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Introduction

In the previous paper [3], we gave an estimate on the codimension of
the Euclidean space into which a Riemannian manifold (M, g) can be locally
isometrically or conformally immersed, by using some quantity which is
naturally associated with (M, g). In the present paper, we introduce another
new quantities of (M, g), and improve the estimate on the codimension based
on these newly introduced quantities. The principle of our new method is
explained as follows.

Let (M, g) be an n-dimensional Riemannian manifold. We assume that
(M, g) is isometrically (or conformally) immersed into the (n + r)-dimensional
Euclidean space R"*". Let x be a point of M and X be a tangent vector
in T M. We denote by A (X) the family of linear subspaces W of T.M
satisfying

R(Y, Z)X =0 for all Y, ZeW,

where R denotes the curvature tensor field of type (1, 3) at x. We denote
by d(X) the maximum dimension of We A (X) and set p,(x) = mind(X)
(XeT.M). Then, by the Gauss equation, or its modified equation for
conformal immersions, we have the following inequalities on the codimension r;

) r=>n—py(x) (the isometric case),
*

r=n—pylx)—2 (the conformal case)
(Proposition 1.1). And using these inequalities, we obtain an estimate on the
codimention of isometric or conformal immersions. In fact, we may assert
that any open neighborhood of x in M cannot be isometrically (resp.
conformally) immersed into the Euclidean space R"*" with r < n — p,(x) (resp.
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r <n— py(x) —2). The isometric case of the above inequalities is essentially
equivalent to the condition stated in [2; Theorem 3.1], which the first named
author obtained by introducing the notion of “generalized Gauss equation”.
(For details, see Theorem 3.2.)

Let us now assume that (M, g) is a Riemannian symmetric space and
consider the problem to determine an actual estimate by the principle stated
above. Because of homogeneity, it suffices to calculate the number pg (0) at
the origin o of G/K. Let g (resp. f) be the Lie algebra of G (resp. K) and
let g =%+ m be the canonical decomposition. We fix a maximal abelian
subspace a of m, and let f, be the centralizer of a in f. Then the integer
Pk (= Pg/x(0)) equals the maximum dimension of the subspaces W in m

satisfying
(W, W]ci,.

In particular, in the special case where f, = {0} (i.e., the Satake diagram does
not contain any black circles nor any arrows), the equality pg x = rank G/K
holds (Theorem 2.4). From these results, it follows that the canonical
imbedding of the space SU(m)/Sp(m) (cf. [7]) gives the least dimensional local
isometric imbedding into the Euclidean spaces (Corollary 2.5). However, for
general spaces, it is difficult to determine the exact value pg, even in the
case G/K is a compact Lie group.

We now introduce another quantity p§,, which is just the complex version
of py. For xeM and X e T .M, we denote by A4(X) the family of complex
linear subspaces of (T, M)" satisfying

RY(Y,Z2)X =0 for all Y, ZeW,

where (T,M)° and R° mean the complexifications of T,M and R, respectively.
We denote by d°(X) the maximum dimension of the complex vector space
We A/ ¢(X), and set p5,(x) = mind‘(X) (X e T,M). Then, in the same way as
before, we have the following inequalities on r;

r>n— piy(x) (the isometric case),
k%
) r>n—pi(x)—2 (the conformal case).
Therefore, the same statement after (*) holds if we replace py(x) by
Pig(x). Since pis(x) > pp(x), which follows directly from the definition, the
estimate obtained by pis(x) is in general inferior to the one obtained by
pu(x). However, by using the value p§, for compact Lie groups, we can
improve the results in [3] on the codimension of isometric or conformal
immersions, and it is the main purpose of this paper to determine the value

pi for all compact Lie groups.
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Let G be a compact Lie group and g be its Lie algebra, and we fix a
Cartan subalgebra t of g. Then the integer pg equals the maximum dimension
of complex linear subspaces W of g° satisfying

[W, W] c t.

Then, our problem is completely reduced to a problem concerning the root
system of g°. Let 4 be the set of all non-zero roots of g° with respect to
t°. We say that a subset I" of 4 is non-additive if « + B¢ A for any o, fel.
Then, the integer p% is equal to the maximum of the value *I" + rank g —
dim RI, where I runs over the set of all non-additive set in 4 (Proposition 3.4
and Corollary 3.5). Our main results are summarized in Theorem 3.1. In
particular, for compact classical Lie groups G, the order of pg is about
1/4 -dim G, and therefore, G cannot be locally isometrically (or conformally)
immersed in codimension about 3/4-dim G. This improves the previous
results in [3], where we showed the non-existence of isometric (or conformal)
immersions in codimension about 1/2:dim G.

Now, we explain the contents of this paper. In §1, we first define two
functions py(x), pi(x), and prove the inequalities (*) and (**). Next, we state
some fundamental properties of these functions (Proposition 1.2). In §2, after
reformulating these results adapted to Riemannian symmetric spaces, we prove
Theorem 2.4. In §3 ~ §5, we determine the value p§ for all compact simple
Lie groups G. First, in §3, we state the main results on the value p§ (Theorem
3.1), and to prove this theorem, prepare some notions on the root
systems. Using these results, we prove Theorem 3.1 in §4 and §5 for the
classical and the exceptional Lie groups, respectively. For the classical case,
we divide the non-additive sets I' into five types, and after evaluating the
maximum of *I" + rank g — dim RI" inductively for each type, we determine
the value pG. Since each type possesses its own feature, we must prepare
several lemmas to obtain the final results. For the exceptional Lie groups,
we determine pg by applying the results of Malcev [10] on the maximum
dimension of abelian subsalgebras of complex simple Lie algebras. (See also
Appendix.) Finally, in §6, we state a result on the value p; for compact Lie
groups with small rank. We also give some lower bound of p; for. general
compact simple Lie groups, in terms of a set of roots satisfying some conditions.

§1. A condition derived from the Gauss equation

Let (M, g) be an n-dimensional Riemannian manifold. In this section, we
first state some necessary conditions in order that (M, g) may be locally
isometrically (or conformally) imbedded into R"*" in terms of some quantity
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associated with (M, g).
Let xe M and for each tangent vector X € T, M, we define two sets A (X)
and A4"°(X) consisting of subspaces of T, M and its complexification (T,M)* by

N(X) ={WcTM|R(Y,Z)X =0, for all Y,ZeW]},
N(X)={Wc(T,M)Y|R(Y,Z)X =0, for all Y,ZeW]},
where R: TM x T.M x T.M - T,M is the curvature tensor of type (1, 3) at

x, and R°:(T.M) x (T.M) x (T.M) - (T_,M) is the complexification of
R. For a real tangent vector X e T.M, we put

d(X) = max dim W,
WeA (X)

d(X)= max dim W.
WeAc(X)
If the element X € T,M is sufficiently generic, the integers d(X) and d°(X) take
the minimum value and we denote them by p,(x) and p$,(x). Namely, p,,
and pj, are Z-valued functions on M defined by

pm(x) = Jain d(X),
Piu(x) = min d*(X).

Since there is a canonical inclusion A'(X) < A4(X) for each Xe T,M, the
inequality p,,(x) < pis(x) holds for xe M. The importance of these functions
are explained in the following proposition.

PROPOSITION 1.1. Assume that an n-dimensional Riemannian manifold
(M, g) is isometrically (resp. conformally) immersed into R"*". Then the
following inequalities hold for any xe M.

r>n— py(x) (resp. r =n — ppy(x) —2)
r>n— pi(x) (resp. r = n — pi(x) — 2).

Consequently, any open submanifold of M containing x can not be isometrically
(resp. conformally) immersed into the Euclidean space with -codimension
r=n—py(x)—1, n—py(x) — 1 (resp. r =n — pp(x) — 3, n — pj(x) — 3).

Proor. We prove only “real” part of this proposition because the second
inequality follows immediately from p,.(x) < pjs(x) and the first inequality.

First, we treat the “isometric” case. We have only to show that the
inequality d(X) > n — r holds for any X € T.M because p,(x) = d(X) for some
XeT,M. We denote by T,;*M the normal space of the isometric immersion
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at x and let a: T.M x T,M — T.* M be the second fundamental form associated
with the immersion. For X e T.M, we define a linear map ¢y: TM - T M
by ox(Y)=a(X, Y). If Y, ZeKer ¢y, then for any We T,M, we have, from
the Gauss equation,

because a(X, Y)=oa(X,Z)=0. (We denote by (,) the inner product of
T}M.) Therefore, we have R(Y, Z)X =0, which implies Ker ¢y A (X).
Since dim Ker ¢y > dim T,M —dim T*M =n —r, we obtain the desired
inequality d(X) > dim Ker ¢y >n —r.

