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Introduction

Let C be the field of complex numbers. Let V = V*(C) (n = 1) denote
the vector space C"', together with the unitary structure defined by the
Hermitian form

D(z*, w¥) = —z¥wd + zFwf + - + zFwf

for z* = (2§, z%, ..., zF) and w* = (W, wf,...,w}) in V. An automorphism g
of V, that is, a linear bijection such that ®@(g(z*), g(w*)) = &(z*, w*) for z*,
w* eV, will be called a unitary transformation. We denote the group of
all unitary transformations by U(1,n; C). Let V, = {z* € V|®(z*, z*) = 0} and
V_ ={z*e V|®(z*, z*) < 0}. It is clear that ¥V, and V_ are invariant under
U(l,n;C). Set V*=V_uV,—{0}. Let n: V*>n(V*) be the projection
map defined by n(z%, z¥,...,z¥) = (z¥zg5 7', z%z57 %, ..., z*2z87!). Set H'(C) =
n(V_). Let H"(C) denote the closure of H"(C) in the projective space n(V*).
An element g of U(l, n; C) operates in n(V*), leaving H*(C) invariant. Since
H"(C) is identified with the complex unit ball B* = B"(C) = {z = (z,, 25, ..., 2,) €
C"||z|* = Zp-, |z|* < 1}, we regard a unitary transformation as a transfor-
mation operating on B". Therefore discrete subgroups of U(1, n; C) are con-
sidered to be generalizations of Fuchsian groups.

Our purpose in this paper is to extend results for Fuchsian groups to those
for discrete subgroups of U(1, n; C).

Our work is divided into four sections. In Section 1 we consider the
Laplace-Beltrami equation. We show in Theorem 1.4 the relation between the
type of a discrete subgroup of U(1, n; C) and the existence of a certain auto-
morphic function in B". Using this fact, we shall prove in Theorem 1.6 that
if G is a discrete subgroup of convergence type, then T _s(1 — llg(2)])" is
uniformly bounded in B". In Section 2 we shall discuss the properties of
M-harmonic and of M-subharmonic functions. Section 3 is devoted to giving
sufficient conditions for a discrete subgroup to be of convergence type. In
Section 4 we define a point of approximation and show in Theorem 4.6 that if a
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discrete subgroup G is of convergence type, then the measure of the set of all
points of approximation of G is equal to 0. The corresponding results for
Fuchsian groups and discrete groups of Mobius transformations in higher
dimensions can be found in [1] and [10].

The author wishes to express his deep gratitude to Professors M. Ohtsuka,
H. Sato and H. Yamamoto for their encouragement and advice.

1. Discrete subgroups of convergence type

Throughout this paper G will always denote a discrete subgroup of
U(1, n; C). First we recall the definition of a discrete subgroup of convergence

type.

DerFINITION 1.1. A discrete subgroup G of U(l,n;C) is said to be of
convergence type if £, (1 — [lg(2)|)" converges for some point z € B".

We note that this definition does not depend on the choice of z (see [6;
Theorem 5.1]).

For later use we shall quote criteria for a discrete subgroup to be of
convergence type from [6] and [7].

THEOREM 1.2 ([6; Theorem 5.3] and [7; Theorem 3.2]). The following
statements are equivalent to one another:
(a) G is of convergence type,
(b) Z, cclaf?I™?" < oo, where g, = (@i, j=1, 2,415
(c) [5(1 =1t 'n(t, z) dt < oo, where n(t, z) is the number of elements f in G
such that | f(z)| <t for z € B".

Now we consider the Laplace-Beltrami operator relative to the metric

9§(2) = 0,1 — 121" + ziz(1 — 2®)% for z = (z4,2,...,2) € B". This
operator is given by

~ 2 62 az
4=2(1— |zl )<Z; s~ Lik 52"5‘&37,,) '
jO%j J

We shall show that this operator commutes with the action of all elements
in U(1, n; C).

_ProposITION 1.3. Let B* = {(wy, Wi, ..., w,, W) Zios w2 < 1}. If ue
C*(B"), then A(u o f)(z) = A(u(W)),= s for any element f of U(1, n; C).

Proor. We need to prove the following equation
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(A = 1z1){X; DD o £)(2) — ¥ ;.4 Zze DDy 0 f)(2)}
= (1 — wl*) {3, D¥DFu(w) — Y, . Ww,D¥DFu(w)},

where D, = 8/0z;, D, = 0/0z;, D¥ = 0/dw; and D¥ = 9/ow,.
Note that

EjDk(u of)= Zi {Zh (D-:Df“)(ﬁjfh)(l)kf.)} .

We consider the coefficients of DF¥D¥u for 1 < h, i < n. To prove our proposi-
tion we have only to show

A =121 {X; Dif)Dif) — Lk ZzDifu) Defi)} = (1 = 1wl (B — Wywy) -

Let f= (aij)i.j=l,2,...,n+1, z*=(,zy,2;,...,2,) and w* = f(z*) = (W5, w, ..., wit).
Nothing that @(w*, w*) = &(z*, z*), we have 1 — ||z||® = [w§|* — |w}|> — - —
|w*|2 = |w&|2(1 — ||w||?). We see that

D;fy = wo 2 {(Dw¥)w§ — (Dw)wi}
Diwf = ayiq,j41 5
Diwg = ay i .
Using these equalities, we obtain
L= D fi) = wo {51 B 1 Z)WE — U=t @y jrZ) Wik}
= wo 2{(WF — @per, )W — WE — ay )W}
=Wy (= pe1, WS + Ay W)
It follows that
Z; K Zj Zk(D T (D f)) = {Z; zi(D; i)} {Zk z(De fi)}

= |wg| " *(wka,, — WEah41,1)WFay — W3a;4q,1) .

