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0. Introduction

Consider independent random samples, of size n; (j = 1, 2), from each of
two p-variate populations I7; having mean vectors y; and common covariance
matrix 4. Let the sample mean be denoted by X; (j =1, 2) and the pooled
sample covariance matrix by S. Let X be an observation from one of the
two populations. Fisher [7] showed that the linear combination of X which
maximizes between sample variance relative to within samples variance is given
by

©.1) (X, — X,y s7'X,

which is known as Fisher’s linear discriminant function (LDF). Welch [31]
demonstrated that if both populations are assumed to be multivariate normal
then the value of the log likelihood ratio in the two populations at any point
X is given by

1 ’
0.2) A= {X Sl Nz)} A g — ma),

Therefore it can be shown that the optimal classification rule is to assign X
into IT, (or II,) according to 4 >k (or A <k). The cut point k is a constant
depending on the relative costs of misclassification from each populations.
Details of general principles of classification, and the derivation of the above
rule are given in Chapter 6 of Anderson [2].

In practial situations the parameters are unknown, so the above rule must
be modified. Wald [30] and Anderson [1] suggested replacing the unknown
parameters by their sample estimators. Okamoto [24] derived asymptotic
expansion formulas for the misclassification probabilities up to terms of the
second order with respect to (n;!, n; ') under the assumption of normality.
Siotani and Wang ([27], [28]) extended the formulas up to terms of the third
order. A review of asymptotic expansions of classification statistics under
normal populations is given by Siotani [26]. Chapter 9 of Siotani, Hayakawa
and Fujikoshi [29] is also useful.
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Under non-normal populations, several authors investigated the perfor-
mance of the LDF. Lachenbruch, Sneeringer and Revo [20] have considered
robustness of the LDF and the quadratic discriminant functions to three
specific distributions. These distributions were generated from the normal
distribution by using the non-linear transformations suggested by Johnson
[15]. Their results indicated that the LDF was greatly affected by
non-normality of the populations. On the other hand Balakrishnan and
Kocherlakota [3] mentioned that the LDF is quite robust against the
likelihood ratio rule in Monte Carlo simulations in which the mixtures of
normal populations were taken. Nakanishi and Sato [23] also investigated
the performance of the LDF and the quadratic discriminant function (QDF)
for three types of non-normal distribution. Their purpose was a comparison
of the LDF and the QDF. The results showed that the sign of the skewness
of each populations and the kurtosis have essential effects. Koutras [18]
obtained a general integral expression for evaluating the performance of the
LDF with the population parameters under spherical distributions. He gave
recurrence relations for certain special cases including the spherical gamma,
Pearson VII, and generalized Laplace distributions. Krzanowski [19] gave a
review of the work on the performance of the LDF when underlying
assumptions are violated, which included the cases of unequal covariance
matrices, continuous non-normal data, discrete data and mixtures of discrete
and continuous variables.

In order to get robust discriminant functions, Randles et al. [25]
considered to substitute M-estimators of the mean and the covariance matrices
in the usual expressions for the linear and the quadratic discriminant
functions. Their Monte Carlo results indicated lower misclassification pro-
babilities compared to the LDF in cases of heavy-tailed or contaminated
distributions. Broffitt, Clark and Lachenbruch [4] also investigated the
method to use robust estimators, Huberized and trimed estimators of means
and covariance matrices. However, none of their procedures produced a
sufficient reduction in rates of misclassifications to counterbalance the added
complexity of the discriminant rule.

In this paper we consider the classification problem when underlying
assumptions may be violated.

In Part I we investigate the Fisher’s linear discriminant function under
elliptical populations with common covariance matrix. In Section 1 we give
a simple expression of the conditional misclassification probabilities of the
LDF. In Section 2, in order to derive asymptotic expansion formulas on
misclassification probabilities, we derive an asymptotic expansion of the joint
distribution of the sample mean and the sample covariance matrix under an
elliptical population. In Section 3, we consider the conditional distribution
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of misclassification probabilities. The asymptotic expansions of the expected
probabilities of each kind of misclassification are obtained. In the minimax
criterion of the rule, we propose a loss of the estimators of unknown
parameters. We also give an asymptotic expansion of the “risk” of the ordinal
sample estimators in this framework. In Section 4, we give an estimator of
the misclassification probabilities which is unbiased up to the order
(ny +n,)" 32,