Next, we treat the “conformal” case. In our previous paper [3; p.110],
we constructed symmetric tensors

«: TMx TM — T M
B: T.M x TM — R

associated with the conformal immersion of (M, g), and showed that they
satisfy the modified Gauss equation for conformal immersions:

Ca(X, Y), o(W, Z)) — <a(X, Z), (W, Y)) + B(X, Y)g(W, Z) + g(X, Y)B(W, Z)
—BX, Z)gW, Y) —g(X, Z)B(W, Y) = — pg(R(X, W)Y, Z),

where p is a positive function on M (see [3; Lemma 1.1]). In terms of these
tensors, we define a linear map Yy: TM->T M®R> (XeT,M) by
Vyx(Y)=(x(X, Y), B(Y), g(X, Y)). Then, by using the modified Gauss equation
for conformal immersions, we can easily show that Ker Yy € #7(X) in the same
way as above. Hence, we have d(X) > dimKer yy >n—(r+ 2), which
implies py(x) >n—r—2. g.e.d.

As seen in the above proposition, we may say that the functions p,, and
Py are fundamental quantities associated with (M, g). Therefore, it is an
interesting problem to determine p,, and pj, for a given Riemannian manifold
M, g).

Finally, we state some properties of p, and pj,.

ProrosiTION 1.2. (1) Let w: M —» M be a Riemannian covering. Then,
n*py = Py and TPy = Py- »

(2) Let M =M, x --- x M, be a product of Riemannian manifolds. Then,
for x;e M,, the following equalities hold.

Pm(X1s..i X)) = le(xl) + o+ i (%),
Pr(X 1505 X0 = Phr, (X1) + -+ + Phs (x0).
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(3) Let M be a Riemannian symmetric space. Then the functions p,, and
Py are constant on M. In addition,
(a) If M is of Euclidean type, then p,, = p$, = dim M.
(b) If M is of compact type and M* is its non-compact dual, then
Pym = Pue and pyy = Piys.

Proof. The assertion (1) is clear. If M is a Riemannian symmetric space,
then, since the isometry group acts transitively on M, both the functions p,,
and pi, are constant. If M is of Euclidean type, M is locally isometric to
R" and hence we have clearly p,, = pyy =dim M. If M is of compact type,
then the curvatures of M and M* differ only in sign, and therefore, we have
Pm = Pu= and pS, = pSy«. This proves the assertion (3).

Finally, we prove (2) in the case k = 2. The general case can be treated
in the same way. For x =(x;, x,)e M; x M,, we take a tangent vector
X=(X,,X;)eTM=T, M, ®T,_,M, such that py(x)=d(X). Then there
exist subspaces W, = T, M, satisfying W,e /"(X;) and dim W, =d(X)) (i = 1, 2).
We put W= W, @ W, c T.M. For tangent vectors Y=(Y;, ), Z=(Z,, Z,)
eW, we have R(Y,Z)X =(R,(Y;, Z,)X,, R,(Y,, Z,)X,) where R; is the
curvature of M;. Using the conditions Y;, Z,e W, and W,e A"(X)), it follows
that R(Y, Z)X = 0, and hence We A" (X). Therefore, we have p,,(x) = d(X) >
dim W= dim W, + dim W, = d(X{) + d(X,) = pu, (X1) + Par,(x2).

Next, for x = (x;, x,)e M, we take X;eT, M; such that p, (x;) = d(X)),
and put X =(X,, X,). Then there exists a subspace W< T.M satisfying
We /' (X) and dim W =d(X). We denote by W, c T, M, the image of the
space W with respect to the orthogonal projection TM =T, M, ® T,,M, -
T.,M;. Then we have W,e A (X). In fact, for Y;, Z,eW;, we can take
Y,,Z,eT M, such that Y=(Y,Y,), Z=(Z,,Z,)eW. Then we have
0=R(Y,2)X =(R,(Yy, Z,)X,, R,(Y,, Z,)X,), and from the first component,
it follows that W, e A'(X,). The property W,e 4" (X,) can be proved in the
same way. Since W< W, @ W,, we have py(x) < d(X) = dim W< dim W, +
dim W, < d(X,) + d(X,) = pup,(x1) + Par,(x2). Thus, combining with the first
inequality, we obtain the desired result. g.e.d.

In particular, from this proof, it follows that the subspace W< T.M
realizing the equality p,(x) = dim W is expressed as a direct sum of subspaces
W.e /" (X;) such that d(X;) = dim W,.

§2. Riemannian symmetric spaces

In this section, we consider the problem to determine the quantities p,,
and pj, for Riemannian symmetric spaces. By Proposition 1.2, we may assume
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that M is irreducible and of compact type.

Let M = G/K be an irreducible Riemannian symmetric space of compact
type. Since the isometry group of M acts transitively on M, we have only
to determine p,, and pj, at the origin o of M. Let g (resp. ) be the Lie
algebra of G (resp. K) and B the Killing form of g.  Let g =%+ m be the
canonical decomposition. As usual, we identify m with the tangent space of
M at o. We define the Ad(K)-invariant inner product <{,> of m by
(X,Y)>=—B(X,Y) for X, Yem. We may assume that the Riemannian
metric ¢ on M coincides with {,> at o. Then the curvature tensor R of
(M, g) is given by

RX,Y)Z=—[[X,Y],Z] for X,Y,Zem.
Now let us fix a maximal abelian subspace a of m and set
f, = {Xef|[X, a] =0}.
We define two sets A, and A4} consisting of subspaces of m and m® as follows:
My ={Wem|[W, W] i,
M= (Wt |[W, W] < K}
Then we have
ProPosSITION 2.1. Let M = G/K be an irreducible Riemannian symmetric
space of compact type. Then:
) pu= Jmax dim W

(2 pPu= Jnax dim¢ W.

To prove this proposition, we first prepare the following lemma.
LEMMA 2.2. Let Hea. Then:

() My AN(H) and Ny = V/(H).

(2) In case H is regular, i.e., the centralizer of H in m coincides with a,
then:

Ny = N(H) and Ny = N(H).

Proor. We prove only the real case, because the complex case can be
proved in the same way.

Let We A, and let Y, Ze W. Then, since [Y, Z]ef, and [,, H] =0, we
have

R(Y, Z)H = — [[Y, Z], H] = 0.
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This implies We A4"(H). Therefore we have 4}, < A'(H).

We now assume that H is a regular element of a and prove
N (H) = Ny. Let WeAN (H). We put V=[W, W]. Then by the very
definition, we have [V, H] = 0. Since [m, m] < f, we have V<. Moreover
we can show that [V,a] =0. We first note that [V, a] cm, because
[f, m] = m. By the Jacobi identity, we have

[H, [V, a]]l <= [[H, V], a] + [V, [H, a]] = {0}.

This proves that [V, a] is contained in the centralizer of H in m. Since H
is regular in a, we have [V, a] = a. Moreover, by the ad (g)-invariance of the
Killing form, we have

{4y, [X, 4,1) = — B(4,, [X, 4,]) = B([4,, 4,], X) =0

for A, A,ea, XeV. Since {, ) is positive definite on a, we have [V, a] = 0.

Consequently, we have V < §;, which shows that We .#},. Therefore, we have

N (H) < N} This together with the first assertion implies A (H) = A)y,.
g.e.d.

ProOOF OF PRroOPOSITION 2.1. We prove the assertion (1). Let Xem.
Then there exists ge K and Hea such that X = Ad(g)H. Then we have
N(X)=Ad (9)# (H)={Ad (9)W|We A"(H)}, and hence we have d(X)=d(H).
Therefore, to determine the integer p,,, we may assume that X = Hea. By
(1) of Lemma 2.2, it follows that d(H) > Jmax dim W. On the other hand, if

H is a regular element of a, we have the equality d(H) = Jmax dim W from
€N M

(2) of Lemma 2.2. This proves the assertion (1).
The assertion (2) can be proved in the same way, and we omit the proof.
g.e.d.

As an immediate consequence of Proposition 2.1, the quantity p,, can be
determined for a special class of Riemannian symmetric spaces.

ProrosITION 2.3. Let M = G/K be an irreducible Riemannian symmetric
space of compact type satisfying rank M =rank G. Then the equality
py = rank M holds.

Proor. Since rank M =rank G and dima=rank M, a is a maximal
abelian subalgebra of g. Hence the centralizer of a in g coincides with a
itself. Therefore we have f, = {0}, because anf= {0}. Consequently, it is
clear that a subspace W of m is contained in .4, if and only if Wis abelian, i.e.,
[W, W] =0. Since the dimension of an abelian subspace of m does not exceed
rank M, we have dim W < rank M for any We .#;,. On the other hand, since
ae ANy and dim a = rank M, we have p,, = rank M. g.e.d.
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In terms of the Satake diagram, an irreducible Riemannian symmetric
space M = G/K with rank M = rank G corresponds to a diagram without any
black circles nor any arrows. Viewing the classification table of irreducible
Riemannian symmetric spaces of compact type, we have

THEOREM 2.4. Let M =G/K be one of the following Riemannian
symmetric spaces of compact type and let M* be the non-compact dual of
M. Then the equality py = py» = rank M holds.