To compute X", (D;f,)(D;f;) we use the relations X%, @,y jv18ie1,j+1 = O +
Tnit,1%i+1,15 Zj=1 |‘11,j+1|2 = —1+|a, /% 0oy j+10h+1,j+1 = @118441,1 Which
follow from the fact f e U(1,n; C). We have

i1 (Ejﬁ)(D]ﬁ) = W {IWE* Y=t Gher,je1Gist, 1
+ W:Wz* Z;=1 |a1,j+1| - W(?Wi* Z;=1 A1, j+101, j+1
- “T;TWS Z}=1 mai+1,j+1}
= IWEI T {IWE P O + Burt 10i41,1) + WEWH (=1 + ay, )

vk kT ok kA
— WoW;Qpyp,1011 — Wy WOallai+1,1} .



4 Shigeyasu KAMIya

Thus
(L= 121 {Z; D/ Dif) = T Zez/Defi) (D, 1)}
= (1 — llzI1?) I wg | ~*(| g 16 — wFw¥)
= (1 = [W®) (G — Wwy) .

Our proposition is now proved.

Let u(t) be a positive function of ¢, 0 < ¢t < 1, such that Au(||u|?) = 0, where
u(||z||?) is regarded as a function of z. We shall determine u. After a little
computation we obtain

1=t )+ (1 —t)(n—tu'(t) =0,
where t = ||z||2. If u/(t) # O, then this differential equation can be written as
u' @' @)y+nt+m—-1/(1—-1)=0

or
d
E[]ogu’(t)+ nlogt—(n—1)log(1—-1)]=0,

which gives
w'()t"(1 — )™ = K (constant) .

As a normalized solution, we have

u(t) = fl (1 —syts™"ds

=Y (=R — kR 4 (= 1) log £

We shall show the relation between a subgroup of convergence type and
the function u.

THEOREM 1.4. Let u be the function defined as above and let {g,, g,, ...} be
the complete list of elements of G. Then the following statements (a) and (b) are
equivalent to each other:

(a) G is of convergence type;

(b) ngecu(llgm(z)llz) converges at some point z in B".

Furthermore, if (b) is satisfied, then the series in (b) is uniformly convergent on
every compact subset in B" — | >0 gm(0).

Proor. Since
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1 1
f 1—stds< J (1 — sy ts"ds
t t

< Jl (1 —st"ds for t<s<l1,
we have
(1/n)(1 — g1 £ u(llgn(2)1?)
< (1/M)Nga@I 721 — llgm(2)11?)" .

From these inequalities it follows that (a) and (b) are equivalent to each other.

Now we denote the ball {|z] <rl[0<r <1} by D. Since G is discon-
tinuous in B", there exist an integer N and a real number r; > r such that
|gm(2)ll > r, for every ze D and m > N. Hence we have

/) gm@172"(A = lIgm@I?)" < A/mr*"(1 = lgm(@)II?)"-

Thus the series in (b) is uniformly convergent on every compact subset of
B" — Um;O gm(o)

REMARK 1.5. When G is of convergence type, we put

F(Z) = ngeG u(“gm(z)llz) .
Then F(g(z)) = F(z) for every element g in G.

Using the above theorem, we shall show that X, (1 — [lg(2)l])" is uni-
formly bounded in B".

THEOREM 1.6. If G is of convergence type, then , (1 — |lg(2)|l)" £ K for
z € B", where K is a constant that does not depend on z.

To prove Theorem 1.6, we recall

LemMa 1.7 (cf. [9; Theorem 4.3.2]). Supgose Q is an open subset of B".
Let u be a real-valued continuous function in Q. If Au=0in Q and u <0 on
0Q, then u £ 0 in Q.

From the proof of [6; Theorem 5.1] we obtain
LeEMMA 1.8. If g is an element of U(1, n; C), then
1—lg@Il <41 = [zI*)7' (1 — llg@)l),

1— g <41 — lIzI*) 71 — 9@
for z e B".
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REMARK 1.9. The latter inequality will be used later.

