Holomorphic functions on the nilpotent subvariety of symmetric spaces

Ryoko Wada and Atsutaka Kowata (Received January 19, 1990)

Introduction

Let g be a complex reductive Lie algebra and let g_R be a non compact real form of g. Let $g_R = \mathfrak{k}_R \oplus \mathfrak{p}_R$ be a Cartan decomposition of g_R and let $g = \mathfrak{k} \oplus \mathfrak{p}$ be the direct sum obtained by complexifying \mathfrak{k}_R and \mathfrak{p}_R . G denotes the adjoint group of g and we put $K_\theta = \{a \in G; \theta a = a\theta\}$, where $\theta : g \to g$ is a Lie algebra automrophism of order 2 defined by $\theta = 1$ on \mathfrak{k} , $\theta = -1$ on \mathfrak{p} . K denotes the identity component of K_θ . S denotes the symmetric algebra on \mathfrak{p} and we put $J = \{u \in S; au = u \text{ for any } a \in K_\theta\}$ and $J_+ = \{u \in J; \partial(u) \ 1 = 0\}$. J' denotes the ring of K-invariant polynomials and we put $J'_+ = \{f \in J'; f(0) = 0\}$. $\mathcal{O}(\mathfrak{p})$ deotes the space of holomorphic functions on \mathfrak{p} . We put $\mathcal{O}_0(\mathfrak{p}) = \{F \in \mathcal{O}(\mathfrak{p}); \partial(u)F = 0 \text{ for any } u \in J_+\}$ and $\mathfrak{N} = \{x \in \mathfrak{p}; h(x) = 0 \text{ for any } h \in J'_+\}$. The space $\mathcal{O}(\mathfrak{N})$ of holomorphic functions on the analytic set \mathfrak{N} (cf. [2]) is equal to $\mathcal{O}(\mathfrak{p})|_{\mathfrak{N}}$ by the Oka-Cartan Theorem.

Consider the restriction mapping $\mathscr{R}: F \to F|_{\mathfrak{R}}$ of $\mathscr{O}_0(\mathfrak{p})$ to $\mathscr{O}(\mathfrak{N})$. In our previous paper [4] we showed that \mathscr{R} is a linear isomrophism of $\mathscr{O}_0(\mathfrak{p})$ onto $\mathscr{O}(\mathfrak{N})$ when $g = \mathfrak{so}(d, 1)$ $(d \geq 3)$. In this paper we will show that we obtain the same result for any complex reductive Lie algebra.

1. Preliminaries.

Let S' be the ring of all polynomial functions on $\mathfrak p$ and S'_n be the homogeneous subspace of S' of degree n for $n \in \mathbb Z_+ = \{0, 1, \cdots\}$. For $f \in S'$ and $a \in K_\theta$, $af \in S'$ is given by $(af)(x) = f(a^{-1}x)$. It is known that any element of J' is invariant under K_θ (see [1] Proposition 10). It is also known that J' has homogeneous generators P_1, \cdots, P_r such that $P_j|_{\mathfrak p_R}$ is real valued $(j = 1, \cdots, r)$, where $r = \dim \mathfrak a_R$ and $\mathfrak a_R$ is a maximal abelian subalgebra of $\mathfrak p_R$. $\mathscr H = \{f \in S'; \partial(u)f = 0 \text{ for any } u \in J_+\}$ denotes the space of harmonic polynomials on $\mathfrak p$. The following lemma is known.

LEMMA 1.1 ([1] Theorem 14 and Lemma 18). (i) If $f \in S'$ and f = 0 on \Re , then $f \in J'_+S'$, where $J'_+S' = \sum_{j=1}^r S'P_j$.