Al SU(m)/SO(m),  BI SO(2m + 1)/SO(m + 1) x SO(m),

CI  Sp(m)/U(m), DI SO(2m)/SO(m) x SO(m),
EI  E,/Sp(4), EV E,/SU(8),

EVIII Eg/Spin (16), FI F,/Sp(3)-SU(2),

G G,/S0(4).

For the spaces listed in Theorem 2.4, we can conclude the non-existence
of isometric (resp. conformal) immersions in codimension dim M — rank M — 1
(resp. dim M — rank M — 3). These results improve our previous estimates in
[3], where the non-existence of isometric (or conformal) immersions in
codimension about 1/2-dim M is proved.

Since it is already known that the space CI Sp(m)/U(m) can be globally
isometrically imbedded into the Euclidean space with codimension m? = dim M
—rank M (cf. [7]), we have

COROLLARY 2.5. For the space Sp(m)/U(m), the canonical isometric

imbedding gives the least dimensional (local) isometric imbedding into the
Euclidean spaces.

Finally, we consider the case of compact simple Lie groups. Let G be
a compact simple Lie group and g be its Lie algebra. As is known, G
endowed with a bi-invariant metric can be regarded as a Riemannian symmetric
space G = G/K where G =G x G and K denotes the diagonal subgroup of
G. Let t be a Cartan subalgebra of g. We define two sets A and A by

N ={WcglW,W]ct},
He={Weg|W W]ct)
Then the statements in Proposition 2.1 can be reformulated as follows.
PrOPOSITION 2.6. Let G be a compact simple Lie group. Then:
1) pg= max dim W.

2 ps= max dim¢e W.
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ProOF. Let § (resp. f) be the Lie algebra of G (resp. K). Then we have
g=g+g and f={(X, X)|Xeg}. If we put m={(X, — X) Xeg}, then
§ =t + i gives the canonical decomposition of § associated with G/K. We'
note that & = {(H, — H)|Het} is a maximal abelian subspace of t and that
the centralizer f, of a in t is given by f, = {(H, H)|Het}. Let W be a
subspace of g and set W= {(X, —X)|XeW}. Then we have W < 1t and
dim W = dim W. Conversely, any subspace of it can be expressed in this
form. We can easily show that [W, W] < f, if and only if [W, W] = t. This

proves the assertion (1). The assertion (2) can be obtained in the same way.
g.e.d.

§3. The value pg; for compact Lie groups

In this and subsequent sections, we determine the quantity p% for compact
Lie groups G. On account of Proposition 1.2, we have only to determine p§
for compact simple Lie groups. Our main results are summarized in the

following theorem.

THEOREM 3.1. The values pg for compact simple Lie groups are given in
the following tables:

mi|{ 2 3 4
G
A,_,  SU(m) 0 2 3 5 [m?/4] (m>5)
B, So2m+1)| 2 4 8 12.mm—-1)+1 (m=5)
C, Sp(m) 2 4 1/2-mm + 1) (m>3)
D, soemy |1 4 5 8 1/2-mm-—1) m>5
G
F, |9
G, |4

Before proceeding to the proof, we first state several remarks on this
theorem.

REMARK 1. By Proposition 1.1, it follows that G cannot be locally
isometrically (resp. conformally) immersed into the Euclidean space with
codimension = dim G — p§ — 1 (resp. dim G — p; — 3). The isometric part of
this statement is essentially equivalent to the following theorem, which the
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first named author proved in the previous paper [2] by applying the theory
of generalized Gauss equations.

THEOREM 3.2. (cf. [2; Theorem 3.11). Assume that an n-dimensional
compact semi-simple Lie group G is locally isometrically immersed into
R"*". Then, there exists a non-zero decomposable r-form ®e€ N"g* such that
® Adw, =0, where dw, is the exterior derivative of the g,-component of the
complexified Maurer-Cartan form of G. (g, is the root subspace of ¢
corresponding to the root a.)

In fact, a non-zero decomposable element ®e A”g* determines the
(n — r)-dimensional subspace W < g, and it is easy to see that the condition
® Ardw, =0 is equivalent to [W, W] ct. Hence, we have pG>n—r, ie,
r > dim G — p§ by this theorem. In addition, in the paper [2], we determined
the value pS for the groups SU(3), SO(4), SO(5) by using the exterior
calculus. Thus, Theorem 3.1 may be considered as a generalization of these
results.

REMARK 2. For each compact classical group G, the order of the value
ps is about 1/4-dim G, and hence, G cannot be locally isometrically or
conformally immersed into the Euclidean space with codimension about
3/4-dim G. This improves the previous results in [3], where we proved the
non-existence of the immersion in codimension ~ 1/2-dim G.

Theorem 3.1 also improves the estimates for exceptional Lie groups. In
fact, we showed in [3] that Eg, E,, Egq, F, and G, cannot be locally
isometrically immersed into the Euclidean space with codimension 35, 62, 119,
23 and 5, respectively, while Theorem 3.1 indicates the impossibility in
codimension 61, 105, 211, 42 and 9.

ReEMARk 3. It is known that the symplectic group Sp(m) can be globally
isometrically imbedded in codimension 2m? —m (cf. [7]). Hence, as an
immediate consequence of Theorem 3.1, we have

THEOREM 3.3. For the group Sp(1), Sp(2) and Sp(3), the canonical
imbeddings give the least dimensional local isometric imbeddings into the
Euclidean spaces.

For G =Sp(l) and Sp(2), these results are already known because.
Sp(1) ~ §3, and Sp(2) is locally isometric to SO(5) (cf. [1]).

Now, in the following, we state a systematic method to determine the
value pg for general compact Lie groups. For this purpose, we first fix some

notations. Let (,) be an inner product of g which is invariant by the adjoint
action of G, and for aet, we put
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g, ={Xeg’|[H, X]=./—1(H, 0)X, for all Het}.

We say that aet is a root if g, # {0}, and denote by 4 the set of all non-zero
roots of g. It is well-known that dim¢ g, = 1 for aed, g° =t + ) _, g, (direct
sum), and [g,, 8] < 8,+5- We denote by t: g° — g° the conjugation of g° with
respect to g. Then, there exists a basis Z, of g, satisfying

Z)=2_,

(2., Z-.] =2 - 1/(a, @) 0,

for aed (cf. [3; p.113]). We use these properties in §6. Note that for
o, fed, [Z,, Z;]1 #0 if « + fed. (We consider g, =1°) In the following,
we fix a linear order in t and denote by 4* (resp. 47) the set of all positive
(resp. negative) roots with respect to this order.

Let I" be a non-empty subset of 4. We denote by RI" the subspace of
t spanned by the elements of I, and by (RI")" the orthogonal complement
of RI'in t. For I' = 4, we define an integer a(I") by

a(I') =*I' + dim (RT")*
=*I +dimt — dim RI"

The above definition is naturally applicable to the case I' =@. We then have
RO = {0}, (RO)* =t and a(@) = dim t.

We say that a subset I = 4 is non-additive if o + ¢ 4 for all a, feI. We
denote by Q2 the set of non-additive subsets of 4. For I'e, we define a

subspace W' of g° by

WI=RI*+Y g,
ael”

The following proposition is essential in the proof of Theorem 3.1.

PROPOSITION 3.4. Under the above notations,

(1) Wre¢ for e (ie., [WF, W] c t9), and dim¢ W5 = a(I).

(2) Let W be an element of N§. Then, there exists I'€Q such that
dime W< a(I').

As an immediate consequence of this proposition, we have
COROLLARY 3.5. For a compact Lie group G, pg = max a(l').
PrROOF OF PROPOSITION 3.4. (1) The equality dimg W/ = a(I") clearly

holds. We prove the property [W', WI'] < t¢. First, [(RI)*, (RI')*] =0,
and for o fel’ such that o+ f#0, we have [Z,, Z;] =0 because
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o+ B¢ 4. In addition, we have [Z,, Z_,]et‘, and for He(RI')*, [H, Z,] =
J—1(H,&)Z,=0. Combining these results, we have [W', W] c t°.

(2) Let {0y, 0, be the set of all positive roots of g° such that
oy > >a,, and {H{,---,H,} be a basis of t°. Then, the vectors

(*) ZyrsZys Hyyo s Hiy Z_y o Z

—a

form the basis of g°. We take a basis {X,,--,X,} of WeA§, and express
X, as a linear combination of (x) according as the above order. Next, we
deform X; such that the top terms of X, ~ X;_, do not appear in X;. Then,
finally, after multiplying some non-zero constants, we have the following
expressions :

X, =Z,+ Y A,Z,+H,
a<pi

X, =Zy,+ X ApaZa-I'ﬁp
a<pfp

Xp+q+1 = ﬁl + Z Ap+q+1,aZa

a<0

Xp+1 =Zﬂp+1 + Z Ap+1,aZa

Xp+q =Zﬂp+q + Z Ap+q,azaa
a<Pp+q

where By >->p,>0>p,.;>-->B,., (Bied), H, H;et', A,eC and
p+q+r=1 (Note that H,,---,H, are linearly independent.) Namely,

Xi=Zp+ Y AuZ,+H, (1<i<p+gq)
a<pi
and Xprgri=Hi+ Y AprgriaZ, (1 <i<i).
a<O0
(I-?,,+1 == ﬁpﬂ =0.) Then, for 1 <i, j<p+gq, it is easy to see that the

top term of [X;, X;] with respect to the order in (x) is equal to [Z;, Z,;]. If
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Bi+ Bje4, then 03 [Zy,Z; €8s .4, which contradicts the assumption
[X;, X;Jet. Therefore, B;+ B;¢4, ie., the set I'={f,,---,B,+,} is non-
additive. Next, for I <i<p+gq, 1 <j<r, the top term of [X,, . j, X;] is
equal to [H; s Zﬂl] =/—1(H, P B:)Zs,, and since this element must belong to
t°, we have (HJ, B)=0, ie., H e(RI')*. Then, since Hl, .-,H, are linearly
independent, we have dim¢ (RI” )“ >r. In particular, we obtain the inequality
al)=*r+dim (R >p+q+r=1=dim, W. g.e.d.

