 1.3
that the function Ff(z) satisfies JFf = 0 in Bn - (Jo^m^iΩm and Ff(z) = 0 on the
boundary of Bn. Using Lemma 1.7 and the invariance of F(z) under G, we
have

0 < F;(z) ̂  maxζe Uo,m^Ωm Ft(ζ) ^ maxζe U o g m g f 5 Ω m F(C) = maxζ6δβ F(ζ)

for z e Bw — (Jogm^iΦn Hence letting z -> oo, we obtain

0 < F(z) ̂  maxζe ,β F(ζ) for z e Bw - Um^0 βm .

Set M! = maxζeββF(C). It follows that

= Γιι(ί2)dn(ί,z)
Jo

= [w(ί2)n(ί, z)]r

0 + 2 I ' ί1-2^! - i2)"-1n(i, z) Λ
Jo

(l-tγ-ln(t9z)dt.\
Joo

Therefore it is seen that

(1 - t)n-ln(t, z) dt ̂  Mi/2 for z e Bn - (Jm^0 Ωm

Next let z be a point in Ω. Using Lemma 1.8, we have

P _ »-ι
Jo ' ~

where M2 depends only on the radius of Ω. Since the number n(ί, z) is
invariant under G and Σ f f e G(l - ||0(z)||r = Σ,eG(l - ^(^'(z))!!)" < M3 for any

z e βm, the inequality J0(l — O11'1"!̂  z) ̂ f ^ ̂ 3 holds for any z e Ωm and hence
for any z e (JOT^0Φn Thus we obtain

ί (1 - tγ-*n(t, z) Λ g max (Mi/2, M3/n) = M for any z e Bn.
o

Our theorem is now proved.
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2. M-harmonic functions and M-subharmonic functions

For later use we discuss the properties of M-harmonic and M-subharmonic
functions. We need some definitions and notation. We denote the subgroup

6 (7(1, n; C)||α| = 1, A ε (7(n; C)> of (7(1, n; C) by (7(1; C) x (7(n; C).

Let σ be the (7(1; C) x (7(n; C)-invariant Borel measure on dBn for which
σ(dBn) = 1. Let β be a region of Bn. If a real-valued function feC2(Ω)
satisfies Af = 0 in Ω, then / is called an M-harmonic function in Ω. We have
the mean value property as follows.

THEOREM 2.1 (cf. [9; Corollary 2 to Theorem 4.2.4]). An M-harmonic
function f in Ω satisfies

J dBn

for each aεΩ and r > 0 such that g(rBn) c= ί2, where gε (7(1, n; C) with 0(0) = α.
Conversely, if a continuous function f in Ω satisfies this mean value property,

then f is M-harmonic in Ω.

If a real-valued function / is upper semi-continuous in Ω and satisfies

f(g(rζ))dσ(ζ)
JdBn

for each a e Ω and r > 0 as above, instead of the equality in Theorem 2.1, then
/ is called an M-subharmonic function in Ω. In the same manner as in the
proof of [5; Chapter I, Theorem 6.3], we have

THEOREM 2.2. // / is an M-subharmonic function in Ω and there is a
constant K such that lim supz_*ζ/(z) g K(< oo) for every ζ e dΩ, then f(z) g K in
Ω.

Next we shall give the definition of X-limit. For α > 1/2 and ζ e dBn, we
write Dα(ζ) for the set of all elements z e Bn such that

where z* = (zg, z?, . . . , zπ*) e π^z) and C* = (CS, f ί , , C?) e 7^(0. It is easy
to show that g(DΛ(ζ)) = Da(g(ζ)) for ^ e 17(1;_C) x £7(n; C). Set P(z9 ζ) =
{|CSI2 |Φ(z*,z*)||Φ(z*,C*)Γ2}nand S(z, ζ) = {-zgζ*Φ(z*, C*)'1}" . We call
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them the Poίsson kernel and the Szegδ kernel, respectively. We note that

DEFINITION 2.3. Suppose ζ e dBn. Let / be a complex-valued function in
Bn. We say that the function / has K-limit λ at ζ if /(zf) -» λ as i -> oo for

every α > 1/2 and for every sequence {zj in DΛ(ζ) that converges to ζ. We

write (K-lim /)(£) = I

Now we quote a theorem from [9] on the K-limit of the Poisson integral.