In Part II, we consider to use M-estimators in order to get a robust
classification rule. Huber [13] derived a robust M-estimator for location
model. For an elliptical model Huber [14] derived a robust M-estimators of
location and covariance matrix. For general parametric models Hample et
al. [11] developed robust estimations using the influence functions. They
obtained the B-robust M-estimator which has the smallest asymptotic variance
subject to the bounded influence function. We apply their approach to our
discriminant problem. In Section 5 we give a general setup of the discriminant
problem. In Section 6 we prepare some definitions and lemmas related with
the influence function under the case of two samples. In Section 7, we define
a measure of sensitivity and a measure of efficiency of the estimator based
on the loss function proposed in Section 3. In Section 8§ we obtain the
optimal M-estimators. In Section 9, we consider equivariant estimators. In
the last section, we return to the elliptical model and apply the methods
investigated in Sections 5-9 to it.

PART 1. Fisher’s linear discriminant function under elliptical populations
1. Minimax classification rule between two elliptical populations

Consider the problem of classifying an observation X into one of two
populations 1I7,: E,(u, 4, h) and II,: E,(u,, 4, h), where E,(u, 4, h) is a
p-dimensional elliptical distribution with density function

(1.1) |AI72h((x — py A7 (x — @),

where h is a decreasing function, pu is a p x 1 parameter vector and A4 is a
p x p positive definite matrix. It is known (cf. Kelker [17]) that the
characteristic function of E,(u, 4, h) has the form exp (it' Wy ((t — w) A(t — w)).
We assume that y(s) is three times continuously differentiable at s = 0, which
means that E,(u, 4, h) has the 6th order moments. Then the covariance
matrix is Q = — 2y'(0)4 = wA(say). We denote the unknown parameters as
0 = (uy, uy, A) and @ be the parameter space.

For any given parameter t = (4, #,, =)€®, we define the classification
rule R(t) as
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(1.2) assign X into I7; if (X —#7) Z~'(n; —n;) >0 (G=1,2),

where 7= (1, +1,)/2 and j’ =3 —j. Let Pj(z; 6) (j = 1, 2) be the probability
of misclassifying X which belongs to I7;.

THEOREM 1.1. Let

(1.3) cj(t, 0) = — )y 7 n; — np) /|1 A2 E7 ;= nj) |
(j=1,2), and Q be a distribution function whose density function is
(1.4) qu) =2~ V2 /T[(p— 1)/2]1[§ s ¥ 2h(u? + s)ds,

where I' is the gamma function, and h is defined by (1.1). Then the
misclassification probabilities are expressed as

(1.5) Pj(t; 0) = Q{cj(1, )} (G=12).
PrOOF. Let
(1.6) X =AY+ y,.
Then Y is spherically distributed with the density function A(Y'Y). We have
(L.7) Py(t; 6) = Pr{(X — iif 57" (n; — n) < O| 1T}
= Pr{Y A2 2" n;— ) < (7 — w) £~ 1, — n;)}
= Pr {U < ¢(1, )},
where
(1.8) U=YA2E" i —np)/ A2 E iy — )l
Let H be an orthogonal matrix whose first row is
(1.9) {2 E7 ;= np) | A2 ET ;= my) |-
Since Y is spherical the distribution of U is the same as the one of
(1.10) Y HAY2E ;= mp)/ | A2 E7 = np)|l = Yy,

where Y=(Y;, Y,,...,Y,). Hence the distribution of U is the same as the
marginal distribution of Y;. In order to obtain the marginal dinsity function,
we use Chu’s representation (Theorem 1 of Chu [5]) of the density functin as

(1.11) h(Y'Y) = [w(t)(2m)?/2t"/? exp { — tY' Y/2} dt,

where w(z) is called the weighting function. Let V =(Y,, Y3,...,Y,) then the
marginal density function is expressed as

(1.12) q(Y;) = [[w(t)(2n)~?2t? > exp {— tY'Y/2} dt(dV)
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= [w(t)2n)~ "2 t* > exp {— tY?/2} dt.
Using the expression (1.11) with Y'Y = Y? + s, we get
(1.13) [s®= V2= p(Y? + s)ds

= [s®P= D271 {w(t)(2m) P12 ¢?/2 exp {— %I(YI2 + s)} dtds

1
= [w(t)(2n)~P/2t?2 exp {— EtYf}js“"”/z_l exp {— %ts}dsdt

—(p—-1)/2
= [w(t)(2n) =727/ exp{—%”ﬁ}(%) Y I'l(p—1)/2]de

Comparing this with (1.12) we obtain the marginal density functin as (1.4).