§4. Proof of Theorem 3.1. (The case of the compact classical Lie groups)

4.1. In this section, by applying the results in §3, we give a proof of
Theorem 3.1 for compact simple classical Lie groups. For the group SU(m),
however, we determine the value p§; for G = U(m) instead of SU(m) in order
to simplify the arguments. Note that these values are related by pf = Psum)
+ 1 because U (m) is locally a product of SU(m) and R! (cf. Proposition 1.2).

In the following, we prove Theorem 3.1 for four types of classical groups
in parallel. For this purpose, we prepare several notations concerning the
roots and the Weyl groups of classical Lie algebras. First, we consider the
countable set {;/ie N}, and for a positive integer m, we denote by V™ the
m-dimensional real vector space spanned by i,,---,4,, i€,

Vm = { Z aililaiER}.
i=1

Note that there is a natural inclusion
{0} cVicVic...cVrliclVrc...,
because 4;€ V7 for j >i. We introduce an inner product (,) on V™ such that
(4, 4) = 9;;. Next, we define subsets 4%, 4%, 47, A7 of V™ by
Ap={£(—14) (1<i<j<m),
dg={x 4 (1<i<m), £4+1 (1<i<j<m},
A¢={x2} (1<i<m), £4x1 (1<i<j<m},
p={fAhzxi (I<i<j<m}.
For X =4, B,C or D, we call an element ae 4% a root of type X. Note

that in the case X = 4 or D, the length of the root is always /2, and in

the case X = B or C, it is equal to 1,2 or \/5 We can consider the space
V™ and the sets 4% (X = A~ D) as a Cartan subalgebra and the set of
non-zero roots of the Lie algebras u(m), o2m + 1), sp(m) and o(2m),
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respectively (cf. [4]). We remark that there is a natural inclusion relation of
the sets of roots:

A}CA)Z(C"'CAQ_l CA';C"'.
Next, for ae 4%, we define a linear transformation S, of V™ by

2(4, o)

S,()=1— oo

o, Aevm™,

Clearly, S, is an isometry of V™. The following lemma is easy to check, and
we omit the proof.

Lemma 4.1. (1) S,=8_, (x€dy), and S,;,=S,,.
(2) For distinct i, j, k, the following equalities hold.

Sx.v—lj(li) = lj’ Sx.»—;lj(/lj) = /li, Sli—lj(lk) = A
S1(+/1,~('1i) = - }'ja Sa.~+1j('1j) ==/ S,xi+,1j(lk) = A
SA.‘('li) = — /i Sli(lk) = .

In particular, applying this lemma, it is easy to see that S, (x € 4%) preserves
the set 4%. We denote by Wy" the group generated by the transformations
S,, and call it the Weyl group of 4%. (It just coincides with the usual Weyl
group of the Lie algebras u(m) ~ 0(2m).) The following lemma is also easy
to check (cf. [4]).

Lemma 4.2. (1) For distinct i and j, there exists we Wy' such that
w(d) = 4;, w(dj) = 4 and w(k) = A (k #1i, j).

(2) In the case X = B or C, there exists we Wy" such that w(l) = — A,
and w(A) =4, for k#i. In the case X = D, there exists we Wy" such that
wd) = — A, wld) = — 4; (i #j) and w(k) = 4 (k # 1, j).

(3) Assumem =2 for X = A, m>3 for X =D, and m > 1 otherwise. If
o, Bedy satisfy ||a| = || B, then there exists we Wit such that w(a) = B.

In the following arguments, we often use this lemma.

4.2, Next, for a subset I" = A% and ke N, we define an integer a,(I") as
in §3 by

ay(I') =*I" + k — dim RT,

where RI is the subspace of V™ spanned by the elements of I. (As stated
before, in the case I' =0, we consider RI'= {0} and a,(I") =k.) Note that
if k is equal to the rank of the Lie algebra, the integer a,(I") coincides with
a(I") which we defined in §3. As in §3, we say that a subset I' < 4% is
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non-additive if o + B¢ A% for all a, fel, and put
Q% ={I' c 4% | I’ is non-additive}.
Then, by Corollary 3.5, our problem is to determine the integer max a,(I')

because the integer m is equal to the rank of the Lie algebra in our
situation. In the following, we express this integer as p% instead of pg in
order to distinguish the rank of the group. By the definition, in the case of
m =0, we have clearly p¥ = 0.

Now, we prepare two lemmas, which play an important role in the proof
of Theorem 3.1.

LEMMA 4.3. (1) Let I' be an element of Q%~'. Then, I'eQ%, and
a,(I'=a,_(I)+ L

(2) For I'e Q% and we Wy', we put w(I') = {w(a)|aeI"'}. Then, w(I')e Q%
and the equality a,,(w(I")) = a,,(I") holds.

This lemma immediately follows from the definition.

LEMMA 4.4. Assume I'e QY and I'' = I. Then, I''eQ%, and a, (') =
a,(I''y +s—t, where s=*'\TI') and t =dim (R['/RI""). In particular, the
following inequality holds:

a,(r'<a,l')<a,")+s.
Proor. We have
a,(r'y=*+m-dim RI
=*"4+s+m—dimRI —t
=a,(l")+s—t
Next, we put I'\I"" = {B,,---,B,} (B; # B;)). Then, we have clearly
RI'=RI'"+ Rp, + -+ R,

and hence t <s. The latter half of this lemma follows immediately from this
fact. g.e.d.

4.3. We put I ={1,---,m}, and for I" = 4%, we define subsets of I by
I°r) ={iel|(4,®)=0 for all ael},
I*(I'y={iel| (A4, ®) >0 for some ael},
I=(I')={iel|(4, ®) <0 for some ael'},
and I¥(r)y=1*("')nl~(I").
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Clearly, we have I = I%(")uI*(C)ul~(I') and I°(D)nI* () =1")nl~ (')
=. Next, we put — I'={—«a|ael'}, and using these notations, we define
five subsets of Q2% by

Q% ={TeQy|1°(I) # 0},
Q% n ={reQ%| I contains + o such that |«| = \/5},
Q% m = {eQf| I contains + a such that |a| =1 or 2},
Qrw={reQ|1*(I')# @ and I'n(— ') =0},
Qpy = {FeQq|1°) = 1*(I) = @},
Then, it is easy to see that
Q% = Q% UL¥ nU - UL% v,

and each subset Q% ~ Q% is invariant with respect to the action of Wy
because w(4;)= * 4; for weWy". (Remark that the above union is not
necessary disjoint.) Next, we put

m = cee m =

Gia= max an(l), - qxv = max da,(I).
(We consider g% , =0 if QF , =@.) Then, clearly we have p} = max {q%,,"-,
q%v}. In the following, we evaluate the value g%, ~ g%,y in terms of p%
(k < m), and after calculating the exact value of g% v, we determine the value
p% by induction on m.

4.4. First, we prove the following lemma.

LEMMA 4.5. g%, =p% '+1 (m=>1).

PROOF. Let I" be an element of Q%,. Since I°(I") # @, we may assume
mel®(I") by considering w(I") (we W) instead of I' if necessary. (cf. Lemma
42 (1) and Lemma 4.3 (2).) Then, we have I'c V™ ! and hence
I'eQ%~!. In particular, by Lemma 4.3 (1), we have the inequality a,(I") =
a,-(r')+1<p% !+ 1. Next, we take 'e Q%! such that a,,_,(I") =pF~'.
Then, I also belongs to 2% and a,(I') = a,,_ (') + 1 = p%~ ' + 1. Combining
these results, we have g%, = rrgg';([ a,(F=pe% '+ 1. q.e.d.

LEMMA 4.6. Assume m >3 for X =D and m > 2 otherwise. Then,

. P *+3 X=AorC,
Adxn =19 ,_»
Px + 4, X = B or D.