Proor oF THEOREM 1.6. Using [3; Proposition 3.2.2] and the fact that G
is a countable set, we see that there is a point in B" which is not fixed by
any element of G except the identity. Therefore we can find an element
h = (ay); j=1,2,...n+1 in U(1, n; C) such that the stabilizer (hGh™1), of the origin 0
consists of only of the identity. Let z be a point in B" and set w = h(z). Then

Yoec (1= lg@IN)

=Ygec (L= llgh™ W)

=Ygec (L= [hgh™ W)I)"(1 — [hgh™* W)IN)~"(1 — llgh™* W)I)*

< Ygec (L= lhgh™ W))"2"(1 — |hgh™* W)II*)™"(1 — l|gh™* W)II*)"

= deG (1 — hgh™ W)1Y'2"ayy + @122y + ay3Z, + -+ + al,n+1Zn|2" s

where gh™'(w) = (Z,,2,,2,,...,Z,) € B". We note that |a,, + a,,Z, +
ay3Z, + " + ay 41 Z,|*" is bounded in B". Hence, if Z,.5(1 — [lhgh™ (w)|)" is
uniformly bounded in B", then so is Z,.¢(1 — [lg(2)l)". Thus we have only to
prove our theorem in the case where the stabilizer G, = {identity}.

We note that

Ligai<r (L= lg@I)" = j (1 — )" dn(t, z)
0
= (1 —r"n(r, z) — n(0, 2)
+n f’ (=0, z)dt forre(0,1).
0

By [6, Proposition 4.1], (1 — r)"n(r, z) is bounded. Therefore we need to prove
only that [5(1 — )" *n(t, z)dt < M for any point z in B". Let {go,g;,...} be
the complete list of elements of G. Since G is of convergence type, we can
define the function F(z) as in Remark 1.5. Set

Fl(z) = Zin=0 “(”gm(z)llz) ’

where u is the function defined before Theorem 1.4. It is obvious that Fi(z) <
F(z) for any point z in B".
We use d(+) for the distance which is induced from the metric g;. Namely,

d(z, w) = cosh™ [|B(z*, w¥)| {B(z*, ) D(w*, w*)} ],

where z* € n71(z) and w* e n71(w).
Let ©2 be an open ball with center at 0 included in the Dirichlet poly-
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hedron D, = {z € B"|d(z, 0) < d(z, g(0)) for any element g in G — {identity}} (see
[6; p. 181]). Let g,(£2) be denoted by Q,. It follows from Proposition 1.3
that the function F(z) satisfies AF, =0 in B" — Uo<msi 2, and Fy(z) =0 on the
boundary of B". Using Lemma 1.7 and the invariance of F(z) under G, we
have

0<F(z)= MAX; e Yosmsi 02m F(@) < MaAXre Yocmsi #2m F(@) = max,. 50 F(©)

for ze B — ( Jo<m<i@n. Hence letting i — oo, we obtain
0 < F(z) < max; ;0 F() forze B — (Yo @n -
Set M; = max, ;0 F({). It follows that

leg(z)||<r u(Hg(z)llz) = J" u(tz) dn(t, z)

0

r

= [u(t®)n(t, 2)T5 + 2 J t172%(1 — 2" n(t, 2) dt

0

=2 Jr 1 =0t z)dt.

0
Therefore it is seen that
J (L—0"'nt,z)dt <M/2  forzeB" — Jmzo P -
0
Next let z be a point in Q. Using Lemma 1.8, we have

n j A= 'nt,2)dt <3 pc6 (1= g

0

SM; Yge6 (1= llg@Iy
é M3 ’

where M, depends only on the radius of ©. Since the number n(t,z) is
invariant under G and £, (1 — [[g@2)I)" = Z,.6(1 — lg(g.1@)I)" < M, for any
z € R, the inequality [5(1 — )" 'n(t, z) dt £ M; holds for any z € 2,, and hence
for any z € ()20 92, Thus we obtain

j (1 — " n(t, z) dt < max (M,/2, M3/n)=M for any ze B".
0

Our theorem is now proved.
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2. M-harmonic functions and M-subharmonic functions

For later use we discuss the properties of M-harmonic and M-subharmonic

functions. We need some definitions and notation. We denote the subgroup
0

{[g A] eU(l,n;C)|la| =1, A€ U(n; C)} of U(l,n; C) by U(1; C) x U(n; C).
Let ¢ be the U(1; C) x U(n; C)-invariant Borel measure on 0B" for which
6(@B")=1. Let Q be a region of B". If a real-valued function fe C*(Q)
satisfies Af = 0 in €, then f is called an M-harmonic function in Q. We have
the mean value property as follows.

THEOREM 2.1 (cf. [9; Corollary 2 to Theorem 4.2.4]). An M-harmonic
function f in Q satisfies

fla) = LBH f(g(r{)) da({)

for each ae Q and r > 0 such that g(rB") = Q, where ge U(1, n; C) with g(0) = a.
Conversely, if a continuous function f in Q satisfies this mean value property,
then f is M-harmonic in Q.

If a real-valued function f is upper semi-continuous in 2 and satisfies

fla) = LB" f(g(r0)) da(()

for each a € Q and r > 0 as above, instead of the equality in Theorem 2.1, then
f is called an M-subharmonic function in Q. In the same manner as in the
proof of [S; Chapter I, Theorem 6.3], we have

THEOREM 2.2. If f is an M-subharmonic function in Q and there is a
constant K such that lim sup,_,, f(z) < K(< ) for every { € 02, then f(z) < K in
Q.