(ii) For any $k \in \mathbb{Z}_+$ we have $S'_k = (J'_+ S')_k \oplus \mathcal{H}_k$, where $(J'_+ S')_k = J'_+ S' \cap S'_k$. Suppose $F \in \mathcal{O}(\mathfrak{p})$. Let $F = \sum_{k=0}^{\infty} F_k$ be the development of F by the series of homogeneous polynomial F_k of degree k. Then $\sum F_k$ converges to F uniformly on each compact set in \mathfrak{p} and F_k is given by the following formula:

(1.1)
$$F_k(x) = \frac{1}{2\pi i} \oint_{|t|=0} \frac{F(tx)}{t^{k+1}} dt \quad \text{for } x \in \mathfrak{p},$$

where $\rho > 0$ and the right hand side of (1.1) does not depend on ρ .

Let d be a positive integer and $d \ge 2$. $\mathcal{O}(C^d)$ denotes the space of entire functions on C^d . $P(C^d)$ denotes the space of the polynomials on C^d and $H_k(C^d)$ denotes the space of the homogeneous polynomials of degree k on C^d . For $\alpha = (\alpha_1, \ldots, \alpha_d) \in \mathbb{Z}_+^d$, we put $z^{\alpha} = z_1^{\alpha_1} \cdots z_d^{\alpha_d}$ and $\alpha! = \alpha_1! \cdots \alpha_d!$, where $z = (z_1, \ldots, z_d) \in C^d$. For $z \in C^d$, we define

$$\langle z^{\alpha}, z^{\beta} \rangle = \begin{cases} 0 & (\alpha \neq \beta) \\ \alpha! & (\alpha = \beta). \end{cases}$$

Then we can extend \langle , \rangle to the inner product on $P(\mathbb{C}^d)$. For $f \in P(\mathbb{C}^d)$, we define $||f|| = \langle f, f \rangle^{1/2}$.

Let $P_1, P_2, ..., P_s$ be arbitrary homogeneous polynomials on C^d with real coefficients. We put $\mathcal{H}_k(C^d) = \{F \in H_k(C^d); P_j(D)F = 0 \text{ for } j = 1, 2, ..., s\}$ and $J'_k(C^d) = \{\sum_{j=1}^s \phi_j P_j \in H_k(C^d); \phi_1, ..., \phi_s \text{ are some homogeneous polynomials on } C^d\}$. The following lemma is known.

LEMMA 1.2 ([3] Remark and Lemma 1). (i) For any $k \in \mathbb{Z}_+$ it is valid that $H_k(\mathbb{C}^d) = \mathcal{H}_k(\mathbb{C}^d) \oplus J_k(\mathbb{C}^d)$ and that $\mathcal{H}_k(\mathbb{C}^d) \perp J_k(\mathbb{C}^d)$ with respect to the inner product $\langle \ , \ \rangle$.

(ii) Let
$$F \in \mathcal{O}(\mathbb{C}^d)$$
 and $F = \sum_{k=0}^{\infty} F_k(F_k \in H_k(\mathbb{C}^d))$. Then we have

(1.2)
$$\lim_{n\to\infty} \sup (\|F_n\|/\sqrt{n!})^{1/n} = 0.$$

Conversely, if we have a sequence $\{F_k \in H_k(\mathbb{C}^d); k \in \mathbb{Z}_+\}$ which satisfies (1.2), then $\sum F_k$ converges to some $F \in \mathcal{O}(\mathbb{C}^d)$ uniformly on each compact set in \mathbb{C}^d .

2. Statement of the result and its proof.

The purpose of this paper is to prove the following

Theorem 2.1. The restriction mapping $F \to F|_{\mathfrak{N}}$ defines the following bijection:

$$\mathscr{R} : \mathscr{O}_{0}(\mathfrak{p}) \xrightarrow{\sim} \mathscr{O}(\mathfrak{N}).$$