ProoF. (i) The case X = A4 or C. Assume m >2 and I'e Q% ;. Then,
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by the definition, there exist + ael” such that |a| = \/5 Since m > 2, we
can apply Lemma 4.2 (3), and we may consider «a = 4,_, — 4,,., We put
I''=T\{zxa}. Then, we have I'' = V™" 2. In fact, an element fe I’ such
that B¢ V™~ 2 must be of the form £24,_;, £24,, £ (An-1 + 4, T4 E A, 1,
+ 2,4, 1 <i<m-—2). But, using the facts +(4,_; —4,)el and I is
non-additive, we can easily see that these elements cannot belong to I, and
hence I'" = V™ 2. Since I''eQ7" %, s=*%I'\I"')=2 and t = dim (R['/RI")
=1, we have by Lemma 4.4 and Lemma 4.3 (1),

a,N=a,(I')+s—t
=0 () +2+s—t
=a,_,I")+3
<Py’ +3,

and hence, g%, <py %+ 3.

Conversely, we take I''eQ%~2 such that a,_,(I"')=p% 2, and put
I'=T"U{% (Ay_1 — Am)}. Then, using the fact I''< V™ ? and I’ is
non-additive, we can easily show that 'e Q¥ ;. In addition, in the same way
as above, we have a,(I')=a,_,(I"")+ 3 = p% %+ 3, and hence, the equality
q;‘n = p§—2 + 3 holds.

(ii) The case X =B (m>2) or D (m>3). Let I' be an element of
Q% - As in the above case, we may assume =+ (4,,_, — 4,)erl, and we put
I'=ru{£ @,y +A,)}. Then, we have '€ Q7. In fact, assume that fel’
satisfies f + (A,—, + A,)€4%. Such a f must be of the form — 4,_,, — 4,,
tAi—Apoys £4— A, 1<i<m-—2). But, since +(4,_-;—4,)el and I
is non-additive, these elements cannot belong to I, and hence f + (4,,—; + 4,.) ¢
4%. In the same way, we can prove that f — (4,_, + 4,)¢4% for fel, and
therefore, we have I'e Qp. Now, we put [/ = I'\{+4,_,+4,}. Then, as
in the case of (i), we can easily show that I ‘e Q% and "= V™ 2. Since
s=%I\I")=4 and ¢t = dim (R[/RI") = 2, we have

an(I) < a,(I")
= a,,,(f"’) +s—t
=a, (") +4
<pr?+4,

and hence, g% ; < py % + 4.
Conversely, we take I''eQ% % such that a,(I"')=py % and put
r=r'v{Ai,_, £4,}. Then, as before, we have I'eQ¥, and q,(l')=
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a,_,(I')+4=p% % +4, and therefore, we obtain the desired equality
Ga=p%+4 g.e.d.

LeMMA 4.7. q¥m =0 for X =A or D,
q5m = Pt +2

>
qc,m = P?—l + 2. (m=1)

ProoF. Since 4% and 4} do not contain a root of length 1 or 2, we
have Q% ;=@ for X =A or D, and hence, ¢} =4qpm=0. Next, we
consider the case X = B. Assume I'e Qf ;. Then, I contains + o€ 47 such
that |a| = 1. By considering the action of the Weyl group if necessary, we
may assume that a=4,. We put I'"=7I\{+4,}. Then, by similar
arguments in the proof of Lemma 4.6, we can show that I'' < V™ !, 1In
addition, since I" is non-additive, we have A,, — A;¢I'’ for 1 <i<m— 1, and
hence, I''eQ3~'. By using the facts s =*I'\I'')=2 and t = dim (RI'/RI")
=1, we have

a,(FN=a,(I')+s—t
=a, (+14+s—t
=a,_(I')+2
<ppt+2

and hence g5, <ph !+ 2

Conversely, we take I''eQp~! such that a,_,(I")=ph ', and put
I'=T'U{%£ A,}. Then, we have easily I'e Qg and a, (') =a,_(I')+2=
pn~' + 2, which implies g3 = pp~* + 2.

The proof of the equality g¢,; = p?~' + 2 can be done in completely the
same way, and we omit it. q.e.d.

LEMMA 4.8. qpw=0 (X=4 or C), and ¢4 w<p3 '+2 for X=B
(m=>=2) and X =D (m = 3).

Proor. Let I" be an element of Q% y, ie., I*(I')#@ and I'n(—I') = 0.
By considering the action of Wy if necessary, we may assume that
mel*(I"). We first show that A,, —A,¢ I in the case X = B. Assume
An€I. Then, since I'n(— I') =, we have — A,¢ I, and hence A, — A,el’
or —A;— A€l for some i (1 <i<m— 1) because mel~(I'). This contradicts
the fact that I' is non-additive since A, + (A, —4,)= + A4,edf. The
property — A,¢I" can be proved in the same way. Similarly, in the case
X = C, we can show 24,, —24,¢ . In particular, for X = A ~ D, we have
Ai+ A el or — A; + A,erl for some i (1 <i<m— 1) because mel*(I'), and
hence, we have Q% vy =@ if m=1. In the following, we assume m > 2 for
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X=A4,Bor C,and m>3 for X = D. By considering the action of Wy", we
may assume A, — 4,,_;€l (cf. Lemma 4.2 (1), (2). Note that in the case
X=D and m=2, w(i, +4,)#4,—A; for any weWjg). Next, since
mel~(I") and — 4,, — 24,¢ I, we have 4; — A, el or — A; — A, eI for some
j(<j<m—1). We assume that A; — A,eI. Then, since I" is non-additive,
and (A, — Ap-1) + (4 — 4) = 4; — 4,,_;, we have j=m — 1, ie., £ (4, — An_)
el, which contradicts I'n(—I")=0. Hence, we have A;—1,¢I. In
particular, we obtain the result Q% ;y =@, and for the remaining case X = B, C
or D, we have — A;—A,el. Then, by the same argument, we have
— Am—1 £ A el But, in the case X =C, (— Ap_; + 4) + (— Aoy — 4) =
—2A,,-,€4Z, and hence we have QFy =@. For the case X =B or D, we
put I'"=I\{—A,_, £ 4,}. Then, as in the proof of Lemma 4.6, we can
easily show I’ < V™1, Hence, I''e Q% !, and by using the facts s = "\ I'"')
=2 and t =dim(RI'/RI"') > 1, we have

a,(F)=a,(I)+s—t<a, (I')+2,
and therefore, ¢%y,v <p% '+ 2 for X =B or D. q.e.d.

REMARK. As is easy to see, the set I'=TI"U{—4,_; £4,} is not
necessary non-additive for I''eQ% ! (X =B or D), and the equality
g% =Py ' + 2 does not hold in general.

4.5. Finally, for the type V, we have the following results.
LEMMA 4.9. For m > 2,
div=[m*/41+1,
ggv=1/2-mm—1)+1,
acv = 1/2-m(m + 1),
qpv=1/2-m(m —1) + 6,, 5.

PrOOF. Since I°(I')=1%*(I"') =@, the set I is expressed as a disjoint
union of I*(I') and 1~ (I'), ie., for each iel, (A;, @) is always positive or
negative for all aerl.

We first treat the case X = A. For I'eQ%,, we put *I*(I')=a and
17 (') =b. Then, clearly we have a + b=m and a, b > 1 because 4, — A;e I’
implies ieI*(I") and jelI (I'). Now, we define a subset I'y = 4 by

Fo={kh—4]1<i<aa+1<j<m}.

It is clear that I, is non-additive, and I°(Iy) =0, 1*(I,) = {l,--,a},
I~(Iy)={a+1,---,m}. In particular, I,eQ%y. For the set I, we can
choose we W such that I~ (w(I")) = {1,---,a} and I (w(I"))={a + 1,---,m}.
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Then, if 4; — A;ew(I"), we have i€ {l,---,a} and je{a + 1,---,m}, which implies
w(l') = I'y. Since the independent roots A, — A; (a+ 1 <i<m)and 1, — 4,
(2 <i<a) span the space RI,, we have dim Ry, =a+b—1=m—1, and
by Lemma 4.3 (2), Lemma 4.4,

an(I') = a,(W(I")) < a,,(I')
=*Iy+m—dim RT,
=ab+m—(m-—1)
=ab+1
=a(m-—a)+1,

and therefore ¢ y = , max am—a)+ 1 =[m?*/4] + 1.