In the case of normal populations (1.4) is reduced to a standard normal
density function, which can be checked easily with h(s) = (27)"?/? exp (— s/2).

THEOREM 1.2. The classification rule R(6) is minimax.
Proor. Since h is decreasing, the rule R(6) is equivalent with a Bayes rule:
assign X into II; if
(1.14) h{(X — )y AKX = )} > h{(X — wy 471X — )}
Therefore it is sufficient to show (cf. Anderson [2], page 203) that
P,(8; 6) = P,(8; 0), which is easily shown from Theorem 1.1 with

1
(1.15) Cj(o, 0) = — 5(“j - .uj’)/A_l(“j - /lj‘)/“A—l/z(.uj - Hj') l

1
= —EIIA_“Z(M — W)l =—4/2(say), (=12).

In our notation Fisher’s linear discrimination is expressed as R(f,) with
;= (X,, X,, ™ 'S) where X; (j=1,2) is the sample mean and S is the
pooled sample covariance matrix. The Theorem 1.2 shows that Fisher’s linear
discriminant function gives an asymptotically minimax rule in elliptical
populations, since 6, asymptotically converges to 6.

2. Asymptotic expansion of the joint distribution of sample mean and sample
covariance matrix from an elliptical population

Hayakawa and Puri [12] derived an asymptotic expansion of the



262 Hirofumi WAKAKI

distribution of sample covariance matrix under an elliptical population with
mean 0. We deal with both the sample mean and the sample covariance
matrix in the general case where the mean is unknown.

Let X,, X,,...,X, be an independent sample from E,(u, A4, h) whose
characteristic function is expressed as exp (it’ Wy ((t — u) A(t — p)). Assume
that the covariance matrix Q exists. Then Q = wAd, where w = — 2y'(0).
Denote the sample mean and the sample covariance matrix as X and S,
respectively, and let

2.1 Z=n'2Q V2§ — Q)Q"1/2
and
(2.2) Y=n'2Q V23X — p).

Then the limiting distribution of Z and Y is mutually independent
normal. The purpose of this section is to derive an asymptotic expansion of
the joint distribution of Z and Y. Let

23) U= Q "X, —p),  j=1,...n
and
_ 1
2.9) U=-)U,.
n

Then Y and Z are expressed as

2.5) Y=n'20 =n" 123 U,
and
1 _ _
(2.6) Z="”2{ IZ(Uj—U)(Uj_U)/—I}
n —
= n—i RS U U -t — 200 — 02
=1 ow— " gy -,
n—1 n—1

where
2.7) W=n"12Y (U,U} - I).

First we consider the joint characteristic function of W and Y. The joint
characteristic function is
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2.8) &(T, 1) = E[etr [iTW + itY'}]
= E[etr {in™!/?) (TU;U} — T+ tU))}]
= [E[exp {in”'?(—tr (T) + U'TU + 7U)}17",

1
where T = <§(1 + 6jk)tj,,>, T=(s;) (1 £j,k=<p), é; is Kronecker’s delta and

U is a spherical variable with characteristic function y(w~!7't). By theorem
2 of Chu [5] U is represented as U =(1/R)Z, where Z is distributed as
N,(0, I) and R is independent with Z. Therefore we have

29) E[exp {in"'*(U'TU + v'U)}]
= E*[E[exp {in"Y2(R"2Z'TZ + R"'7'Z)}|R]]

1
=E*[II—2in_”2R"2Tl_“2exp{—En_lR_zr'(I—Zin“”ZR_ZT)‘H:}}
1 o _
:E*[exp{—ilogII—Zm 12R-2T]

1
— En'lR'Zr/(I - 2in_1/2R_2T)_1r}].

