HIROSHIMA MATH. J.
21 (1991), 285-299

Discrete initial value problems and discrete
parabolic potential theory

Fumi-Yuki MAEDA, Atsushi MURAKAMI and Maretsugu YAMASAKI
(Received March 12, 1990)

§1. Introduction

In this paper, we shall study a discrete analogue of the initial value
problems and the potential theory for the heat equation Au = du/dt, the
potential theory established e.g. in Doob [1; 1. XV & XVII], Watson [4] and, in
a more abstract form, in Maeda [3]. We choose an infinite network N and
consider a “discrete cylinder” with base space N.

More precisely, let X be a countable infinite set of nodes, Y be a countable
infinite set of arcs and K be the node-arc incidence function. We assume that
the graph {X, Y, K} is connected and locally finite and has no self-loop. Let r
be a strictly positive real function on Y. We call the quartet N = {X, Y, K, r}
an infinite network (cf. [5], [6]). Next, let T be the set of all integers which will
be regarded as the time space. For seT, put T,= {teT;t>s}. We call
{N, T} (resp. {N, T;}) the discrete cylinder (resp. discrete half-cylinder) with
base N.

We set &= X x T and denote by L(Z) the set of all real functions on
E. For ue L(£), we shall define the discrete (partial) derivatives du and du and
the Laplacian du. The operators d and 4 act on the variable xe X and d on
teT. The parabolic operator IT acting on ue (%) is defined by

ITu() = Au(Z) — u(®), £ =(x, NeE.

Our initial value problems and potential theory will be discussed with respect to
this operator I1.

For our study, we first recall in §2 some properties of the 1-Green function
of N relative to the equation 4u = u, and give some results on iterations of the
1-Green operators. In §3, we consider superparabolic functions on a set in &
and give minimum principles. We study in §4 an initial value problem on
{N, T,}. The existence and uniqueness of the parabolic Green function G, of
{N, T} with pole at aeZ will be studied in §5. Solutions of an initial
boundary value problem as well as the parabolic Green function of {N, T} will
be constructed by means of the iterations of the 1-Green operator of N. In
case N has the harmonic Green function g, with pole at ae X, we have the
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following formula:
Y2 Gulx, t) = g (x) with a = (a, 3),

which has a continuous counterpart (cf. [1; 1.XVII. 18]).

Discrete analogue of the Riesz decomposition theorem for nonnegative
superparabolic functions will be proved in §6. We shall introduce the
coparabolic operator IT* in §7 and discuss the coparabolic Green function of
{N, T}, and the duality between parabolic and coparabolic potentials.

§2. 1-Green function of N

First, we recall some results on the g-Green function of N discussed in [7],
in case q = 1.

For notation and terminologies concerning the infinite network N
={X, Y, K, r}, we mainly follow [5], [6] and [7]: Denote by L(X) (resp.
L*(X)) the set of all real (resp. nonnegative) functions on X and by Ly(X) (resp.
Lg (X)) the set of all real (resp. nonnegative) functions u on X with finite
support Su = {xe X; u(x) # 0}. For ue L(X), we define

du(y) = —r(y) ' Y, x K(x, yJulx),
D(u) = .., r(y)[du(y)1?,
4yu(x) =Y,y K(x, y)[du(y)] — u(x),
E (u) = D) + Y, u(x)*.
Let
E(N; 1) ={ue(X); E,(u) < o0}
and for u, ve&(N; 1),
Ey(u, v) =Y,y r()[du(y)1[do(y)] + Y oy u(x)0(x).

Then &(N; 1) is a Hilbert space with respect to the inner product E,(u, v). For
each ae X, there exists a unique §,e&(N; 1) such that

u(a) = E,(u, §,) for every ueé&(N;1).

We call g, the 1-Green function of N with pole at a. The following properties
of g, are known ([7; Theorems 4.2, 4.3 and 4.5]):

2.1) J.(b) = g,(a) for every a, beX;
22 41G,(x) = —g(x) on X,
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where ¢, is the characteristic function of the set {a};
(2.3) 0<gux)<go@ onX;
(24) Y ey Galx) < 1.

For peL*(X), the 1-Green potential Gu and 1-Green potential energy
G(u, p) of pu are defined by

Gux) = ¥ ooy Gu0p(@), G, 1) = Y,y [Gu(x)]u(x).