"HEOREM 2.4 (cf. [9; Theorem 5.4.8]). If feLl(σ\ then

(K-lim f aBW/(ζ) P(z, C) dσ(ζ))(ξ) = f(ξ) at every Lebesgue point ξ off.

3. Sufficient conditions for a discrete subgroup to be of convergence type

We shall give sufficient conditions for a discrete subgroup of 17(1, n; C) to
be of convergence type. We begin with preliminaries.

Let G be a discrete subgroup of 17(1, n; C). Denote the orbit {g(z)\g e G}
of a point z e Bn by G(z), and define the limit set L(G) of G by L(G) = G(z) n

δBw. This set L(G) does not depend on the choice of z (see [3; Lemma

4.3.1]). We observe that L(G) = dBn or L(G) is nowhere dense on dBn (see [8;
p. 108]). A discrete subgroup G is said to be of the first kind if L(G) = dB"9

otherwise G is said to be of the second kind. We denote the smallest subspace
containing π-χ(L(G)) by <π~1(L(G))>, and set <L(G)> = n(<jt~l(L(G))y n K_).

Next we shall give the definition of d*(z, w) for z, w e #".

DEFINITION 3.1. For z and w in Bn, we define

</*(z, w) = {IzSΓVoT W, w*)|}1/2 ,

where z* = (zg, z?, . . . , z*) e π-1(z) and w* = (w£, wf , . . . , w*) e π'^w).

It is easy to show that d*(z, w) does not depend on the choice of z* and
w*. We shall state some properties of d*.

PROPOSITION 3.2.
(a) d* is invariant under 17(1; C) x ί7(n; C). _

(b) d*(z, w) = d*(w, z) and d*(z, w) ̂  d*(z, x) + d*(x, w) /or x, z, w e B".
(c) // gf is an element of 17(1, n; C),

for z, w e Bn.
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(d) d* 15 a metric on dBn.
(e) Let ζ be a point in dBn and let S(ζ, k) = {η e dBn\d*(ζ, η) < k}. If

g ε 17(1; C) x l/(n; C), then g(S(ζ, k)) = S(g(ζ)9 k).

PROOF, (a) It is easy to prove this statement.

(b) The first equality is immediate. We shall show the triangle inequality.

By using (a), we may assume that x = (r, 0, . . . , 0), where 0 ̂  r ^ 1. Let z =

(z1? z2, . . . , zn) and w = (wl9 w2, . . . , wπ). It is easy to see that

d*(z, x)2 = 1 1 - rz1 1 and rf*(x, w)2 = 1 1 - rw1 \ .

Setting ω = Σn

j=2 Zjwj9 we see that

g (1 - Irz^Hl - IrwJ2) g 4|1 - rz j l

From the above inequality it follows that

ί/*(z, w)2 ^ 1 1 - z7 Wj - ω| ^ 1 1 - rzϊ + z^(r - wj - ω|

^ |1 - rzj -f |1 - rwj + 2(|1 - rz,\\l - rwj)1/2

= {d*(z, x) + «P(x, w)}2 .

Therefore we obtain the triangle inequality.

(c) Let z* = (1, zl9 . . . , zn) and w* = (1, w l 9 . . . , wj. We have

From the identity Φ(^(z*), g(z*)) = Φ(z*,z*) we derive |^(z*)0|
2(l - ||^(z)||2) =

l-||z||2. Hencel^z^ol-^ίίl-llflfίzJI^Kl-llzll2)-1}172. Similarly l^w^ol"^
{(1 - ||^(w)||2)(l - llwll2)"1}1/2. Substituting these equalities in the above rela-

tion, we obtain the required equality.
(d) Let ξ and η be points in dBn. It is obvious that if ξ = η, then

d*(ξ, η) = 0. Therefore we have only to prove that if d*(ξ, η) = 0, then ξ = η.

Using (a), we may assume that ξ = (1, 0, . . . , 0). Let η = (ηl9 η2, . . . , ηn)- Then
we see that

It follows from this equality that η = (1, 0, . . . , 0). Thus ξ = η.



Discrete subgroups of convergence type 11

(e) Let g be an element of (7(1; C) x U(n; C\ By definition and (a) we
have

x e S(g(& k) τ± d*(g(ζ), x)<kτ± d*(ζ, g-^x)) < k .