Next we shall give the definition of K-limit. For o > 1/2 and { € 0B", we
write D,({) for the set of all elements z € B" such that

|D(2*, CNIEEI™ < alP(z*, 212817,
where z* = (z3,z%,...,z¥)en"'(z) and (* = ({%, (%, ..., (N en1(). It is easy

to show that g(D,({)) = D,(g9({)) for ge U(;C) x Un; C). Set P(z,{) =
{ILE171D(2*, 24| 1D(*, (*)7?}" and  S(z, {) = {—z8LEPE* (7). We call
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them the Poisson kernel and the Szegd kernel, respectively. We note that
D) = {ze B"(IS(z {)|P(z, ) <a"}.

DEerINITION 2.3. Suppose { € 0B". Let f be a complex-valued function in
B". We say that the function f has K-limit A at { if f(z;)—> A as i > oo for
every o > 1/2 and for every sequence {z;} in D,({) that converges to {. We
write (K-lim f)({) = A.

Now we quote a theorem from [9] on the K-limit of the Poisson integral.

""HEOREM 2.4 (cf. [9; Theorem 5.4.8]). If f e L(0), then
(K-lim [ f(§) P(z, {) do(0))(€) = f(§)  at every Lebesgue point & of f.

3. Sufficient conditions for a discrete subgroup to be of convergence type

We shall give sufficient conditions for a discrete subgroup of U(1, n; C) to
be of convergence type. We begin with preliminaries.

Let G be a discrete subgroup of U(1, n; C). Denote the orbit {g(z)|g € G}
of a point z e B" by G(z), and define the limit set L(G) of G by L(G) = G(z) n
0B". This set L(G) does not depend on the choice of z (see [3; Lemma
4.3.17). We observe that L(G) = 0B" or L(G) is nowhere dense on 0B" (see [8;
p. 108]). A discrete subgroup G is said to be of the first kind if L(G) = 0B",
otherwise G is said to be of the second kind. We denote the smallest subspace
containing n}(L(G)) by {(n"}(L(G))>, and set {L(G)) = n({n Y(L(G))> n V_).

Next we shall give the definition of d*(z, w) for z, w € B".

DEFINITION 3.1.  For z and w in B", we define
d*(z, w) = {| 28|71 w7 | D(2*, w¥)[}2,
where z* = (z¥, 2%, ..., z¥) e 17 (z) and w* = (W&, wk, ..., w¥) e n 7 (w).

It is easy to show that d*(z, w) does not depend on the choice of z* and
w*.  We shall state some properties of d*.

PROPOSITION 3.2.

(a) d* is invariant under U(1; C) x U(n; C). .
(b) d*(z, w) = d*(w, z) and d*(z, w) < d*(z, x) + d*(x, w) for x, z, w e B".
(c) If g is an element of U(1, n; C), then

d*(g(2), gw)) = {(1 = llg@I*)(X — |1z *)* }*

x {(1 = llgwIP) (1 — [wl|*)}Hd*(z, w)
for z, we B".
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(d) d* is a metric on 0B".
(¢) Let { be a point in dB" and let S((,k) = {nedB"d*({,n)<k}. If
g€ U(L; C) x U(n; C), then g(S(, k)) = S(g(), k).

ProOF. (a) It is easy to prove this statement.
(b) The first equality is immediate. We shall show the triangle inequality.
By using (a), we may assume that x =(r,0,...,0), where 0 <r<1. Let z=
(24,225 ...,2,) and w = (w;, w,, ..., w,). Itis easy to see that
d*(z,x)> =1 —rzy| and d*(x,w)® =1 —rw,].

Setting w = X7, Z;w;, we see that
o < =2 12D Qi=2 Iwil?) £ (1 — |z, (1 — [wy|?)
S —lrzy )1 — [rwy ) S 411 —rzy |1 —rwy|.
From the above inequality it follows that
d*z, w) S |1 —zZiw; — 0| S |1 —rz; + Z1(r — wy) — |
S —rzl+r—wl + ol
S| —rzyl + 11 —rw| + ||
S —rzy | 4+ 11 —rwy| 4+ 2(]1 = rzy |11 — rw, )12
= {d*(z, x) + d*(x, w)}*.

Therefore we obtain the triangle inequality.
() Letz*=(1,z,,...,2,) and w* =(1,w,,..., w,). We have

d*(g(z), gw))* = | D(g(2)*, g(w)*)|
= g(z*)ol ' [g(W*)ol T | P(g(z*), g(W*))|
= |g(z¥)o] " |g(W*)o| 1| B(2*, w*)|

= g(z*)ol " lg(W*)ol 1d*(z, w)* .

From the identity @(g(z*), g(z*)) = ®(z*, z*) we derive |g(z*)o|*(1 — [g(2)II?) =
1—|z|2. Hencelg(z*)ol ™! ={(1—llg(2)I>)(1—||z2)*}*2. Similarly |g(w*)ol ™=
{(1 = llgw)I*)(1 — |w[|*)"*}¥2. Substituting these equalities in the above rela-
tion, we obtain the required equality.

(d) Let & and n be points in dB". It is obvious that if £ =47, then
d*(&, n) =0. Therefore we have only to prove that if d*(& n) =0, then & =n.
Using (a), we may assume that £ =(1,0,...,0). Let n=(4,,%,,...,1,). Then

we see that
a*¢&nm=I1—-n|"?=0.