Lemma 2.1. ([7;Lgmma 7.2 and Tlleorem 7.2]).~ For pelL*(X), Gue
E(N; 1) if and only if G(u, u) < 00; and G(u, p) = E,(Gu) in this case.
For ue (X) and p > 0, we put
lull, = Lrex [4(x)P)'? and  flul, = sup{|u(x)]; xe X}.
Note that |jull,, < |lull,, if p; <p, < o0.

LEMMA 2.2. Let pueL*(X).
(i) If Gux)e LX), then 4,Gu(x) = — u(x).
(ii) If |ull, < oo with 1 <p < oo, then Gue L(X) and | Gu|, < ||ul,.
(iii) If |ull, < oo, then Gue &N ; 1) and
(2.5) 2D(Gw) + G} < llpl3.

Proor. (i) readily follows from (2.2). By (2.1) and (2.4), it is easy to see
that (i) holds. If ueLg(X), then Gue&(N; 1) by Lemma 2.1 and we have

~ ~ ~ . o~ 1~
D(Gp) + Gpll = E«(Gp) = G(u, p) < 5 IGHIZ + Tl3),

which implies (2.5) for peLg(X). If ||u|, < oo, then choose u,eLg(X), n
=1,2,..., such that yu,tu. Then, Gu,1Gu and D(Gp) < liminf,_, , D(Gu,).
Since each p, satisfies (2.5), it follows that Gue &(N; 1) and (2.5) holds if lell,
< oo. This completes the proof.

For peL*(X), we inductively define G™u, n=0,1,..., by G®u = u and
G"*Vy = G(G™yu). Then by the above lemma we have

COROLLARY 2.3. Let ueL*(X).
(i) Ifllpl, < o with1 <p < oo, then G™pe L(X) and ||G™ |, < | ull, for all
n=0,1,....
(i) If |ull, < o, then G®ue&(N; 1) and
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(2:6) 2{D(Gp) + D(GPp) + -+ + D(G"W} + G ul} < | ul
foralln=1,2,....
We establish

PROPOSITION 2.4. Let peL*(X) and ||, < co. Then D(G™yu) -0 and
[G®ul, =0 as n— .

PrOOF. By (2.6), we immediately deduce that D(G™u)—0. By (ii) of
Lemma 22, we see that {||G™u|,}, is nonincreasing. Let A =lim,.,
1G™ul, .

For u, veL*(X), let <u,v) =) _, u(x)v(x). Then, by (2.1), we see that
(Gp, v> = (u, Gv) for any pu, ve L*(X).

Let u, = G™pu for simplicity. Then, for any positive integers n and m,

ntams My = | nsmll3 and
(it am=15 ) = inems Hntme1) = Gl sm15 Hnsm—1)
= E(tn+m) = | tusml3
by Lemma 2.1. Hence, we have
1 tns2m = 13 = Itns2m 13 + 1 a3 — 2 <ttn s 2ms

= I ttnszml3 + I ttall3 = 21 s m I3
> A2+ A2 —-24%2=0 (n— )

and
I ttns2m-1 = tall3 = I ttn s 2m—1 15+ 113 = 2 <ttns 2m—15 B>
S M tnrom=1 115+ 1113 = 21|ty s I3
> A2+ A2 -24*=0 (n— ).
Therefore, {u,} is a Cauchy sequence in the norm |-|,, so that there is

Uo€L*(X) with | o], < o0 such that || ug — p,ll, = 0 (n— ). It then follows
that p,(x) = po(x) for every xe X, so that D(u,) < liminf,_ ,D(u,) = 0. Hence,
Ho = const., and since X is an infinite set and |y, |, < oo, it follows that u,
=0. Thus, [p,ll2 = lsell2 =0 (n— ).

ProposiTION 2.5. If 1 <p < o0, then
2.7) lim, ., |G™ull, =0 for any peL*(X) with ||u|, < .

PrOOF. Let ueL*(X) and |u|, < . For &> 0, choose u' e Lj(X) such
that o' <pu and |u—p'll,<e Then, |G™y|,—0 (n— o0) by the above
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proposition. If 2 < p < oo, then
16w 1, < 16w, —0 (n — ).
If 1 <p <2, then using Holder’s inequality and Corollary 2.3 (i), we have
1G®w 12 < I1G™w 1377 1GWw 13770 < w377+ 1G®p 3¢~
— 0 (n-> o).
Hence, again by Corollary 2.3 (i),
limsup, ., || G®pl, < himsup,.o, |G — ), < g — W, <e
if 1 < p < oo, which completes the proof.