Moreover

d*(C, g-l(x)) < k <± g-*(x) e S(ζ, x)<±xε g(S(ζ, k)) .

Therefore S(g(ζ\ k) = g(S(ζ, k)).

Thus our proof is complete.

We shall show that each compact subset of Bn — L(G) meets only a finite

number of its images under transformations of G. By considering a conjugated

group, if necessary, we may assume that the stabilizer G0 of 0 consists only of

the identity. Let D0 be the Dirichlet polyhedron for G centered at 0. We

recall that D0 is expressed as

{z G β"| |flfc> + a^z, + + <>+1zJ > 1 for all gm

= «))u=ι,2,...,n+ιeG- {identity}}

(see [6; p. 181]). Denote the closure of D0 in Bn by DQ.

PROPOSITION 3.3. A compact set K in Bn — L(G) is covered by a finite

number of images of D0 under transformations of G.

To prove Proposition 3.3, we need a lemma.

LEMMA 3.4. Let g = (tfί/);,j=ι,2,...,π+ι be an element of 17(1, n; C). Let z =
(zl9 z2, . . . , zn) and w = (wl5 w2, . . . , wj be points in Bn. If w = g(z\ then

«ϊϊ ~ «2Ϊwι - " - S^Iw = αn + a12zί

PROOF. We first note that

\π \2 \^n+l \π |2 _
l f l l l l ~~ Li=2 \ail\ —

It follows from these relations that

d*(g(0),g(z))2/d*(g(0),g(0))

= d*(g(0),W)2/d*(g(0),g(0))

-(a31/a11)w2- -(an+1Λ/aι

= |αu -a2ίwί -α3 1w2- -αB+1,1wπ
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On the other hand, the proof of (c) in Proposition 3.2 yields that

d*(g(0),g(z))2/d*(g(0)9g(0))

= \g(z*)o\~l = Kl + 012*1 + ^13*2 + •" + βl.π + l^Γ1 -

Thus we obtain our desired equality.

PROOF OF PROPOSITION 3.3. Let z = (z1? z2, . . . , zn) e K and let w =

(w l5 w2, . . . , wj 6 DO. Assume that w = g(z) for some g = (αy)ίj=lf 2f ...§II+1 6 G.
By Lemma 3.4,

(1) lαΠ

As X c= Bn — L(G), K contains only finitely many points of G(0). There-

fore there exist an integer N and δ > 0 such that m ̂  N implies

(2) d*(z, g-1 (0)) > δ for all z e K .

Let gm = (<% =1,2,.,,,+1. Noting that ^(0) = (-α^Mt, -<#&!<*&. ..,

— fl(ι~i+ιMIΊ))» we see tnat (2) is equivalent to

+ ' + <ί,+ι*nl > W?l for all m ̂  N .

It follows from [6; Theorem 5.2] and [7; Theorem 3.2] that if t > n, then

Σ0meG|0(Γι)Γ2ί is convergent, so ΣβmeG\a(fl + α^ + ••• + a(^n+1zn\~2t is uni-
formly convergent on X. This implies that {0eG||αn + al2zί + ••• +
aι,n+ιzn\ < 1} is a finite set. Denote this set by H. By (1), K is included in

(JgeHβ ~1Φo) Thus our proof is complete.

PROPOSITION 3.5. // 1CX αnrf X2

 αr^ compact subsets of Bn — L(G\ then

^) meets K2 for at most finitely many g e G.

PROOF. By Proposition 3.3 we may assume that K2 <= (Ji^m^hdmΦo)'
Then 0CKi) can meet K2 only if #(Xι) meets some gm(DQ\ m=l9 2, ..., Λ,

that is, K! meets ^"Mtfmφo))- Since Kj is compact, one more application of

Proposition 3.3 shows that, for each m = 1, 2, ..., Λ, Λ^ meets flΓHtfmΦo)) f°Γ

only a finite number of g.

Taking K1 = K2, we have the following corollary.

COROLLARY 3.6. A compact subset of Bn — L(G) meets only a finite number

of its images under transformations of G.

Now we shall consider sufficient conditions for G to be of convergence
type.
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THEOREM 3.7. // there is a measurable subset E of dBn with σ(E) > 0 such
that E n g(E) = 0 for any element g in G except a finite number of elements,
then G is of convergence type.