It follows from this equality that n = (1,0, ...,0). Thus & = 4.
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() Let g be an element of U(1; C) x U(n; C). By definition and (a) we
have

x€8(g(0), k)= d*(g(), x) <k=2d*(, 97 (x)) <k.
Moreover
d* (97 (x) <k=2g"'(x) eS¢ x) 2 x € g(SE k).

Therefore S(g((), k) = g(S(C, k)).
Thus our proof is complete.

We shall show that each compact subset of B" — L(G) meets only a finite
number of its images under transformations of G. By considering a conjugated
group, if necessary, we may assume that the stabilizer G, of 0 consists only of
the identity. Let D, be the Dirichlet polyhedron for G centered at 0. We
recall that D, is expressed as

ze B"||af + af%z, + - + a4 z,| > 1 for all g,
11 12 \
= (ag"))i,j=1,2,...,n+1 € G — {identity}}

(see [6; p. 181]). Denote the closure of D, in B" by Dj,.

ProOPOSITION 3.3. A compact set K in B — L(G) is covered by a finite
number of images of D, under transformations of G.

To prove Proposition 3.3, we need a lemma.

LEMMA 34. Let g = (ay); j-1,2,..,n+1 be an element of U(1,n; C). Let z =
(215225 ---52,) and w = (W, W,, ..., w,) be points in B". If w = g(z), then

|Gy — G Wy — " = By, Wal = a3y + G122, + - + al,n+lzn|_l .
PrOOF. We first note that
g(0) = (ay,/ayy, az1/ay4, ..., Gyy1/a11)

|‘111|2 - Z:’:; |ai1|2 =1.

It follows from these relations that
d*(g(0), g(2))*/d*(g(0), 9(0))
= d*(g(0), w)*/d*(g(0), g(0))
=1 = (az1/a11)W; — @31/a11)Wy — = = (@pe1,1/811)W,|
x (1= Y13 lag fay, )77

= a5 — G wy — B3 W, = = Gy Wl -
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On the other hand, the proof of (c) in Proposition 3.2 yields that
d*(g(0), g(2))*/d*(9(0), 9(0))

|~1

=g(z*)ol™ =lay; + @122, + 1325+ + Ay py1 24|

Thus we obtain our desired equality.
ProoF oOF ProrosiTioN 3.3. Let z=(zy,2,,...,2,)€ K and let w=

(W1, Wy, ..., W) € Dy.  Assume that w = g(z) for some g = (ay); j=1.2,..n+1 € G
By Lemma 3.4,

(1) @y —aywy — = G Wal = lagy + a2+ 4y iz S 1.

As K = B" — L(G), K contains only finitely many points of G(0). There-
fore there exist an integer N and 6 > 0 such that m = N implies

)] d*(z, g,}(0)>6 forallzeK.

Let gm (au )z ,Jj=1,2,...,n+1" NOting that g;l(o) ( a("‘)/a(lni)a _a(1m3)/a(1"i)9 (EEX
—a™ . /a‘"')) we see that (2) is equivalent to

la™ + Wz, + -+ + a1 m 12, > 62|a) foralm=>N.

It follows from [6; Theorem 5.2] and [7; Theorem 32] that if ¢ > n, then
2, cclaf|™® is convergent, so T, .slaf? + af%z, + - + a2,/ 7% is uni-
formly convergent on K. This implies that {ge G|la,;, + a,z; + -+ +
ay .+125l < 1} is a finite set. Denote this set by H. By (1), K is included in
(Ugerr g *(Do). Thus our proof is complete.

PrOPOSITION 3.5. If K, and K, are compact subsets of B"— L(G), then
g(K,) meets K, for at most finitely many g € G.

Proor. By Proposition 3.3 we may assume that K, c U1§m§hgm(17(,).
Then g(K,) can meet K, only if g(K,) meets some g,(D,), m=1, 2, ..., h,
that is, K, meets g !(g,,(D,)). Since K, is compact, one more application of
Proposition 3.3 shows that, for each m =1, 2, ..., h, K, meets g~*(g,,(D,)) for
only a finite number of g.

Taking K, = K,, we have the following corollary.

COROLLARY 3.6. A compact subset of B" — L(G) meets only a finite number
of its images under transformations of G.

Now we shall consider sufficient conditions for G to be of convergence
type.
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THEOREM 3.7. If there is a measurable subset E of 0B" with o(E) > 0 such

that Eng(E) = & for any element g in G except a finite number of elements,
then G is of convergence type.

To prove Theorem 3.7, we need a lemma.