The reason of superscript * of the expectation is that the (probability) measure
of R may be signed measure. The argument of the above exponential can
be expanded as

(2.10) exp(n Y2F, +n 'F, + n 3%F;) + O(n™?),
where
@.11) F, = —itr(T) + iR 2te(T),
1
Fy,=— R *tr(T? — ER‘zt'r,
4

Fy=— §iR—6tr(T3) — iR *¢'Tr.
Therefore
(2.12) Elexp {in""*(—tr(T)+ U'TU + 7'U)}]

1
= E*|:l +n Y2F 4+ n“1<F12 + F2>
2

1
+ n‘i“/2<6F13 +F,F, + F3>:| +0(n™?).
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The characteristic function of U is

(2.13) tp(w_lr’r)=zﬂlip(w_lt’r)".

On the other hand we can express the characteristic function of U as

2.14) Y(w™17't) = E[exp (iT'U)]
= E*[E[exp (i ZR"Y)|R]]

1
= E* [exp <* -r’rR_2>}
2
=) 1 E*[R™2F] (— 1>k(r’1:)".
k! 2
Comparing coefficients of 7'z in (2.13) and (2.14) we obtain

(2.15) E*[R™%] = (= 2 0™ "y®(0) = y“(0)/{y'(0)}*,
E*[R7?] =1,
E*[R™*] =y20)/{y'0}* =x + 1,

where k is the kurtosis parameter, and

(2.16) E*[R™°] = y2(0)/{y'(0)}* = y5 + 1 (say).

Using these formulas we obtain

(2.17) E[exp {in"'*(—tr (T) + U'TU + 7'U)}]
=1+4+n"1'G, +n"%2G, + 0(n~?),

where

(2.18) G, =E*[%Ff+F2]

P

——ktr2(T) — (k + 1) tr (T?) — % 7’1,

Q
N
I

2
E* [g F}+F,F, + F3]

- —é(m — 31) tr® (T)

- % ktr (T)t't —i(Ys — k) tr (T) tr (T?)



Discrimination for elliptical populations 265

—gi(lps + D)tr (T} —i(k+ D' Tt

Here the notation tr*(T) means {tr(T)}*. From (2.17) the characteristic
function of W and Y can be expanded as

(2.19) (T, 1)={1+n"'G, +n *2G, + O(n™?)}"
=exp[nlog{l +n"'G, +n %G, + 0(n"%}]
=exp{G, +n~'2G, + 0(n™")}.
Inverting ¢(T, 7), the joint density function of W and Y can be expressed as
(2.20) fW,Y)=Qrn) r®+d*[exp {—itr (WT)— it Y+ G,}
- {1+ n~Y2G,}(@T)(dr) + O(n™ 1),
where (dT) = [],dt;;[ [, <pndtim- From (2.6) we have

n—1

(2.21) W= Z+n VXYY —D)=Z+n" V2 (YY =)+ 0(nY).

Since the Jacobian of the translation (W, Y) to (Z, Y) is
(2.22) {(n—1)/n}p®* V2 =1 4+ 0™,

the substitution of (2.21) to (2.20) gives an asymptotic expansion of the joint
density function of Z and Y as

223)  f(Z, Y)=Qn) PV [exp {—itr (ZT) — it Y+ G,}
S+ Y2{G, —iY'TY + itr (T)}]dT)(d1) + O(n™Y).

Let
(2.24) T, =(ti1s..00tpp)
T, =(ty2, ty3seestpo1,p)
Q=20+ DI, +«ll', I =(1,...,1),
and
(225 Zy = (21150 Zpp) s Za = (2125 213505 Zp—1,p) >

where Z = (z), (k,1=1,2,...,p), as in Hayakawa and Puri [12]. Then the
argument of the exponential is expressed as

)
(2.26) —iTZ, =T Z, — WY = (T + (e + LT + )
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which implies that the limiting distribution of Z,,Z, and Y is mutually
independent normal with mean 0. The covariance matrices of Z,;, Z, and Y
are Qy, (k + 1)I,,—y), and I,, respectively. Let J,=1,— p~'Il' then

(227 Qit=ul,+@w—wp 'I'=uJ, +vp~ I,
where

1 1
(2.28)

u= , 0= ———
2k + 1) p+2x+2

The expression (2.27) is useful in calculation of expectations since J, and p~'II'
are idempotent, J,/ =0 and (p~!il')l =1 The calculation of integrations in
(2.23) gives the asymptotic expansion of the joint density function of Z and
Y up to the order n~'/? as in the following theorem.