To prove Theorem 3.7, we need a lemma.

LEMMA 3.8. Let g = (fli/)i,j=i,2,...,«+i be an element of 17(1, n\ C) and let
ζ = (Ci, C2» 5 in) ^e α point in 8Bn. Iff is an integrable function in dBn, then

f
J dBn

= f f(gmg(ζ*)0/tiΓ2ndσ,
JSB"

where ζ* = (ζg, ζ?,..., £*) € 7Γ1 (ζ) and a(ζ*) = (0(ζ*)0, ^(ζ*)!,..., 0(ζ*)Π).

PROOF. Since g 1(0) = (-α12/α11,-α13/αn,...,-αl5lt+1/αn), P(gf 1(0),ζ) =

l«ιι + α1 2Cι + ••• + flιfll+ιCJ"2". Using (5) in [9; p. 45] and g~l(dBn) = dB\
we see that

fJ δβ"

.i + «i2Ci + - - - + a l5n+1cnr2w^•I
•ί

PROOF OF THEOREM 3.7. Let k = #{g e G\Eng(E) + 0}. Put u(z) =
$dBnχE(ζ)P(z, ζ) dσ(ζ\ where χE(ζ) is the characteristic function of E. Then

"(0) = U-χ£(OP((UMσ(0 = f d » χ E ( ζ ) d σ ( ζ ) = σ(E). Using [6; Proposition
5.11, (1) and Lemma 5.12] and Lemma 3.8, we see that

ιι(0) = ί
JdBn

JdB"

χ£(C)P(0, ζ) dσ(ζ)

χE(ζ)P(g(0),g(ζW$/g(ζ*)0\
2ndσ(ζ)

Jdl

Jdi

i
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This implies that

for any element g in G. For any point ζε \JgeGg(E)ι the number #{geG\
ζe g(E)} is at most k. Therefore we see that

Σ,eG (1 - 110(0)11)" < 2nσ(EΓl Σ,eσ *(»(£)) ̂  2"σ(EΓ1 to(Uf «

oo .

If G is of the second kind, then there exists a spherical cap F with
F c= d£n - L(G). Since F is compact, the number #{g e G|Fn0(F) / 0} is
finite by Corollary 3.6. Applying Theorem 3.7 to F in place of E yields the
following result.

THEOREM 3.9. // G is of the second kind, then G is of convergence type.

We shall give an alternative proof of Theorem 3.9.

PROOF OF THEOREM 3.9. Let F be the same spherical cap defined as above.
Let flfm = (flyl))u=ιi2,...fιι+ι be an element in G. From the relation |αξ?|2 -

Z*=2\<*(i\2 = 1 we derive

"=ι ιc/)1/2

Lemma 3.8 together with this inequality yields

dσ>Σ,weG
J9

= ΣβmeG f IβίΫ + βftfCl + - + βft
JF

^(V2)2nΣ^6G f \a($\-2ndσ
JF

Hence the series ΣffweG|α(

1

m

1

)Γ2π converges. Thus G is of convergence type by
Theorem 1.2.
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THEOREM 3.10. // one of the following conditions is satisfied, then G is of
convergence type.

(a) There exists a non-constant bounded M-harmonic function on Bn/G.
(b) There exists a G-invariant measurable subset E c dB" with 0 < σ(E) < 1.
(c) The orbit G(p) of a point p ε Bn is included in the set {z = (zl5 z2,...,

z f_ 1 ? fe, zί+1,..., zn) e Bn} for some b e C.
(d) <L(G)> is not identical with Bn.

PROOF, (a) As observed in the beginning of the proof of Theorem 1.6
there exists h e 17(1, n; C) such that 0(0) φ 0 for any g E hGh'1 - {identity}.

Since G and hGh'1 are of the same type by [6; Theorem 5.9], we may assume

0(0)^0 for any g e G — {identity}. Let {00»0ι> } be the complete list of
elements of G. Suppose that there exists a non-constant bounded M-harmonic
function on Bn/G. Let p be a point of Bn/G. In the same manner as in the

proof of [4; Theorem IV. 3.7], we obtain a positive function H on Bn/G — {p}
which corresponds to a Green's function for a Riemann surface. The function
H has the following properties:

1) H is M-harmonic in Bn/G - {p};

2) H(w) — u(\\w\\2) is M-harmonic in a neighborhood of p, where u is
the function defined before Theorem 1.4 and w is a local parameter

vanishing at p.