LemMA 38. Let g =(ay); j=1,2,..n+1 be an element of U(1,n;C) and let
{=(1,85,-..,L,) be a point in dB". If f is an integrable function in OB", then

I fdo= I fgOlayy + a8+ + al,n+1Cn|—2" do
aBn oBn

= LB" f(g(C)1g(l*)o/LE1™*" do,

where (* = ({8, (Y, ..., (N e n7(0) and g(C*) = (9({*)os 9(C*)1s ---» G(C*)n)-

ProOF. Since g7(0)=(—a;,/a11, —Gy3/ay4,-.., —ay ,+1/811), P(g71(0), )=
lag, + a8+ + al,n+1Cn|~2n- Using (5) in [9; p. 45] and g_l(aB") = 0B",
we see that

»

j fdo =1 flg)P(g7"(0), ) do
oB" J 0B"

r

= f@ay;y +a2ly + -+ ay g1 (ol do
J 0B"

r

=1 S@)NgC*)o/tEI™*" do .
Bn

J o

PrROOF OF THEOREM 3.7. Let k = #{ge G|Eng(E) # &}. Put u(z) =
fo8n x£Q)P(z, {) do((), where yg({) is the characteristic function of E. Then
u(0) = [opn xe(O)P(0, ) do(Q) = [spn2£() do(() = o(E). Using [6; Proposition
5.11, (1) and Lemma 5.12] and Lemma 3.8, we see that

u(0) = L xe(8)P(0, {) da({)

= L 1)P(9(0), g(©)ICE/g(L*)ol*" da(?)

=2°(1 — llg@)m)™ - 1e©)1C8/g(C*)ol*" da(0)
=2"1—llg@I)™" . 1691 (0)) do(0)

=2"1—[lg@I™ | da(l) =2"(1— [lg(0)I)"a(g(E)).

J9(E)
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This implies that
(1 = 1gI)" < 2"a(E) " o(g(E))

for any element g in G. For any point { € | ),.¢g(E), the number #{g € G|
{ eg(E)} is at most k. Therefore we see that

Ygec (1= 19O < 2"0(E)™" } g6 0(9(E)) £ 2'0(E) " ko (< 6 9(E))
< 2"6(E)'ka(éB") < o0 .

If G is of the second kind, then there exists a spherical cap F with
F < 0B" — L(G). Since F is compact, the number #{ge G|F ng(F) # &} is
finite by Corollary 3.6. Applying Theorem 3.7 to F in place of E yields the
following result.

THEOREM 3.9. If G is of the second kind, then G is of convergence type.

We shall give an alternative proof of Theorem 3.9.

PrOOF OF THEOREM 3.9. Let F be the same spherical cap defined as above.
Let g, = (@) j=1.2...n+1 e an element in G. From the relation |a{p|* —
i 1af? =1 we derive

|a(m) (m)C1 -+ a‘1",'3.+1€..|
< |afRl + 16838 + - + allhi Gl
< Lol + (T34 ) P) (T 161772
= [a{?] + (laf?? — )2 < 2]al?| .

Lemma 3.8 together with this inequality yields

oo) >ngecj do

gm(F)

= ZymeG f lafy + a3, + (1m3.+1C |72" do
F

> (12, .o f a2 do
F

= (1/2)*"0(F) ¥4, lafP ™"

Hence the series Z, .glaf?| ?" converges. Thus G is of convergence type by
Theorem 1.2.
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THEOREM 3.10. If one of the following conditions is satisfied, then G is of
convergence type.
(a) There exists a non-constant bounded M-harmonic function on B"/G.
(b) There exists a G-invariant measurable subset E = 0B" with 0 < o(E) < 1.
(c) The orbit G(p) of a point p € B is included in the set {z = (z,, z,, ..
Zi_1s b, Zisys ..., 2,) € B"} for some b e C.
(d) <L(G)) is not identical with B".

.9

ProoF. (a) As observed in the beginning of the proof of Theorem 1.6
there exists he U(1,n; C) such that g(0) # 0 for any ge hGh™' — {identity}.
Since G and hGh™! are of the same type by [6; Theorem 5.9], we may assume
g(0) # 0 for any g e G — {identity}. Let {go,g;,...} be the complete list of
elements of G. Suppose that there exists a non-constant bounded M-harmonic
function on B"/G. Let p be a point of B"/G. In the same manner as in the
proof of [4; Theorem IV. 3.7], we obtain a positive function H on B"/G — {p}
which corresponds to a Green’s function for a Riemann surface. The function
H has the following properties:

1) H is M-harmonic in B"/G — {p};

2) H(w) — u(|w||?) is M-harmonic in a neighborhood of p, where u is
the function defined before Theorem 1.4 and w is a local parameter
vanishing at p.

Using the inverse mapping n~', we can construct a positive G-automorphic
function h(z) in B" with the following properties:

3) h(z) is M-harmonic in B" — ()20 gm(0);

4) h(z) — u(lg,1(2)|I*) is M-harmonic in each neighborhood of g,,(0) for
m=0.

Let F,(z) be the function defined in the proof of Theorem 1.6. It follows
that A(Fy(z) — h(z)) = 0 in B" — (J,>:9,"(0) and lim sup,_ (F(z) — h(z)) < 0
for {€0B"U | m>ign'(0). By Theorem 2.2, F(z) < h(z) in B" Therefore
=®_ou(llgm(2)I?) is convergent. From Theorem 1.4 it follows that G is of
convergence type.

(b) Assume that there is a G-invariant measurable subset E — dB" with
0 < ¢(E) < 1 and that G is not of convergence type. Set

1

v(z) = '[ 1eQ)P(z, {) do((),
oB"

where yp({) is the characteristic function of E and P(z,{) is the Poisson
kernel. Then 0 < v(z) <1 in B".