REMARK 2.6. In case p=1 or p = o0, (2.7) does not hold in general; in
fact if G1(x) = Y eex Ga(x) =1 for all xe X (see [7; §5] as to when this occurs),
then |G™u|l, = |ull, for any ueL*(X) and n, and ||G™1|, =1 for all n.

For fe(X) and n =0, 1,..., we define G® f = G™ f* — G™f~ whenever
G"f*, G™f~el(X). By Corollary 2.3, G™f is defined for each n if f is
bounded.

§3. Superparabolic functions and minimum principle
Now let T be the set of all integers. Given se T, let
T,={teT;t>s}, T;={teT;t>s} and T¥ = {teT;t <s}.
We write
E=XxT, E=XxT, Eg=X x Ty and &% = X x T*.

We call {N, T} (resp. {N, T;}) the discrete cylinder (resp. discrete half-cylinder)
with base N. For the set =, we define L(Z), L*(Z), Ly(Z) and Lg(Z) in the
same manner as L(X), L*(X), Lo(X) and Lg (X).

For ue (%), we set

du(y’ t) = - "()’)_1 erx K(X’ .V)u(x, t)’
ou(x, t) = u(x, t) — u(x, t — 1),
Au(x, t) =Y ., K(x, y)[du(y, 1)],

TTu(§) = 4u(&) — du(?).
Note that

(3.1) ITu(-, t) = dyu(-, t) + u(-, t — 1).
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Thus, ITu(¢) can be also defined for ue L(Z)) and ¢e .

We say that a function ue L(Z) is superparabolic (resp. parabolic) on a set Q
if ITu(&) <0 (resp. ITu(¢) =0) on Q. Denote by SPR(N, T)(resp. PR(N, T))
the set of all superparabolic (resp. parabolic) functions on =. If u; and u, are
superparabolic on Q < £ and if ¢ is a positive number, then u; + u, and cu,; are
superparabolic on 2. A function u is said to be subparabolic on Q if — u is
superparabolic on Q.

In order to rewrite the parabolic operator in a more geometric form, let us
define p(x) and p(&, ) for o = (a, s) and & = (x, t) by

p@)=1+3 ., r(»~ 'K, y)l,

p o) =3 ,r() ' IK(x y)K(a y)| if t=s5and {#a,

pla”, o) =1, where o~ =(a, s — 1),

p(¢, ) = 0 for any other pair (¢, a).
Then Y, = p(¢, @) = p(«) and
(3.2) Mu(o) = — p(@u(@) + Ve zp(&, @)u(é).

For each ue L(Z) and o€ Z, define a discrete analogue of the Poisson integral of
u by

P(@) = p(@)™" Yoz p(& 2)ul?).

Then, by (3.2), ITu(x) < O (resp. ITu(a) = 0) if and only if P,(a) < u(a) (resp. P,(x)
= u(a)). From this, we see that if u;, and u, are superparabolic on Q = Z, then
so is min(u,, u,). For aeZ, put E(a) = {a} U{¢eZ; p(&, a) # 0}.

We prepare

LemMA 3.1.  Assume that ITu(e) <0 and u(x) = min{u(¢); (€ Z(a)}. Then
u(é) = u(a) on E().

Proor. Since u(£) > u(x) on =(x) and ITu(x) <0, by (3.2) we have
P@u(®) 2 Yy ) & uE) > u(@) Y 2 p(&, @) = u(@)p(x),
and hence u(¢) = u(x) on E(x).
By this lemma, we obtain the followng minimum principle:

THEOREM 3.2. Let s<s' (s, S€T) and let 2 = E,nE% and Q° = EJnE%.
(i) If u is superparabolic on Q° and if u attains its minimum on Q at o = (a, s),
then u(&) = u(x) for every EeQ.
(i) Let &’ be a finite subset of Q°. If u is superparabolic on Q' and u(£) > 0 on
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Q — Q' then u(¢) >0 on Q.

COROLLARY 3.3. Let s€T and suppose u is superparabolic on E3. If u
satisfies the following two conditions, then u >0 on =;:

(@) u(x,s)=>0 for all xeX;

(b) there are fe L™(E) and p < o such that | f(-, t)|l, < co for all te Ty

—

and u> — f on Zj.