Using the inverse mapping π"1, we can construct a positive G-automorphic
function h(z) in Bn with the following properties:

3) h(z) is M-harmonic in Bn — (Jm^00m(0);
4) h(z) — u(\\g^(z)\\2) is M-harmonic in each neighborhood of #m(0) for

m ^ O .
Let FI(Z) be the function defined in the proof of Theorem 1.6. It follows

that A(Fi(z) - h(z)) = 0 in B» - \Jm>ig-l(0) and lim sup.^z) - h(z)) ^ 0
for Ceδ5wu|Jm>^-1(0). By Theorem 2.2, F,(z) g h(z) in £". Therefore

Σm=oM(H0m( z)ll 2) is convergent. From Theorem 1.4 it follows that G is of
convergence type.

(b) Assume that there is a G-invariant measurable subset E ci dBn with
0 < σ(E) < 1 and that G is not of convergence type. Set

-ί :
J dBn

v(z) = χE(Of(z, 0 d σ ( ζ ) ,
J dB»

where χE(ζ) is the characteristic function of E and P(z, £) is the Poisson
kernel. Then 0 ̂  v(z) ^ 1 in Bn.

Let 0 < r < 1 and let h be an element of 17(1, n; C). By using Fubini's

theorem and [6; Proposition 5.11, (2), (3) and (4)], we see that
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ί υ(h(rζ)) dσ(ζ) = f j f χE(η)P(h(rζ), η) dσ(η)l dσ(ζ)
J dBn J dBn UdB" J

= ί XM\[ P(h(rζ),η)dσ(ζ)}dσ(η)
J dBn U dBn )

dBn

J di

4
J0J

, f) PK, Λ-'fo)) dσ(C) dσ(»ί)
1 J

XB (ι?)P(A(Oλ //) P(rh~l (η), ζ) dσ(ζ) dσ(η)
dBn

By Theorem 2.1, v(z) is M-harmonic in Bn. It follows from Lemma 3.8 that for

any element g e G

v(g(z)) = ^^χE(ζ)P(g(z)9ζ)dσ(ζ)

^(0)IC*/^(C*)ol2π^(θ-L
JdB»

P(z, 0 dσ(ζ) = P(z, C) dσ(ζ) = v(z\
Jg-l(E) JE

where C* = (», C?, -., Cί) e π'HC) and ^(ζ*) = (g(ζ*)0, g(ζ*)l9 ...,^(C*)J e
π~1(fl'(C)) Therefore we can regard v(z) as a bounded M-harmonic function on
Bn/G. By (a), f(z) is constant. Moreover we know from Theorem 2.4 and [9;

Theorem 5.3.1] that (K-lim υ)(ζ) = 1 at a point ζ of £. Hence φ) = 1. Thus
we obtain

= ι (O) = I P(0, 0 dσ(ζ) = \ dσ(ζ) = σ(E),
JE JE

which is a contradiction. Thus we see that (b) is a sufficient condition for G to

be of convergence type.

(c) Noting that L(G) = Gfr) n dBn c {ζ = (ζl5 ζ2,..., ζ^, 6, C ί + 1,..., ζm) ε

dB"}, we see that there is an open set E c dBn - L(G) with σ(£) > 0. Hence G
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is of the second kind. From Theorem 3.9 it follows that G is of convergence
type.

(d) Let dim <L(G)> = s. If s = 0, then G is of the second kind and hence
G is of convergence type by Theorem 3.9. As the limit set L(G) is G-invariant,
every element of G leaves <L(G)> invariant. If 0 < s < n, then we may assume
that an element of G has the following form:

A 0
9 =

1

j'

where A e 17(1, s; C) and BeU(n- s; C). Therefore the restriction of G
to <L(G)> may be regarded as a discrete subgroup of [7(1, s; C). By [6;

Theorem 5.2), Σ f 6 C(l - ||0(z)||)s+1 < oo for any ze<L(G)>. It follows that
ΣgeG(l — H0(z)||)π < oo and thus G is of convergence type.

Thus our theorem is completely proved.