Let 0 <r<1 and let h be an element of U(1,n; C). By using Fubini’s
theorem and [6; Proposition 5.11, (2), (3) and (4)], we see that
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{J xe(m)P(h(rC), 1) do(n)} do({)
B oBn

J o

f v(h(r0)) do({) =
oBn

»

= xsn) {Lnn P(h(r0), n) do({ )} da ()

J 0B

r

=1 M) {f P(r(, ™ () P(h(0), m) dd(C)} da(n)
oB" oB"

»

=1 2(mP(h(0), n) { f P(r{, k™ () dU(C)} da(n)
oB" oB"

»

=1 xemP(h(O),n) { f

J 0B" oB"

P(rh™(n), ) do( )} do(n)

~

=1 xe@mP(h(0), n) do(n) = v(h(0)) .

J 0B"

By Theorem 2.1, v(z) is M-harmonic in B". It follows from Lemma 3.8 that for
any element g€ G

r

v(g(2)) = " 1e(O)P(g(2), {) da(()

Ja

»

=1  xe(g@)P(g(2), 9(©)IL/g(C*)ol*" da(?)

J 0B

»

= Xe(GENILE/9(C*)oI*"P(z, O)Ig(C*)o/C817" da ()

~

= P(z,{)da(() = L P(z,{) do({) = v(2),

Jg UE)

where (*=((3,(t ... Nen'(() and  g(*) = (9((*o> 9(CH)1s---» 9(C¥) €
7 1(g({)). Therefore we can regard v(z) as a bounded M-harmonic function on
B"/G. By (a), v(z) is constant. Moreover we know from Theorem 2.4 and [9;
Theorem 5.3.1] that (K-lim v)({) = 1 at a point { of E. Hence v(z) = 1. Thus
we obtain

E

1=00)= f P(0,{) do(() = J do({) = o(E),
E

which is a contradiction. Thus we see that (b) is a sufficient condition for G to
be of convergence type.

(9 Noting that L(G) = G(p)ndB" < {{ =((1,{ss s Lty b Cings s o) €
0B"}, we see that there is an open set E < 0B" — L(G) with ¢(E) > 0. Hence G
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is of the second kind. From Theorem 3.9 it follows that G is of convergence
type.

(d) Let dim <L(G)) =s. If s =0, then G is of the second kind and hence
G is of convergence type by Theorem 3.9. As the limit set L(G) is G-invariant,
every element of G leaves {(L(G)) invariant. If 0 <s < n, then we may assume
that an element of G has the following form:

[4 0
910 B|’

where AeU(l,s;C) and Be U(n — s; C). Therefore the restriction of G
to (L(G)) may be regarded as a discrete subgroup of U(l,s; C). By [6;
Theorem 5.2), Z,.6(1 — llg@@)|))** < o for any ze<L(G)). It follows that
Z,e6(1 = [lg(@)I)" < oo and thus G is of convergence type.

Thus our theorem is completely proved.

In the same manner as in (d) we can prove

THEOREM 3.11. Let I be a Fuchsian group keeping {z||z| < 1} invariant and
let {yo,71,...} be the complete list of elements of I. We consider a correspon-

dence between an element y; of I' and an element g; of U(1, n; C) with n =2 as
follows:

r — U, n; C)
w w
a;z + ¢;
e = ——= 9i(215 225 -+ Z4)

Gz +a;

a;z, + ¢; Z, Z,
Gz +a@ Gz +a’ gz +a)’

where |a;|* — |c;|> = 1. Denote the group consisting of go, g1, ..- by G. Then G
is a discrete subgroup of convergence type in U(1, n; C).

4. Set of points of approximation

In this section we shall discuss the measure of the set of points of approxi-
mation of G.
We define a point of approximation (cf. [2; p. 261]).

DErFINITION 4.1. Let { be a point in the limit set of G. If there exist a
sequence {g,,} of distinct elements of G and a region D,({) defined as in Section
2 such that g,(0) e D,({) and g,,(0) - {, then the point { is called a point of
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approximation. We denote the set of all points of approximation of G by
Lp(G).

We shall show that the origin O is replaced by any point z € B".

PROPOSITION 4.2. Let { be a point of approximation of G. Let {g,,} be the
same sequence of elements of G as in Definition 4.1. For any point z in B", there
exists a region Dg({) such that g,(z) = { in Dy(().

To prove Proposition 4.2, we need a lemma. By the aid of Lemma 1.8 we
obtain

LeMMA 43. If g is an element of U(l,n;C), then
(1 —1g©)I* (1 —lg@)I*)™ <81 —|z|*)*  forzeB"

PROOF OF PROPOSITION 4.2. First express D,({) as {ze B"|d*(z, {)* <
ad*(z, z)*}. Use (c) in Proposition 3.2 to yield

d*(gm(2), {)/d*(gm(2), gm(2))
< {d*(9m(2), gm(0) + d*(g(0), O)}/d*(gm(2), gm(2))
= [{(1 = lgm@I*)A = 12I%)7" (1 = lIgm(0)II*)} d*(z, 0)
+ d*(gm(0), 0)1(1 — llgm(2)I*) 712
={(1 = 1gn@I*) (1 = IgmO@I*) (A — llz*)*}*
+ (1 = lgm@)lI*)2d*(gm(0), ) -
Since g,,(0) € D,(¢),
d*(gm(0), £) < 2'2d*(g,(0), g(0) = a*(1 — [lg,m(0)[1)"* .
It follows from the above inequality and Lemma 4.3 that
A*(gm(2), 0)/d*(gm(2), gm(@)) < {(1 = llgn@1*) 7' A = lIgm(O)I*)} (1 — fI2]1%)7H
+ (1 = lgm@)II*) ™ 2a2(1 — [lgm(0)1?)"
< 8 — [1zI1)7 + {8a(l — [1z*)7M}2 < B2,

where f is a constant depending only on z. Thus we see that g,(z) » { in

Dy(0).