PrOOF. Let s’ > s be arbitrarily fixed and let 2 be as in the above
theorem. Since || f(, t)|l, < oo for s <t <, given ¢ > 0, there is a finite set
Q' <= Q° such that f(¢) < ¢ for £eQ° — Q'. Then,u+¢e>0o0n Q2 — Q. Since
u + ¢ is superparabolic on Q°, (ii) of the above theorem implies that u + ¢ >0
on 2 = E,nE% By the arbitrariness of ¢ > 0 and s’ > s, we see that u > 0 on

-
=
s

§4. Initial value problem for the discrete half-cylinder

The initial value problem on =; may be formulated as follows:
[IP: f],: Given fe L(X), find ue L(ZE,) satisfying

u(x, s) = f(x) for all xeX,
ITu(¢) = 0 for all (€=}, namely u is parabolic on Z;.

By translation, it suffices to consider the case s =0. We simply write
[IP: f] for the problem [IP: f],.
Given a bounded fe L(X) and me T, we set

0, ift<m
[G*™f(x), if t=>m.
By Corollary 2.3, Lemma 2.2 (i) and (3.1), we immediately obtain

4.1) Um(x, £) = {

LemMa 4.1, If fe L(X) is bounded, then U (-, m) = f, [U(E)| < I f |l for

any meT and £€E, and
U, 1) = { 0, yt#m,

4,f(x), if t=m.
Thus, together with Corollary 3.3 and Proposition 2.5, we obtain

THEOREM 4.2. If fe (X) is bounded, then u = U'Y (restricted to Zy) is a
bounded solution of the problem [IP: f]. Furthermore, it has the following
properties::

(i) 1wl <flle for all E€Z,.
(i) If | fll, <o with 1 <p < o, then u is the unique solution of [IP: f]
satisfying |u(-, t)|l, < oo for all teTy.
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@) If || fll, < oo with 1 <p < oo, then lim,,, ||u(-, t)||, = 0.
Next, we consider the class
HB(N; 1) = {he L(X); h is bounded and 4,h =0 on X}.

A function u on ZE, will be called time-locally bounded if u(-, t) is bounded for
every teTy,. The following theorem determines the set of all time-locally
bounded solutions of [IP: f]:

THEOREM 4.3. Let fe L(X) be bounded.
(@) If {hn}w- is a sequence of functions in HB(N; 1), then

4.2) u=UP+3> UM

gives a time-locally bounded solution of [IP: 1. If, in addition, Y »_, ||hyll
< 00, then it is a bounded solution.

(i) Conversely, any time-locally bounded solution of [IP: f7] can be expressed in
the form (4.2) on E, with h,e HB(N; 1), m=1, 2, ....

Proor. (i) For each teTp, U”(-, t) = 0 for m > ¢, so that the right hand
side of (4.2) is in fact a finite sum at each point of =, and u(-, t) is bounded, i.e.,
u is time-locally bounded. By Lemma 4.1, ITU{" =0 on Zj for each
m>1. Hence u is a solution of [IP; f1. If Yo, [[hull, < o, then

U@ < 1 fllo + Yoy Imllo <00 for any EeZ,.

(i) Let u be any time-locally bounded solution of [IP:f]. We inductively
define h,e (X), m=1,2,..., by

4.3 hl(x) = u(x> 1) - U(fO)(x’ 1),
“.3) (%) = u(x, m) — US(x, m) = Y72 UPD(x, m), m=2,3,....

Then, each h,, is bounded on X, and by (3.1) and Lemma 4.1, we have
Ayhy = A {u(-, m) = UP(-, m) = Y77 UD (-, m)}
= {ITu(-, m) — UP(-, m) = Y721 TUR (-, m)}
—f{u(,m—1)=UPC,m—1)= Y77 UD(-, m— 1)}

[ —u(, 0+ UP(,0)=—f+f=0, fm=1,
"l =hy AUV m—1)= —hy_  +hy =0, if m>2.

hm-1

Hence, h,e HB(N; 1) for all m=1,2,.... Since Uy (-,t)=0 for m >t and
U™(-, m) = h,, (4.3) implies (4.2)

THEOREM 4.4. (i) If Gl1=1 (ie, Y, G.x)=1 for all xeX), then u
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= U gives the unique bounded solution of [IP: f] for any bounded fe L(X).
(i) If G1# 1, then the linear space of bounded solutions of [IP: 0] is infinite
dimensional.