THEOREM 2.1. Let Z and Y be random matrix and random vector given
by (2.1) and (2.2), respectively. Then the joint density function of Z and Y can
be expanded for large n as:

(2.29) f(Z,Y)= (27[)_”(p+3)/4|.(21['1/2(;c + 1)"pp-D/4
1 1
cexp| —9Z1Q'Zy+ ——Z5Z,+ Y
p[ 2{ LT e 7 2t Y}:|

[+ n"129(Z, y) + O(n™ 1],

where

(2.30) 9(Z,Y)=a, tr(Z) + a, tr*(Z) + a; tr (Z?)
+a,tr(Z2)tr(ZH) +asY'Ytr(Z) + agY'ZY

and

1
(231) a =~ ‘/’3{“0(41’ +1—-4p7h)+ v2<2p +3+ 4p'1>}

+ K{MU(ZP— 1)+ vz<%p + 3) — v(ip + 1)}

—2u(p+1—2p~ 1) —4v?p~1,

8
a, =y, {giﬁp'z —wo(p t+4p )+ 03 <% +p 14 :p_2>}

1
+ K{uzvp_l — 3 (5 + p—l)} + §u3p—2 — 4uPpp~? + gvsp—z
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4
as = 5(‘/’3 + 1)u39

a, =y {—4Pp t +uPv(@p ! + 1)} — kuPv — 4uPp~ + 4uPvpT?,

-1 1 -1
as=KS—up -~ +v 5+p s

ag = Ku.

In the case of normal population Y and Z is independent. Y has exactly
normal distribution N,(0, I,). Since x =, = 0 the marginal density function
of Z can be expanded as

(232) 2 p(p+3)/4—pp+1)/4 etr<—lzz>
4

. [1 + n'”z{—;(p + Dtr(Z) + étr(Z3)}] +0n™Y

which was essentially given by Fujikoshi [8] (see also Siotani, Hayakawa and
Fujikoshi [29], page 159).

3. On the conditional misclassification probabilities

We return to the classification problem of two elliptical populations in
Section 1. Suppose that the training samples of size n, and n, from I7, and
IT,, respectively, are given. Let X; be the sample mean and S; be the sample
covariance matrix from I7; (j=1,2). The pooled sample covariance matrix
is given by

(3.1) S=WN -2, — 1S, + (n, — 1)S,}

where N =n, +n, and r;=n;/N (j=1,2). In this section we consider the
distributions of the conditional misclassification probabilities of Fisher’s linear
discrimination R(f,), where 0, = (X,, X,, ®~'S). We modified S to w~ 'S in
order to get a consistent estimator. However, this is just for convenience of
calculations, since the factor w~™! causes no change of the classification rule.

From Theorem 1 in Section 1, we know that the conditional
misclassification probability Pj(és, 0) is the function of cj(és, 0 (=1,2).
Therefore we prepare the following lemma of Taylor expansion of c¢(t, 6) in
a neighborhood of 7 = 6 in order to investigate Pj(és, 0) using an asymptotic
expansion method.

LemMa 3.1. Let T =(n,, 15, Z)€O, where
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3.2) nj=u+e¢(i=1,2, Z=4+H.
Then the cut point c(t, 0) given by (1.3) can be expanded for small ¢;’s and H as
(3.3) ci(t; 0)

1 |
=_§A+5A LEATY2 (g5 + ¢)

1
+ZA"{(sj, +3e) A7 (ej — &;) — 4&; A2 HA

+ & ATV HAT HA T2 E )

1 L., . _ Y -
_ZA ATV (e —gp) = EATEHAT2E ]

AE ATV (3 + 6p) — E;ATVPHAT2EY
+0(lz - 91,
where &= A7V, — ;) (i =1,2: /' =3 —j) and 4% = &{¢,.
THEOREM 3.1. Let
(3.4) PN;=N"'2{P,d,,0)— P,6,0)} (j=1,2).
Then the limiting distribution of PN; is N(0, v*), where

1
(3.5) v = Zq(— A4/2)? or®,

q is the density function given by (1.4) and ¥V =r! +r; .