REMARK 4.4. Let g be an element of U(1, n; C) which is not the identity.
We shall call g loxodromic if it has exactly two fixed points and they lie on 0B",
and g parabolic if it has one fixed point and this lies on 0B".
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Every loxodromic fixed point of G is a point of approximation. There is a
parabolic fixed point which is not a point of approximation.

PROPOSITION 4.5. The set Lp(G) is G-invariant.

Proor. Let {=({,,{5,---,{,) be a point of approximation of G. Then
there exists a sequence {g,} of elements of G such that each g,,(z) lies in D,({)
for some « > 1/2 and some point z of B". We denote g,,(z) by W, = (W,);,
Wo)zs -, (Wy),).  Let g =(ay);, j=1,2,....n+1 be an element of G.

We shall show that g({) is contained in L,(G). We have only to prove
that there exists a positive number B > 1/2 such that all g(W,,) lie in Dg(g({)).
Using that W, € D,({), we see that

d*(g(W,), 9(0))/d*(g(W,,), g(W,))*
= |D(g(W,)*, gOMNgOF1 7 P(g(W)*, (W)~ Hg(W,)8
= [D(g(Wh), gCNNg(W)Elg(Wk)ol T 1g(O)E119(C*)ol Mg (L)1
x |D(g(Wk), gWa)I | g(W)§1 2 g (W )o 21 g (W) |
= {|oW¥, (YIS PO WHIHWaol} {1g(Wb)ol 1(Wah)ol ™ }
x {1g(C*)ol1IC31}
<alay; + Y025 ay j(Wo)ioallag, + Y025 ay 6070,
where W = (W,)§, W)t ..., W,)¥) e n~'(W,). Itis seen that
layy + 2523 agilimal 2 lagy | — 12522 a4l
2 lag, | = (523 lag ) P51 161
=la;;| — (lay; > = )2 >0.

Therefore we have that |a,; + =0} a, (W,);—yllay, + 323 a,;¢-417" is bounded
in B". This implies that there exists f > 1/2 such that

d*(g(W,), 9(0))*/d*(g(Wy), g(W,,))* < B..
Thus g({) € Lp(G) and our proof is complete.

THEOREM 4.6. If G is of convergence type, then a(Lp(G)) = 0.
Before proving our theorem, we prepare a lemma.

Lemma 4.7 ([9; Proposition 5.1.4]). Let I =(1,0,...,0). If n=1, then
o(S(I, t))/t*" decreases from 1/2 to 1/m as t decreases from \/5 to0. If n>1,
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then a(S(I, t))/t?>" increases from 27" to a finite limit (1/4)I(n + 1)/T"*(n/2 + 1) as
t decreases from \/5 to 0.

PrOOF OF THEOREM 4.6. Given z € B" we denote the orbit G(z) of z by
{a;}. Let{=({y,(s,...,(,) bein Lp(G). Then for some a > 1/2 there exists a
subsequence {g, } of {4}, a, # 0, in D,({) such that a, —{ as k, » co. Writing
a,, = (@)1, @)z, -- -, (4 )n), We see that

d*ay /lag I, 0 = llag |7 = lla Il + Y51 (a,)i4;l

< a0 = lag ) + 11 = ey @ )51

< lla 7 = llag D) + ol = llag 1)}

<1+ 20)la 171 — llay l) -

Let
Si(@) = {n € 0B"|d*(a/llall, n) < [(1 + 2a)lla,]| 7" (1 — llal)]*2} .
It is seen that
Lp(G) = a0 (limsup, .., S,(a)) -

Using Lemma 4.7, we have a(S,(a;)) < M(1 — ||a,||)" except for finitely many
a’s, where M is a constant depending only on n and o Since G is of
convergence type, given ¢ > 0 there exists a positive integer k, such that

Zk>ko o(S,(a) =M Zk>ko (1 = Jla )" < Me.
Therefore it follows that

a(limsup,_,, S,(a,)) =0.

Noting that Sy(a;) > S,(a,) for B> «, we see that (), o (limsup,_, S,(a)) can
be expressed as a countable union of null sets. Thus a(Lp(G)) = 0.

Combining Theorem 4.6 with Proposition 4.5 and (b) in Theorem 3.10, we
obtain

THEOREM 4.8. The measure o(Lp(G)) is either 0 or 1.
THEOREM 4.9. If o(Lp(G)) > 0, then L(G) = 0B".

Proor. It follows from Theorem 4.8 that o(Lp(G)) = 1. By Theorem 4.6,
G is not of convergence type. Using Theorem 3.9, we see that G is of the first
kind. Thus L(G) = 0B".
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