PrOOF. (i) We know ([7; Theorem 5.3]) that G1 =1 if and only if
HB(N; 1) = {0}. Therefore, (ii) of the above theorem implies that U gives
the unique (time-locally) bounded solution of [IP: f7].

(i) If Gl#1, then h=1—GleHBN;1) and h#0. Then {U}%_,
provides a linearly independent infinite set of bounded solutions of [IP: 0].

REMARK 4.5. The condition Y >_, [ h, |, < c in Theorem 4.3 (i) is by no
means a necessary condition for (4.2) to be bounded, even if h, >0 for all
m. For example, we see that u=)._ Ui gives a bounded solution of
[IP: 0] (in fact, u(-, t) = 1 — G®1 for teTy).

§5. Parabolic Green function of the discrete cylinder

Given a€Z, a function G,e L(Z) is called the parabolic Green function of
{N, T} with pole at « if it satisfies the following three conditions:

(G.1) G (&) =0 for all (€&,
(G2) G, () = — &) on

(G.3) If ue (%) satisfies conditions
(i) u(¢) =0 for all (€=, and
(i) ITu(l) < —&,(¢) on Z,

then u(¢) = G,(¢) on Z.

The uniqueness of the parabolic Green function G, is assured by condition
(G.3).

THEOREM 5.1. The parabolic Green function of {N, T} with pole at o
= (a, s)e E always exists; in fact it is given by G, = U%‘a’, namely

Gx, t)=0if t <s,
G,(x, ) = [G""93,1(x) if t >s.

Proor. Condition (G.1) is clear. We see that (G.2) holds by Lemma 4.1
and (2.2). To show (G.3), let ue L(Z) satisfy conditions (i) and (ii) in (G.3). Let
v(é) = u(é) — G,(&). Then v(¢) >0 for & = (x, 1) with t <s, v(§) > — G,(¢) and
() <0 on E. Since ||§,]l; < o0, [|G,(+, t)|l; < oo for all ¢t > s by Corollary
2.3, Thus, by Corollary 3.3, we see that v >0 on Z.

By (2.3), (2,4), Corollary 2.3 and Propositions 2.4 and 2.5, we obtain
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THEOREM 5.2. The parabolic Green function G,(&), a = (a,s), has the
following properties:

G4) G ut)>0ift>s.

(G.5) G+, Oll, <1 for any teT (1 < p < ), in particular G,(&) <1 for
every EelZ.

(G.6) G,(-, )eEN: 1) for any teT and lim,_, , E,(G,(-, t)) = 0.
(G.7) lim,, o, ||G,(+, 9)]l, =0 for p> 1.
ReMARK 5.3. (G.7) does not hold for p =1 in general; see Remark 2.6.

We say that a function g, € L(X) is the harmonic Green function of N with
pole at ae X if

Ag,(x) = — g,(x) on X and g,€Dy(N).

Here Dy(N) is the closure of Lo(X) in D(N) = {ue L(X); D(u) < oo} with respect
to the norm [D(u) + u(x,)*1*/? (xo€ X). The harmonic Green function exists if
and only if N is of hyperbolic type, i.e., Do(N) # D(N), or equivalently 1¢D(N)
(cf. [5], [6D).

Now we show a fundamental formula expressing the harmonic Green
function of N with pole at ae X by the parabolic Green function of {N, T} with
pole at a = (a, s)e =.

THEOREM 5.4. Assume that N is of hyperbolic type. Then
9a(x) =372 G,(x,t) for a=(a,s).

PrROOF. For meT with m>s, put v,(x) =) G,x,t) and h, =g,
—v,. Then

AV = A 0y + Uy = Z:"=s AI[G(I_S)ga] + U

==Y [G VG ] — & + 0, = [G™9G,] — e,
so that

Ahm = Aga - Avm = - [G(M_S)gn] < 0

on X. Hence h, is superharmonic on X and h,, > —v,. By Corollary 2.3,
lomll; < 0. Hence, by an argument similar to the proof of Corollary 3.3,
together with the minimum principle ([6; Lemma 2.1]), we conclude that h,, > 0
on X, ie, v, <g, on X. It follows that v, converges to v=) 7" G,(-, 1),
v<g, on X, v is a nonnegative superharmonic function and 4v = —¢, on
X. By the Riesz decomposition theorem ([6; Theorem 5.1]), we conclude that

v =g,



Discrete initial value problems 295

§6. Riesz decomposition theorem
For ue (%) and a€Z, let us define t,ue (&) by
T u(E) = u(§) for & # a and t,u(x) = P,(x).
By (3.2), II(t,u)(@) =0. If ue SPR(N, T), then t1,ue SPR(N, T) and t,u < u on