In the same manner as in (d) we can prove

THEOREM 3.11. Let Γ be a Fuchsian group keeping {z\\z\ < 1} invariant and

let {?<)» V ι > •••} be the complete list of elements of Γ. We consider a correspon-
dence between an element yt of Γ and an element gt of 17(1, n\ C) with n ̂  2 as
follows:

Γ - > l/(l,n;C)
uι ω

aizl

j. + at cizl + αf c^! + ait

where |α f |
2 — |c f |

2 = 1. Denote the group consisting of 00, gί9 ... by G. TTien G
is a discrete subgroup of convergence type in 17(1, n; C).

4. Set of points of approximation

In this section we shall discuss the measure of the set of points of approxi-

mation of G.
We define a point of approximation (cf. [2; p. 261]).

DEFINITION 4.1. Let £ be a point in the limit set of G. If there exist a
sequence {gm} of distinct elements of G and a region DΛ(ζ) defined as in Section

2 such that gm(0)eDΛ(ζ) and 0m(0)->£, then the point ζ is called a pomί of
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approximation. We denote the set of all points of approximation of G by
LD(G\

We shall show that the origin 0 is replaced by any point z e Bn.

PROPOSITION 4.2. Let ζ be a point of approximation of G. Let {gm} be the
same sequence of elements of G as in Definition 4.1. For any point z in Bn, there
exists a region Dβ(ζ) such that gm(z) -» ζ in Dβ(ζ).

To prove Proposition 4.2, we need a lemma. By the aid of Lemma 1.8 we
obtain

LEMMA 4.3. // g is an element of 17(1, n\ C\ then

(1 - ||0(0)||2) (1 - l l f l f W H 2 ) - 1 ^ 8(1 - llzpΓ1 for z e Bn.

PROOF OF PROPOSITION 4.2. First express Dα(ζ) as {z e Bn\d*(z, ζ)2 <
αd*(z, z)2}. Use (c) in Proposition 3.2 to yield

d (gm(z\ζ)/d*(gm(z),gm(z))

^ {d*(gm(z\ gjft)) + d*(gm(Q), ζ)}/d*(gm(z), gm(z))

= [{(1 - H0m(z)ll2)(l - NlT'α - \\gm(0)\\2)}1>4d*(z,0)

+ (l-\\gm(z)\\2Γll2d*(gm(0),ζ).

Since gm(0)eDa(ζ),

d*(gm(0), ζ) < «ll2d*(gm(Q), gm(0)) = α1^! - l l f fJ

It follows from the above inequality and Lemma 4.3 that

d*(gm(z), ζ)/d (gm(z\gm(z)) g {(1 - ll^WllVίl - ll^m(0)||2)}1/4(l - ||z||2Γ1'*

Hzll2)-1'2 + {8α(l - ||z||2Γ1}1/2 < β1'2 ,

where β is a constant depending only on z. Thus we see that gm(z) -> ζ in

Dβ(ζ).

REMARK 4.4. Let g be an element of 17(1, n\ C) which is not the identity.
We shall call g loxodromic if it has exactly two fixed points and they lie on δBn,
and g parabolic if it has one fixed point and this lies on dBn.
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Every loxodromic fixed point of G is a point of approximation. There is a

parabolic fixed point which is not a point of approximation.

PROPOSITION 4.5. The set LD(G) is G-invariant.

PROOF. Let ζ = (ζl9 ζ2, ..., £„) be a point of approximation of G. Then

there exists a sequence {gm} of elements of G such that each gm(z) lies in Dα(C)

for some α > 1/2 and some point z of Bn. We denote gm(z) by Wm = ((Wm)ι,

(WU2> , (^m)π). Let 0 = K )ij=ι,2 ..... π+1 be an element of G.
We shall show that g(ζ) is contained in LD(G). We have only to prove

that there exists a positive number β > 1/2 such that all g(Wm) lie in Dβ(g(ζ)).

Using that Wm e DΛ(ζ), we see that

d*(g(Wm\ g(ζ))2/d*(g(WJ, g(Wm))2

1\Φ(g(W^

x {l0(C*)0ΓΊCίl}

< Φn + Σ"ϋ M^Jj-illβii + Σ"S βiA-il"1 >

where W? = ((PTm)*, (WJf, . . . , (W^)*) € π^ί^). It is seen that

l«ιι + =2 fli-il

Therefore we have that \a^ + ΣJΐJα^W^J^Hflu + IJiifluCj-iΓ1 is bounded

in Bn. This implies that there exists β > 1/2 such that

d*(g(Wm\ g(ζ))2/d*(g(WJ9 g(Wm))2 < β .