PROOF. Suppose dim $\mathfrak{p}=d$ and $f\in\mathcal{O}(\mathfrak{R})$. Then there exists some $F\in\mathcal{O}(\mathfrak{p})$ such that F=f on \mathfrak{R} because $\mathcal{O}(\mathfrak{R})=\mathcal{O}(C^d)|_{\mathfrak{R}}$. If we put $F=\sum_{n=0}^\infty F_n$ ($F_n\in S'_n$), there exist $H_n\in\mathcal{H}_n$ and $G_n\in(J'_+S')_n$ which satisfy $F_n=H_n+G_n$ for any $n\in \mathbb{Z}_+$ by Lemma 1.1 (ii). Let $B_{\mathfrak{p}}$ be a K_{θ} -invariant nondegenerate symmetric bilinear form on \mathfrak{p} such that $B_{\mathfrak{p}}|_{\mathfrak{p}_R}$ is positive definite and $\{e_1,\cdots,e_d\}\subset\mathfrak{p}_R$ be a basis of \mathfrak{p} such that $B_{\mathfrak{p}}(e_i,e_j)=\delta_{i,j}$ $(1\leqslant i,j\leqslant d)$ (see [1] $\mathfrak{p}.799$). Now we define the mapping $\varphi\colon\mathfrak{p}\to C^d$ by $\varphi(\sum_{j=1}^d x_je_j)=(x_1,\cdots,x_d)$ $(x_j\in C,\ j=1,\cdots,d)$. Let P_1,\cdots,P_r be homogeneous generators of J' such that $P_j|_{\mathfrak{p}_R}$ are real valued $(1\leqslant j\leqslant d)$. Then $\widetilde{P}_j=P_j\circ\varphi^{-1}$ is a homogeneous polynomial on C^d with real coefficients. Since $H_n\circ\varphi^{-1}\in\mathcal{H}_n(C^d)$ and $G_n\circ\varphi^{-1}\in J_n(C^d)$ with respect to $\widetilde{P}_1,\cdots,\widetilde{P}_r$, we get $\|F_n\circ\varphi^{-1}\|\geqslant \|H_n\circ\varphi^{-1}\|$ from Lemma 1.2 (i) and this and Lemma 1.2 (ii) imply that $\sum H_n\circ\varphi^{-1}$ converges to some $\widetilde{H}\in\mathcal{O}(C^d)$ uniformly on each compact set in \mathbb{C}^d . If we put $\widetilde{H}\circ\varphi=H$, $\sum H_n$ converges to H on each compact set in H and therefore H belongs to H0. We can see that H1 = H2 because H3 because H4 and H5 = H5 on H5. So H6 is surjective.

Next, suppose $F \in \mathcal{O}_0(\mathfrak{p})$ and $\Re F = 0$. If we put $F = \sum_{n=0}^{\infty} F_n$ $(F_n \in H_n(\mathfrak{p}), n \in \mathbb{Z}_+)$ and u_1, \dots, u_r are homogeneous generators of J, then $\partial(u_j)F$ $= \sum_{n=0}^{\infty} \partial(u_j)F_n = 0$ for $j = 1, 2, \dots, r$. Therefore $\partial(u_j)F_n = 0$ because $\partial(u_j)F_n$ is a homogeneous polynomial. Hence we have $F_n \in \mathcal{H}_n$ for any $n \in \mathbb{Z}_+$. Furthermore, from (1.1) we can see that $F_n = 0$ on $\mathfrak N$ because F = 0 on $\mathfrak N$ and $t\mathfrak N \subset \mathfrak N$ for any $t \in C$. So Lemma 1.1 implies that $F_n \in \mathcal{H}_n \cap (J'_+S')_n = \{0\}$. Therefore we obtain $F \equiv 0$ and \Re is injective.

References

- [1] B. Kostant and S. Rallis, Orbits and representations associated with symmetric spaces, Amer. J. Math., 93 (1971), 753-809.
- [2] R. Narasimhan, Introduction to the Theory of Analytic Spaces, Lecture Notes in Math.,25, Springer-Verlag, 1966.
- [3] H. S. Shapiro, Fischer's decomposition, revisited, preprint.
- [4] R. Wada and M. Morimoto, A uniqueness set for the differential operator $\Delta_z + \lambda^2$, Tokyo J. Math., 10 (1987), 93–105.

Department of Mathematics,
Faculty of integrated arts and sciences,
Hiroshima University
and
Department of Mathematics,
Faculty of Science,
Hiroshima University