As in the continuous case, we obtain the following lemma and its
corollaries:

LEMMA 6.1. If 2 is a Perron’s family, namely if P is a nonempty subset -of
SPR(N, T) satisfying the following three conditions:

(P.1) If uy, u,e?, then min{u,, u,} €2,
(P.2) t,ue for every ue? and aex,
(P.3) {w(é); ue?P} is bounded below at each point {€E,

then its lower envelope: (inf 2)(&) = inf{u(f); ue 2} is parabolic on E.

Proor. Let i =inf 2. Then iie L(£) by (P.3) and # <u on £ for every
ue?. We show that ITi(x) =0 for any aeZ. By (P.1) and (P.2), we can
choose a sequence {u,} in 2 such that u,(&) — (&) as n — oo for all ée 5(x) and
P, (®) = u,() for all n. Then Pylo) = ii(e), i.e., [Tii(x) = 0.

COROLLARY 6.2. If ue SPR(N, T) has a subparabolic minorant, then u has
the greatest parabolic minorant GPM(u), which is equal to the greatest
subparabolic minorant of u.

COROLLARY 6.3. Let feL*(Z). If there exists ve SPR(N, T) such that
v> f on E, then the reduction function

Rf(¢) = inf{u(f); ue SPR(N, T) and u > f on =}

is superparabolic on 5 and parabolic on the set {¢e Z; ITf (£) > 0} ; in particular,
it is parabolic on the set {(€Z; f(£) = 0}.

In order to obtain a discrete analogue of the Riesz decomposition theorem,
we introduce parabolic Green potentials.
For ve L*(E), its parabolic Green potential Gv is defined by

GV(é) = ZaeEGa(ﬁ)v(a)‘
Let

M(G) = {veL*(5); Gve L(@)}.
It follows from (G.5) that
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L§(5) = {veL*(8); v(&E) < o0} = M(G),

where ¥(8) = ), -v(¢). If ve M(G), then Gve SPR(N, T) and I1(Gv) = — v on
Z by (G.2).

LEMMA 64. If veL{(Z), then GPM(Gv) = 0.

Proor. Put u = GPM(Gv). There is se€T such that v=0 on ZE¥*

Clearly, u>0 on Z and u=0 on Z¥. By (G.5), ||Gv(-, )], < oo for any
teTJ(p < o). Since —u > — Gv, Corollary 3.3 implies that — u > 0.

Now we prove the Riesz decomposition theorem:

THEOREM 6.5. Let ueSPR(N, T) and assume u has a subparabolic
minorant. Let v= —IIu>0. Then ve M(G) and u can be decomposed in the
Jorm: u = Gv + GPM(u).

ProoF. Let {Z,} be an exhaustion of = by finite sets. Define v, by v, = v
on &, and v, =0on & — Z,. For each n, h, = u — Gv, is superparabolic on &
and parabolic on =,. Let h = GPM(u). Since h—h,<u—h,=Gv, and h
— h, is subparabolic, we have h <h, by Lemma 6.4, namely Gv, <u — h.
Since Gv, T Gv (n — ), it follows that ve M(G) and h, decreases to a parabolic
function hy > h. Then hy =u — Gv <u, and hence hy, = h= GPM(u) and u
= Gv + GPM(u).

COROLLARY 6.6. Let ve SPR(N, T)nNL*(Z). Then v is a parabolic Green
potential if and only if GPM(v) =0.

THEOREM 6.7. If ue Lo(E), then u(é) = — ), =G (&)[Mu(x)].

PROOF. Let u = max {ITu, 0} and v = max{— ITu, 0}. Then y, ve Ls(Z)
and Mu=p—v. Puth=u—Gv+ Guand &' = {(eZ; u(f) #0}. Then his
parabolic on = and — Gv<h < Gu on £— 5. By Theorem 3.2 (ii), — Gv <
h < Gu on Z. It follows from Lemma 6.4 that h =0, ie, u = Gv— Gu.

COROLLARY 6.8. If feLj (X), then the reduction function Rf is a parabolic
Green potential.