ProoF. From Theorem 1.1 and Lemma 3.1 we obtain

(3-6) (9/0n) Py(z, 0)|.—g = %q(— 4/94718A7H2 (k= 1,2),

(0/0E)P,(z, B)],-o = O(c RPP*1112)

Further, the limiting distributions of N; '/*(X; —w) is N,(©0, r; 'Q2). These
shows the desired result (see Cramer [6], page 366).

In order to obtain the terms of O(N~!/2?), first we expand the joint
characteristic function of PN; anf PN,. Because the joint characteristic
function gives distribution of any linear combinations of PN; anf PN,. We
will need the distribution of (PN; — PN,)/2 in the last theorem of the present
section.



Discrimination for elliptical populations 269

LEmMMA 3.2. Let Y(t) be the characteristic function of (PN, PN,) where
t =(t;,t,). Then Y(t) can be expanded as

3.7) P(t) = exp { - %(tl - tz)zvz}

L+ N_I/Ziztk(bo(ﬁ — 6, +b)} +O(N7Y),

where v? is given by (3.5),

1
(3.8) by = “ﬁ‘ﬁ‘bwzrm r®=ri? 4177,

1 1
b, = ngwr‘” + quw(3rk_l —rep—-147!

1
+-qp—DK+ 14 (k=1,2;k=3—k)

4
and
(39 4 =q(=4/2), q,=4q(—4/2).

ProoF. Let
(3.10) Y, = n}/ZQ‘”z()?j — ),
Z;=nj2Q (s, - Q7.

Then
(3.11) X;=p;+ N 1202 11212y,

;= QU1 +njY2Z]QY2  (j=1,2).
Since (n; — 1)/(N —2)=r;+ O(N™1),

(3.12) 0 'S =0 QI+ rni M Z, +ran; VPZ)QV? + 0,(N73?)
=A + ]\/'—1/2/11/2("1/221 +r;/222)A1/2 + Op(N_3/2).

From Lemma 3.1 we obtain

R 1
(3.13) c;(s; 0) = — 5A + N'”Zcﬁ-” + N“c§2’ + Op(N‘3/2),
where

1 . _
Gl ¢ =247 Y, 4 Y,
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1 _ _ _ L _
o = 27 ol Yy 4 30 Y (7 R Y, - 1 2 Y)
— A7 R Z + 1Y Z)r R Y,

1 - ’
+ ZA YeirPZi+ P Z,)2E
1 - (= - ’
- ZA Ho 2 2 Y, —ri 2 Y) = P Z; + 12 Z5) 85
A0 B Y+ 1Y) — 22, + 112 2,)6).
Considering Taylor expansion of Pj(és, 6) = Q(c j(és, 0)) at c¢;= —4/2, we
obtain

(3.15) PN, = NY2[P,(b,; 6) — P,(0; 0)]
1
=g,V + N71/2 {qlcﬁ-z’ + qu(c‘j”)z} + O0,(N7Y).

Therefore the characteristic function of PN, anf PN, can be expanded as

(3.16)
¥(t) = E[exp (it; PN, + it,PN,)]

. - 1 _

= E[CXP l:’ Yitil@icl’ + N 1/2{‘11 o + E‘]z(cil))z} + O0,(N 1):']
. 1 g -

= EI:CXP {letkqlzwl/zd Y P Y 4 g2 Yk)}

1
.[1 + N~V 8, {qlcgﬂ + qu(cgl’)Z}ﬂ +O(N7Y).

Taking the expectation by using the joint density of (Z;, Y;) given by (2.29),
we can see that the characteristic function can be reduced to (3.7).

Lemma 3.2 shows that the joint limiting distribution of PN, and PN, is

0 1 -1 . . .

N, [( 0), < ! 1)} which is degenerate (cf. Muirhead [22], page
4). More preciously, PN, = — PN, + O,(N~'/?). This means that variation
of the estimator causes P, get larger, smaller the P,. Therefore the total
misclassification probability (P, + P,)/2 (assuming equal prior probabilities) is
stable.