<m-1
Next, we consider the case X =B, C or D. For I'eQ¥ y, we first show
that there exists I''€ Q% y such that I~ (I'') =0 and a,,(I"') = a,(I"). For the
case X = B, we put I (I') = a. Then, by the action of Wy", we may assume
I"(I')={l,--,a} and I*(I') = {a + 1,---,m}, ie,

Fe{-A(1<i<a), @+1<i<m), }j—4 (1<i<a<j<m),
A+ @+1<i<j<m), —4—4 (1<i<j<a)l.
By putting w=S, ---S, e W', we have easily w(d)= -4, (1<i<a), and
w(d)=4; (@a+1<i<m). Then, we have w(I')c {4, (I1<i<m), 4+ 4
(1 <i<j<m)}, which implies I~ (w(I")) =@. The proof for the case X = C

is completely the same. For the case X = D, we may assume I ~(I") = {1,---,a}
and I*(I')={a + 1,---,m}, as above. Then we have

Fc{lj—i(Q<i<a<j<m), j+h@+1<i<j<m),
-4 (1<i<j<a)}.
We put

Bl = '11 - '129 ﬁz = 13 - /14, Tty ﬂ[a/Z] = /12[.:/2]—1 - 12[.:/2],
Vw=Ar Ay Y2 =Azt Ay, Viaj21 = izla/21—1 + lZ[a/Z]’
and w=2_8;8,

Sﬂ[a/ZJSY[a/zl'

Then we have w(d)= — 4, (1 <i <2[a/2]) and w(A) =4, 2[a/2] + 1 <i < m).
Hence, if a is even, we have w(I") = {4;+ 4; (1 <i <j<m)}, which implies
I~(w(I'))=@. In the case a is odd, we have I~ (w(I")) = {a}. In this case,
we consider w(I") as an element of Q$+1 andput =1, — A1, Y =4+ 4as1»
w' = 8;S,w. Then, since SyS,(4) = — 4; (i=a, m+ 1) and §;5,(4) = 4; (i # a,
m+ 1); we have w(I")eQp. (Note that w(l)cvm) Clearly, w({) <
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{A;+ 4 (1 <i<j<m)}, and hence I~ (w'(I')) =@. In addition, by Lemma
4.3 (1),

am(w,(r)) = dm+1(W’(r)) —-1= am+1(r) —1= am(r)’

which completes the proof. Thus, we may assume that I~ (") = Q.

Now, we put I'o={4+4; (1<i<j<m)} for the case X =B, C or
D. Then, we have I',eQ%y because I°(Iy) =1 (I,) =@. In addition, by
using the facts that *I'y=1/2-m(m—1) and dmRI,=1 (m=2), =m
(m > 3), it is easy to see that a,([y) =1/2-m(m — 1) + 6, ,.

For the case X = D, by using I~ (I') =@, we have I' = I',, and hence
a (') < a,(ly). Since I'yeQpy, we obtain the equality qpv = a,(l) =
1/2-m(m — 1) + 8, ,. Next, for the case X = C, by putting ' = I'yU {24,
24,), we have easily I'c I, and I'eQZ,. Hence, a,(I') <a,()=*I"=
1/2-m(m + 1), which implies q¢y =1/2-m(m + 1). Finally, for the case
X = B, assume A;¢ . Then, we have I'c Iy, and in particular, a,(l") <
a,(I'o) <1/2-m(m — 1)+ 1. If 4;eI for some i, then other 4; cannot belong
to I' because I' is non-additive. Hence, by putting "= I'yU {4}, we have
I'<T. We can easily check that f“ng‘,V and a,(") < am(f) =1/2-m(m—1)
+ 1, and therefore we have g v =1/2-m(m — 1) + 1. g.e.d.

4.6. Now, under these preliminaries, we determine the value p% for
X =A~D. For this purpose, we prepare one more lemma.

LemMma 4.10. Assume k>3 and X = A, C or D. If pX =qxvy for m=k
and k + 1, then p% = q% .y for m > k.

Proor. We have only to show the equality in the case m = k + 2. First,
for m > 4, by using Lemma 4.9, we have immediately,

2s _ ,2s5—1

Qa,v=4q4,v +5,
2s+1 _ . 2s

Qv =q4v+Ss,
m — m—1

dc,v =dqc,yv +m,

dpv=4qpy' +m—1,

(s>2)

and hence, g%y > g% + 1 for X = 4, C or D. Similarly, we can show that
the inequality g%y > g%+> + 4 holds for m > 5. Hence, we have by Lemma
4.5,

A=+ 1= + 1 < g

and by Lemma 4.6,

<Pk +4=dkv+4<4dV
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For the type III, we have by Lemma 4.7,

‘1’,‘4+112( = QD m =0
and QT =PET + 2 =g +2< g +k+2 =gk

Similarly, by Lemma 4.8, we have

dav = 4t = 0,
and qlb+~l3,<pli)+l+2_qk+1+2<qk+1+k+1_qk+2‘
Therefore, we have pk™? = max {¢%%,---, ¢&"?} = ¢4*V. g.e.d.

Proor oF THEOREM 3.1. We prove the theorem inductively by applying
Lemma 4.10. First, we treat the case X = A. If m = 1, then we have 4} = 0,
and hence py = 1. In the case m = 2, since the set of roots 4% = {£ (A; — 1,)}
is itself non-additive, we have by Lemma 4.4, p% =a,(43)=2+2—1=3.
Then, using the equalities g%, = p%~ '+ 1, g% n=pF 2 +3, ¢y = [m?*/4] + 1
and ¢% i = ¢% ;v =0 (Lemmas 4.5 ~ 4.9), we obtain the table

m |1 2 3 4 5 6
qn, 4 5 1 8
Ty 4 6 1 9
Ty 305 7 10
M1 3 4 6 7T 10

Since p% = %4 v for m = 5, 6, we have by Lemma 4.10, p% = ¢% v = [m?/4] + 1
for m > 5. Therefore, by using the equality pf,, = Psym + 1, We obtain the
desired results for G = SU(m).

Next, we consider the case X =C. For m=1, the set of roots
4¢ = {£ 21} is non-additive, and we have by Lemma 4.4, pl=a,(4}) =
2+1—-1=2As in the case of X = 4, by using the equalities qf, = pg~!
+1, qCu=p"2+3, qn=3, @m=p¢" " +2, q¢v=1/2-mm+1) and
q¢v = 0, we have the following table

m 1 2 3 4
qc.n 3 5 7
4c.m 4 6 8
4 36 10

pe 2 4 6 10

(We may omit the value g because g¢; < g¢.;y for m > 2.) Hence, as above,
we havé pfl=qfy=1/2-m(m+ 1) for m > 3.
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For the case X = D, since 45 =@, we have p) = 1.
m=2, the set 43 ={+ A, +4,} is itselfl non-additive, which implies
pi=ay(43)=4+2—-2=4. For m=23, since the group SO(6) is locally
isomorphic to SU(4), we have pp = p§ya, =5, as we showed above. Then,
by using the equalities in Lemmas 4.5 ~ 49, we obtain the table

m 2 3 4 5 6
qp.1 6 9 11
dp. 8 9 12
qp.av <7 <10 <12
qp.v 6 10 15

Pb 4 5 8 10 15

And in the case

Hence, as above, we have by Lemma 4.10, pj =4}y =1/2-m(m — 1) for

m > 5.

Finally, we determine the value py for X = B. Since the set 43 = {+ ,}
is non-additive, we have py=a,(4})=2+1—1=2. Then, by using the
results in Lemmas 4.5 ~ 4.9 and the value p%, we have the table

m | 1 2 3 4 5 6
qB. 3 5 7 9 12
dg.u 4 6 8 10 12
ds.m 3 6 7 10 12
qB.av <4 <6 <8 <10 <13
q5.v 2 4 7 11 16
PE | 2 4 6 8 11 16

In particular, we have pg = gpy for m =5, 6. Then, in completely the same
way as Lemma 4.10, we can prove that the equality pj = g%, holds for
m=>5. (We omit the details. Note that g§ ;;,=pp~ ' +2=1/2-(m—1)(m—2)
+2<1/2-mm—1)+1=qpy for m=>6)

g.e.d.

§5. Proof of Theorem 3.1. (The case of the compact exceptional Lie

groups)

In this section, we determine the value p§ for the exceptional Lie groups
Eg ~ Eg, F4 and G,, by applying the results stated in Appendix (Theorem

Al, A2). We first prepare the following lemma.
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LEMMA 5.1. Let I' be a finite subset of the vector space V™. If
I'=rI.Url, and I''nI", =, then for positive integers k and 1, the following
equality holds:

ak(r)= a,(r1)+#1_'2 + k_l_dim(er/(erner)).

Using the definition and the fact RI'= RI'; + RI,, we can easily prove
this lemma, and we omit the details. In this section, we denote by A, the
set of roots of G (= Eq ~ Eg, F, or G,), and by Qg the set of non-additive
subsets I" of 4;. As we showed in Corollary 3.5, we have the equality
PG = 11-2?2)5; a,(I'), where m is the rank of G, and we determine this integer for

G=E6~G2.

5.1. The case G = E¢, E; or Eg. It is well known that the set of roots
Ag, ~ Ag, can be expressed as

5
Apy={% A% (1Si<j<5), £1/2(Y (= 'h— Ag — A7 + Ag)
i=1

5
(Y ¢ is even)},
i=1

+ 1/2-(§ (— %0 + Ay — Ag) (i & is odd)},
i=1 i=1

13

8 8
Agy={x Lt (1<i<j<8), £1/2- Y (=14 (Y & is even)},
i i=1

i=1

where {4,,--+,Ag} is an orthonormal basis of V? (cf. [4]).