Thus g(ζ) e LD(G) and our proof is complete.

THEOREM 4.6. // G is o/ convergence type, then σ(LD(G)) = 0.

Before proving our theorem, we prepare a lemma.

LEMMA 4.7 ([9; Proposition 5.1.4]). Let I = (1, 0, ..., 0). If n= 1, then

σ(S(I, t))/t2n decreases from 1/2 to 1/π as t decreases from x/2 to 0. // n > 1,
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then σ(S(I, t))/t2n increases from 2~n to a finite limit (l/4)Γ(n + i)/Γ2(n/2 + 1) as
t decreases from χ/2 to 0.

PROOF OF THEOREM 4.6. Given z e Bn we denote the orbit G(z) of z by

{ak}. Let C = (Ci, £2* > in) be in LD(G). Then for some a > 1/2 there exists a
subsequence {αfcv} of {ak}, ak φ 0, in DΛ(ζ) such that αkv -> £ as fev -> oo. Writing

α*v = (K)i' K)2, , (^)B), we see that

I I , O2 = II^JΓΊ- Kll + Σ"=ι Kΐ OI

^ II^JΓUίi - ll^ll) + I I - Σ"-ι Kΐ OI

Let

5α(αk) = [η e ^|d*(αk/||αk||, i,) < [(1 + 2α)||αk|Γ
1(l -

It is seen that

LD(G) c U«>o (limsup^^ SΛ(ak)) .

Using Lemma 4.7, we have σ(Sa(ak)) ^ M(l — \\ak\\)n except for finitely many
flk's, where M is a constant depending only on n and α. Since G is of

convergence type, given ε > 0 there exists a positive integer fc0 such that

Σ*>*o *&(«*)) ̂  M Σ*>*0 (i - llβ*lir < Mε

Therefore it follows that

Noting that Sβ(ak) => SΛ(ak) for β > α, we see that (Jα>0(limsupfc_00Sα(αfc)) can

be expressed as a countable union of null sets. Thus σ(LD(G)) = 0.

Combining Theorem 4.6 with Proposition 4.5 and (b) in Theorem 3.10, we

obtain

THEOREM 4.8. The measure σ(LD(G)) is either 0 or 1.

THEOREM 4.9. // σ(LD(G)) > 0, then L(G) = dBn.

PROOF. It follows from Theorem 4.8 that σ(LD(G)) =1. By Theorem 4.6,

G is not of convergence type. Using Theorem 3.9, we see that G is of the first
kind. Thus L(G) = dBn.



Discrete subgroups of convergence type 21

References

[ 1 ] L. V. Ahlfors, Mδbius transformations in several dimensions, School of Mathematics,

University of Minnesota, Minnesota, 1981.

[2] A. F. Beardon, The geometry of discrete groups, Graduate Texts in Mathematics 91,

Springer, New York, Heidelberg, Berlin, 1983.

[ 3 ] S. S. Chen and L. Greenberg, Hyperbolic spaces, Contributions to Analysis, Academic

Press, New York, (1974), 49-87.

[ 4 ] H. M. Farkas and I. Kra, Riemann surfaces, Graduate Texts in Mathematics 71, Springer,

New York, Heidelberg, Berlin, 1980.

[ 5 ] J. B. Garnett, Bounded analytic functions, Academic Press, New York, 1981.

[ 6 ] S. Kamiya, On subgroups of convergence or divergence type of (7(1, n\ C\ Math.

J. Okayama Univ. 26 (1984), 179-191.

[ 7 ] S. Kamiya, On some series associated with discrete subgroups of (7(1, n; C), Math.

J. Okayama Univ. 26 (1984), 193-197.

[ 8 ] J. Lehner, Discontinuous groups and automorphic functions, Mathematical Surveys, No.

VIII, American Mathematical Society, Providence, 1964.

[ 9 ] W. Rudin, Function theory in the unit ball of C", Springer, New York, Heidelberg, Berlin,

1980.

[10] M. Tsuji, Potential theory in modern function theory, Maruzen, Tokyo, 1959.

Department of Mechanical Science,

Okayama University of Science