THEOREM 3.2.  The marginal distribution function of PN; (j =1, 2) can be
expanded as
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(3.17) Pr {PN; < x}

= Pr {N"V2[P,(,; 6) — P,(6; 0)] < x}

= @(x/v) + N2 ¢(x/v)/v{(x?/v> — 1)by — b;} + O(N™Y),
where @ and ¢ are the distribution function and the density function of N(O, 1),
respectively, b; are given by (3.8) and

~ 1

(3.18) by = by/v? = — nga)r(z’/r(“.

PrROOF. From Lemma 3.2 the characteristic function of PN; is given by

1
- {1+ N~ 2it(bot? + b))} + O(N™1).
The inversion of ¥; gives the expansion of the distribution function.

COROLLARY 3.2. The expected misclassification probabilities can be
expanded as

(3.20) E[P;(6;; 0)1=Q(—4/2)+ N™'b;+ ON"*'3)  (j=1,2),
where Q is the distribution function given in Theorem 1.1 and b; is given by (3.8).
ProoF. The expectation of PN is given by i 7' ¥j(0)=N"12b;+ O(N ).

When we consider R(A) as an estimator of the minimax rule R(f), we
may use

(3.21) L(6, 6) = max {P,(8, 6), P58, 6)} — P,(6, 0)
=max {P,(, 6), P,(8, 6)} — P,(8, 0)

as a natural loss of 6. Hence one of the important criteria on the goodness
of 9 is given by E[L(d, 6)] which may be called the risk of 6 in minimax
classification.

THEOREM 3.3. The risk of O, can be expanded as
N 1
(22 ELL@, 0] = N7'2Q/m) 20+ N7 (b, +b;) + ON ),

where v is given by (3.5) and b; (j =1, 2) is given by (3.8).
Proor. Using the equation max (a, b) = (a + b)/2 + |a + b|/2, we get
(3.23) N'2E[L(@,, 6)] = E[max (PN,, PN,)]
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E[(PN, + PN,) + |PN, — PN,|].

| =

From Lemma 3.2 the characteristic function of (PN, — PN,)/2 is given by
(3.24) Y{(t/2, —t/2)} = exp {— %tzvz}
. {1 + N‘”Z%t(b1 - bz)} + O(N™Y).

It’s inversion gives an asymptotic expansion of the density function of
(PN, — PN,)/2 as

(3.25) v'ld)(x/v){l - N‘”Z%(b1 — b,)/v? 'x} + O(N™Y),
and hence
(3.26) EBIPNI - PNZI]

= |x|/v{1 - N‘”Z%(bl — by)/v* x}¢(x/v)dx +O(N"Y)

= [(2m)"*2v™ x| exp {— x*/(2v?)}dx + O(N ™)
= (2/m)" o[ exp {— x*/2v*)}]§ + O(N™)
=Q2/m)? v+ 0N
From Corollary 3.2 we get
(3.27) E[(PN, + PN,)/21 = N~ Y2(b; + b,)/2 + O(N™1).
Substituting (3.26) and (3.27) into (3.23) we obtain the result (3.22).
In the case of normal population
(3:28) k=0, w=1, g, =¢(—4/2), q, = 4/2¢(— 4/2).

Therefore, the coefficients v, l;o and b; (j = 1, 2) are reduced as follows:

629) 0 = {o(~ 4/2Pr,

bo

- ilgAr‘z’/r“‘qS(— 4/2),

— _!__ (1) 1 — -1 -1 _ -1 1 — } —
b,._{wm o= DA B =) + (0~ DALY(— 412,
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4. Estimation of the misclassification probabilities

In this section we consider the problem of estimating the expected
misclassification probabilities, which is expanded as (3.20).

In order to get an unbiased estimator of these probabilities, we prepare
the next lemma.

LemMa 4.1.  Consider an estimator Q(—j /2) of misclassification probability
Q(—4/2) of R(0), where Q is given in Theorem 1.1 and

@.1) A =X, - XY (0 ') (X, - X,).
Then the bias is given by
4.2) E[Q(—4/2)1—Q(— 4/2)

1 1 1
=N g{=rVo + — 3K+2A2}—A - )riYwa!
[qz{g 32( ) 4q1(p )

1 1 1
+ ql{——:‘(p + 2)k —Z(p + 1)+ E(3K + 2)}41] + O(N7373).