Now, assume that I'eQ; (m=6,7 or 8) satisfies I'n(—1I") =9, ie,
there does not exist a root ael satisfying + ael. Then, it is easy to see
that the space W' which we defined in §3 is abelian. (Remind the proof of
Proposition 3.4) Hence, by combining Theorem Al and A2 in Appendix, we
have a,(I") = dim; W' < 16, 27, 36, according as G = Eg, E,, Eg.

Next, we consider the case where I'e Qp contains roots +a. We put
I''=r\{%a}. Then, since I" is non-additive, we have f + o, f — a¢ I for
Berl’, which implies (x, §) = 0. (Note that the length of a-series containing
B is 1) In particular, we have I'' = (a)'. If G = E¢, we may assume
a=1/2-(A + -+ As — Ag — A, + Ag) by considering the action of the Weyl
group of E¢. (Note that any two elements a, fed; (m = 6,7 or 8) can be
mapped to each other by the action of the Weyl group because all roots are
of the same length and 4 is irreducible. cf. [4].) Then, it is easy to see that
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oy ndg, = {x(ki—2) (1<i<j<9)},

and hence, we have I"" = 43. By putting I', = '’ and I', = {+ «} in Lemma
5.1, it follows that

ag(F)=as(I’')+ 2+ 1 — dim (Ra/(RI"'n Ra))
<as(l')+3
< 10 < 16.

Therefore, combining with Theorem Al and A2, we have pg, = jmax ae(I")=16.

For the group E,, we may assume o = 1, — Ag by the same reason as E4. In
this case, we have easily

adtndg, ={x 44 (1<i<j<6)},

and by using the fact p§ =15 we have in the same way as above,
a,(I") < 18 < 27, which implies pg, = 27. For the group Eg, we use the root
a =1, + dg, and carry out the same procedure. Since {a)*n4g, = E, and
Pg, = 27, we have ag(l") < 30 < 36, and therefore, pg, = 36.

5.2. The case of G = F,. In this case, it is known that the set of roots
of F, is given by
Adp,={x 4 (1 <i<4), A4+ 4(1<i<j<4),1/2-(A 4 ;£ 1,)},
where {A,,---,A,} is an orthonormal basis of V*. We apply the same method

as E,. First, if I'eQy, satisfies I'n(— I") =@, we have maxa,(I')=9 by
Theorem Al and A2. In the case where I” contains roots + a, we must divide

the proof into two cases according as ||a] =1 or |a| = ﬁ
(i) The case |ja| = 1. In this case, we may assume a = 1, by considering
the action of the Weyl group of F,. Then, we have

oy nde, ={x 4 (1<i<3), £+ 4+ (1<i<j<3)}=4;,
and hence, by putting I'' = I'\ { £ a}, we have
a,(I')=a3;(I''Y+ 2+ 1 — dim (Ra/(RI"' N Ra))
<9-1=8

(Note that dim (Ra/(RI"''nRa)) > 1.)
(i) The case |af =\/§. In this case, we may assume a =41, — 4,.
Then, we have

Qo) Ndp, ={F A3, £ A4, A3+ Ay, £ (A, +4y), £1/2-(Ay + 4, £ A5 £ Ay}
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We define three vectors A, 43, 43 by
A+ A, =24, A3+ A4,=225 and A3 — i, =243
Then, we have (4;, ) =0, | A/ = |4} for i #j, and
Cadtndp, ={£22 (1<i<3), A+ (1<i<j<3)}>4.

Therefore, as above, we have a,(I") <a;(I'"')+3—-1<8.
Combining these results, we obtain the desired result p%, = max a,(I')=9.
€ F4

5.3. The case of G = G,. In this case, we prove the equality pG, = 4. It
is known that the set of roots of G, is expressed as

{(£(hi=4) (1<i<j<3), £Q4—4— L),
(20— Ay — Ay), £ Q243 — A — L)},

by using an orthonormal basis {4;} of V3. Since the rank of G, is two, we
can express this set in the plane as follows.

iy — Ay — Ay

Iy ¥ hy— 22,

Ay — Ay Ay — 4,

2y — Ay — Ay

Ayt Ay — 2,

We first show that *I" < 4 for I'eQg,. The roots with length \/i constitute
a small regular hexagon, and it is easy to see that among them, o + B¢ 4,
if and only if @ + f =0. Hence the number of roots of I with length \/5
is at most two. Similarly, in a large regular hexagon, o + f¢ 4, if and only
if either “o + f = 0” or “a and B are adjacent”, which implies that the number
of roots of I with length \/3 is also at most two. Therefore, we have *I" < 4
for reQg,. Now, we take '€ Qg, such that I' # @. Then, since dim RI" > 1,

we have
a,(I')=*r+2—dim RI'

<6 —dimRI’

<5
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If a,(I') = 5, we have *I" = 4 and dim RI" = 1. But, in this case I" is contained
in a line, which contradicts *I" = 4. Hence, we have a,(I") < 4. On the other
hand, it is easy to see that the set I'={£ (4; — 4,), £ (243 — 4, — A,)} is
non-additive and a,(I") =4. Combining these results, we obtain the equality
ps, = 4.

REMARK. For the groups G = Eg, E,, Eg and F,, the non-additive set I
with maximum a, (") satisfies I'n(— I') = @, while the group G, possesses
the non-additive set I” satisfying a,(I')=4 and I'= — I.

§6. Some facts on the values pg

In this final section, we determine the value p; for compact Lie groups
G with small rank. The results are stated as follows.

PROPOSITION 6.1.  For the groups G=U(@m) (1<m<5), SUm) 2<m<5),
SO2m+1) (1<m<4), Sp(m) (1 <m<3), SO2m) (1 <m<4) and G,, the
value ps is equal to pg.

To prove this proposition, we first prepare the following lemma.

LEMMA 6.2. Let G be a compact Lie group. If there exists I'e Q such
that I' = — T, then the inequality p; > a(I") holds. In addition, if I € Q satisfies
I'=—1T and a(I') = pg, then we have ps = pg.

Proor. Let 7 be the conjugation of g° with respect to g. Then, by the
definition of roots, we have tg, =g_, for each aed. Now, assume I'eQ
satisfies ' = — I For aelI'n4d™*, we put

U,=1//2-(Z,+1(Z)) and V,=/—1//2-(Z, - 1(Z,),

where Z, is the basis of g, which we defined in §3. Then, U, and V, are
real vectors, ie., U,, ,€g. Now, using the set I, we define a subspace W, < g

by
Wo= Y (RU,+ RV)+ (RI)",

acl'nA*

where (RI')* implies the orthogonal complement of RI" in t. Then, we have
[Wo, Wol = t. In fact, since I" is non-additive, we have [Z,, Z;] =[Z_,, Z_;]
=0 for o, fel'nd*, and in addition [Z,,Z_;]=0 (x#p) because
— pe —I'=1T. Hence, we have [U,, U] = [U,, ;1 =¥, ] =0 for o, BeI’
nda* (x#p), and [U,, V] =2/(a, «)-et. Therefore, combining with the
equalities [H, Z,] =[H, Z_,] =0 for He(RI')*, aeI'n4*, we have [W,, W,]
ct. Next, since I' = — I, the complexification of W, is equal to
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Y G+ Y g+ (R

acl'nAt aelnA+

= Y &t )Y g+@®RN)*

ael'nAt acl'nA~

=) 8.+ (RI)*

aell
= WT.
Therefore, we have

pg = max dimg W> dimg W, = dim¢ WP = a(I).
WeN G

The second statement follows immediately from the fact p§ > pg = a(I").
g.e.d.

PRrROOF OF ProrosITION 6.1. By Lemma 6.2, we have only to find I'eQ
satisfying I' = — I" and a(I") = p; for each G. First, for the group U(m), we
put

r=0, m=1,
F={+0, - 1)), m=23
F={£A—4), £(4; —4)}, m=4,5.

Then, it is easy to see that the above I" satisfy the desired conditions. For
the group SU(m), the results follow immediately from the equalities
Puem = Psuim + 1 and pyem = PSuem + 1 (cf. Proposition 1.2). The remaining
case can be checked in completely the same way, and in the following, we
only list up such I" for each group.

SOQ): I'={+ A;}

SOB): I'={+ A, £ 4,}

SO(T): I'={% A £ A;, + A3}
SO009): I'={£ Ay + Ay, £ 13 £ 4}
Sp(1) : I' = {+ 2A,}

Sp(2): I = {24, £ 21,}

Sp(3): I'={£ 24y, £ 24,, £ 243}
S0Q2:I'=9

SO(4), SO(6): I' = {+ A, £ A,}
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SO@): I'={% A + Ay, £ Ay £ Ay)
G, I'={x(—4), Q23— —1)}. g.e.d.

RemaRrk. For the compact classical Lie groups, we showed in §4 that
the non-additive set with maximum a(I") is of type V if the rank is sufficiently
large. Then, since I*(I') =@, we have I' # —I', and hence, we cannot
calculate the value p; for these groups by only using Lemma 6.2. The same
phenomena occur for the groups Eg4, E;, Eg and F,. (See Remark at the end
of §5.)