PrOOF. By the above theorem, f < Gv with v = max{ — IIf, 0}. Hence,
0 < Rf < Gv. By Corollaries 6.3 and 6.6, we see that Rf is a prarabolic Green
potential.

As another application of the Riesz decomposition theorem, we shall prove
the following domination principle by the same argument as in [2; Proposition
2.57:
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THEOREM 6.9. Let pe M(G) and ve SPR(N, T)NL*(Z). If Gu(&) < v(¢) on
the support Su of u, then the same inequality holds on E.

Proor. Let f(¢) =min{0, v(¢) — Gu(¢)} and & =Z— Su. Then v(¢)
—Gué) >0 on £ — ZF and v — Gu is superparabolic on ='. Using (3.2), we
easily see that f is superparabolic on Z. Obviously f(¢) > — Gu(é) on = It
follows from Corollary 6.6 that f(£) >0 on Z, namely Gu(¢) < v(f) on =.

§7. Coparabolic operator and duality

As in the continuous case, we define the coparabolic operator IT* on L(X)
by

IT*u(x, t) = Au(x, t) + du(x, t + 1).
Similarly to (3.1), we have
IT*u(-, t) = du(-, t) + u(-, t + 1).

We say that a function ue L(Z) is cosuperparabolic (resp. coparabolic) on a
set Q if IT*u() <0 (resp. IT*u(é) =0) on Q. Denote by SPR*(N, T) (resp.
PR*(N, T)) the set of all cosuperparabolic (resp. coparabolic) functions on Z=.

By the interchange of the order of summation, we easily obtain the
following discrete analogue of [3; Proposition 1.1]:

THEOREM 7.1. Let u, ve L(E). If u or v belongs to L,(Z), then the following
equality holds:

Yees w(OIM*o(d) = ¥, 2 v(&) ITu(&).
COROLLARY 7.2. A function ue I(E) is parabolic (resp. superparabolic) on =

if and only if

Ve &)IT*0(E) =0 (resp. <0) for all veLi(5).

A function ve L(E) is coparabolic (resp. cosuperparabolic) on E if and only if
Yz (O ITu(E) = 0 (resp. <0) for all ueLi(Z).
COROLLARY 7.3. For any ueLy(%),
YeesMu(@®) =0 and Y, . IT*u(&) = 0.

We obtain the dual statements of the results in §§3—6 with respect to the
operator IT* or cosuperparabolic functions. As to the Green function with
respect to IT*, we have
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THEOREM 7.4. Let u*({) = G/a). Then u* has the following properties:
(G*1) u*(&) =0 for all (€=,
(G*2) M*u*(@) = — &) on &;

(G*.3) If ve L(E) satisfies conditions
(i) v(¢)=0o0n =,
(i) IT*v(l) < — (&) on Z,
then v(&) > u*(¢) on E.

In view of this theorem, we call G}(¢) = Gg(a) the coparabolic Green
Sunction of {N, T} with pole at a. For veL*(Z), the coparabolic Green
potential G*v is defined by

G*V(8) = Y oe sGHEV®) = Yoo Gl V().
Let M(G*) = {veL*(8); G*ve L(E)}. If ue M(G) and ve M(G*), then
(7.) YeesGHEVE) = Yooz u(#)G*v(0).
The reduction operator R*f for fe L*(Z) is defined by
R*f(¢) = inf{u(); ue SPR*(N, T) and u > f on E}.

If fe Ly (Z), then R*f is a coparabolic Green potential by the dual statement of
Corollary 6.8, namely, R*f = G*A} with A}eLg (&)

LeEMMA 7.5. Let veSPR*(N, T)NL*(&) and pueM(G). If {f,} is a
sequence of functions in L3 (Z) which increases to v, then

Ve s v(@p(e) = lim,. ¥, - Gu(&) A%, (0).

ProoF. Since f, < R*f, < v, we see that R*f,fv on Z. Hence, using (7.1)
we have

Yeez V(@p(@) = lim, ., ¥, R*f,(@)p()
=limy o Yoz G* A1, ()p(0) = lim,. o, Yo 2 Gu(&) 43, (2).
From this lemma, we immediately obtain

THEOREM 7.6. (cf. [3; Lemma 1.3]). Let u,, p,e M(G). If Gu, < Gu, on
Z, then

ez 0(0)11(0) < Ve 5 0(@)p1z()
for any ve SPR*(N, T)nL*(&); in particular
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