Finally, we give some estimate on the value p; for general compact simple

Lie group G. For this purpose, we define integers s,(g) for compact simple
Lie algebras g by

rank g g # su(m), o(2m) or Eg
[m/2] g = su(m)
2[m/2] g=0(2m)

4 g = Eg.

so(g) =

Then, we have

ProrosITION 6.3. Let G be a compact simple Lie group with the Lie
algebra g. Then, we have pg > rank g + sq(g).

Proor. In Appendix of the paper [3], we constructed a subset
To={Py,,Bs} = 4" satisfying B, + B;¢ 40{0} (i #j). Using this set I,
we put I'=ToU(—T,) ={% By, -, p,}. Then, we have clearly I'eQ
and I'= —I. In addition, since (8;, ;) =0 (i #j), we have dim RI" = s,.
Therefore, a(I") =*I" + rank ¢ — dim RI" = rank g + s,, which implies pg >
rank g + sq. g.e.d.

For the simple Lie groups listed up in Proposition 6.1 (except for
U(m), SO(2), SO(4)), the equality ps; = rank g + so(g) actually holds. But at
present, we do not know whether the above equality holds for all compact
simple Lie groups.

Appendix. Maximum dimensions of abelian subalgebras of complex simple
Lie algebras

In this appendix, we refer to the relation between our results (Theorem
3.1 for classical Lie algebras) and the maximum dimensions of abelian
subalgebras of complex simple Lie algebras. Our purpose is to determine
such dimensions by using the results in §4 and the theorem of Malcev
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[10]. We need this result in order to complete the proof of Theorem 3.1 for
exceptional Lie algebras (see §5).

Let g be a compact simple Lie algebra and g¢° the complexification of
g. We denote by /(g°) the family of abelian subalgebras of g° and by .<4,;(g°)
the subfamily of &/(g°) consisting of abelian subalgebras all whose elements
are nilpotent in g°. (For a complex Lie algebra [, an element X el is called
nilpotent (resp. semi-simple) if ad(X) is a nilpotent (resp. semi-simple)
endomorphism of I) By the very definition, we have

(g © A (9) = N,

where G denotes the adjoint group of g. Then, by putting

a(g) = max dimg 4, a,,(6°) = max dimc A
(g9 Pren c A a,(g) PR, c4

we have clearly

() a,y(9°) < 'a(8") < pG-

Our purpose in this appendix is to determine the value a(g®) for all
compact simple Lie algebras.
Concerning the value a,;(g°), Malcev [10] obtained the following result.

THEOREM Al (cf. [10]). Let g be a compact simple Lie algebra. Then
the integer a,;(g%) is given by

9 (%) g | aulg)
A, (m=1) | [(m+ 1)*/4] E¢ 16
B,m>=4)|1/2-m(m—1)+1 E, 27
B, 5 Eg 36
C,m=2)|1/2-m(m+1) F, 9
D, (m=4)|1/2-m(m—1) G, 3

Malcev [10] stated a plan to obtain the integer a(g®) on the basis of the
above theorem. However, details were not shown there.
In the following, we prove the following theorem.

‘THEOREM A2. Let g be a compact simple Lie algebra. Then the equality
a(gc) = a,.u(g‘) holds.

First, we note that Theorem A2 holds for the following classical compact
simple Lie algebras of large rank:

Ap(m 2 4), B,(m > 5), C,(m=3), D,(m>5).
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In fact, comparing the results in Theorem 3.1 and Theorem A1, we can observe
that the equality p§ = a,;(g°) holds for each g stated above. Therefore, on
account of the inequlity (), we have a(g°) = a,;(g°).

To complete the proof of Theorem A2, we prepare the following two
lemmas.

LemMa A3. Let | be a complex semi-simple Lie algebra and H a non-zero
semi-simple element of 1. Let |' denote the centralizer of H in |, ie, I'=
{Xel|[H, X]=0}. Then:

(1) U is a reductive Lie algebra, ie., the radical of U is congruent with
the center ¢ of l'. Consequently, the derived ideal 1" =[l',1'] is a complex
semi-simple Lie algebra and U can be expressed as ' = ¢ + 1" (direct sum).

(2) rankI=rankl’ = dim¢ ¢ + rank [".

(3) 1" is a regular semi-simple subalgebra of 1.

For the definition of “regular subalgebra”, see Dynkin [5], where all the
regular semi-simple Lie subalgebras were completely determined. The proof
of Lemma A3 is easy, and hence it is left to the readers.

LEMMA A4. Let | be a complex semi-simple Lie algebra with rank | = n.
Let a be an abelian subalgebra of 1. Then it holds

(%%) dimca <1/2-n(n + 1).
In addition, if a contains a non-nilpotent element, it holds
(%%%) dimga<1/2-n(n—1)+ 1.

Proor. We prove the lemma by induction on n. In the case n=1, |
is isomorphic to sl(2, C). As is easily seen, the dimension of any abelian
subalgebra of sl(2, C) is at most 1. Hence, the lemma holds in the case n = 1.

Now, we assume that the lemma holds in case rankI<n (n>2). We
first consider the case where [ is expressed as a direct sum of two proper
semi-simple ideals [, and [,. Then, there are abelian subalgebras a; = [, and
a, c I, such that a < a; + a,. We put n; =rank [; (i=1,2). Then, we have
n=n, +n, and n; <n. Hence, by the induction hypothesis, we have

dim¢ a < dim¢ a, + dim¢ a,
<1/2-n(n; +1)+1/2-n,(n, + 1)
<1/2-n(n+1).

Moreover, in case a contains a non-nilpotent element, either a, or a, also
contains a non-nilpotent element. Assume that a, contains a non-nilpotent
element of [;. Then, by the induction hypothesis, we have
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dim¢ a < dim¢ a, + dimg a,
<1/2-nin;,—1)+1+1/2-n,(n, +1)
<1/2-nn—-1)+1.

We next consider the case where [ is simple. Then, by Malcev [10], we
have the following two possibilities:

(i) All element of a are nilpotent;
(i) a contains a non-zero semi-simple element.

In view of Theorem Al, we can easily observe that the inequality
a,;(g)<1/2-n(n+ 1) holds for each compact simple Lie algebra g with
rank g = n. Therefore, in the case (i), we have dimca < 1/2-n(n + 1).

Now, we consider the case (ii). Let Hea be a non-zero semi-simple
element of I. We denote by I' the centralizer of H in I. Let ¢ (resp. 1”) be
the center of I (resp. the derived ideal of I'). Then, by Lemma A3, it follows
that [” is semi-simple; I' = ¢ +1” (direct sum); and n=rank [ = dim ¢ + rank I".
Since a = I, there is an abelian subalgebra a” in [” such that a = ¢ + a”. Put
k =rank [”. Then, since He¢, we have k = n — dimg ¢ < n — 1. Therefore, by

the induction hypothesis, we have dimca” < 1/2-k(k + 1). Consequently, we
have

dim¢ a < dim¢ ¢ + dimg "
<n—k+1/2-kk+1)
=1/2-k(k—1)+ n.
Since the last expression takes its maximum value in the case k =n — 1, we

have dimgca<1/2-(n—1)(n—2)+n=1/2-n(n — 1) + 1. This completes the
proof of the lemma. g.e.d.

REMARK. Viewing the proof of Lemma A4, we can easily verify that
if the equality holds in (*x), then [ is a complex simple Lie algebra.

Now, using Lemma A4, we prove Theorem A2 for the remaining simple
Lie algebras of small rank:

A, (m=1,273), B,(m=2,3,4), D,, E,(m=6,7,8), Fy, G,.

Let g be one of the compact simple Lie algebras listed above. Put
m =rank g. Then, if g is not of type D,, we can easily check that the
inequality a,;(g°) > 1/2-m(m — 1) + 1 holds. Therefore, we have dim;a <
a,,(g°) for all ae/(g°) (see Lemma A4), which implies that a(g‘) = a,;(g°).

Finally, we assume that g is of type D,. Then, by Theorem Al, we have
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a,;(g°) = 6. We now suppose that there exists an abelian subalgebra a of g°
with dimca > 6. By the assumption, we may assume that a contains a
non-zero semi-simple element H of g°. We denote by I’ the centralizer of H
in g¢° and by 1” the derived ideal of I'.  Applying the inequality (***) in Lemma
A4, we have dim¢ a <7 and hence dimga = 7. This implies that the equality
holds in (x**). Thus, in view of the proof of Lemma A4, we can verify that
rank [" =3 and that [” contains an abelian subalgebra a” with dim¢a” = 6.
Taking account of Remark after Lemma A4, we can conclude that [” is a
regular simple subalgebra of g° with rank [” = 3. By the result of Dynkin
[5], it follows that [” is of type A;. On the other hand, as we have proved
in the above discussion, the complex simple Lie algebra of type 4; does not
contain any abelian subalgebra whose dimension is greater than 4. This is
a contradiction. Thus we have a(g) =6, which completes the proof of
Theorem A2.
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