Proor. Using (3.11) and (3.12), 4 is expanded as

(4.3) A2 = 42 + N7V25, + N715, + 0,(N~%3),
where
(4.4) 01 = {2028 (71 2Y, — 13 V2Yy) = E1(1 P2 + 132 Z5) 84,

8, ={w(M2Y, —r; Y2Y,) (r V2Y, — r;V2Y,)
=202 (12 Z + 12 Z) (P Y - 1 VP Y)
+ &1z, + ré/222)2£1}_

The expansion of 4% implies that

. 1
@.5) —42= —A/z—ZN-“ZA-lé1

1 1
- N! <ZA”‘52 — BA'3cﬁf> + 0,(N~3?).
Therefore Taylor expansion of Q gives

46)  Q(—4/2)=0Q(—4/2)

1 (1 1
+q1{—ZN V24-15 — N 1<ZA 10y — 4 35%)}
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1 1 2
+ qu {4N"”2A“151} + 0,(N7??),
where g, and g, are given by (3.9). Taking the expectation, we get the desired

result.

From Corollary 3.2 and the above lemma we can get an estimator of

A

the misclassification probabilities for R(f,) as the following theorem.

THEOREM 4.1. Let A% be given by (4.1), then

" 1 “ "
4.7) 0(—4/2) + N-l[— 0+ 24 + g or; Y (p— )4
+ j{l (xk+ 1)+ : 1}]
R DY 16" 8

is an unbiased estimator of the expected misclassification probability E[Pj(és; 0)]
(j=1,2) up to the order N~ 32,

In the normal case, (4.7) is reduced to
- 1 . - 1 . u
(4.8) D(—4/2)+ N~! {- 3—2A3 +rilp—147" + §(4p — I)A}qﬁ(— 4/2),

which agrees with the result of McLachlan [21].
When x is unknown, we need to replace k in (4.7) by an estimate K.

PART II. Robust estimators in discriminant analysis
5. A general setup of estimation problem in discriminant analysis

In Part II we consider the classification problem under a general setup.
Suppose that the population I7; (j = 1, 2) has the density function f(x;n;),
where the unknown parameter #;(€ H) is a (q + r)-dimensional vector. We
assume that the last r elements of #, and 5, are equal. So that we denote
nj =&Y (j=1,2) and its parameter space as H = Z x =, where Z < R?
and 5 < R". We also use notations 8 = ({1, {5, &Y and ®=H x H x 5. The
sample space is written as 2 < R?. In the case of elliptical populations,

q=p,r=pp+1)/2, n;=(u;, 4) and
(5.1) fxsn)=141"2h{(x —py A" (x —p)}  (=1,2).

We identify the minimax rule with the region of the sample space in which
the observation is assigned to /7,. The minimax region is given by
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(5.2) R(O) = {x; f(x; n1)/f(x;5n3) > k(6)}.
Here k(0) is obtained from the equation
(53) F(R(0); ny) = F(R(0); n2),

and F( ;n) is the probability measure corresponding to the density function
f(x;n). We often use the notation Fj, instead of F( ; ;).

In Part I, we considered to use the sample mean and the pooled sample
covariance matrix to estimate the minimax classification rule for elliptical
populations. It is also natural to use the maximum likelihood estimator to
estimate the minimax region R(#). However, in general, the maximum
likelihood estimator is not robust against deviations from the assumptions.
For example, the sample mean is known to be sensitive to outliers. For
general parametric models Hampel et al. [11] developed robust estimations
using the influence function. The influence function is a standardized
asymptotic bias of the estimator caused by one outlier. In our problem bias
of R(0) is important rather than @ itself. Before considering the influence to
R(H), first we describe some definitions and properties related with the influence
function of the estimator in the case of two samples.

6. Definitions and properties related with the influence function

The purpose of this section is to prepare some definitions and properties
related with the influence function for constructing robust M-estimators used
to obtain a robust discriminant rule in the following sections. In this section
we modify or generalize the works included in chapter 4 of Hampel et al. [11].

Suppose that we have training samples
(6.1) X9, X9, .., X0

n(j)

from II; (j =1, 2). The corresponding empirical distribution is given by

(62) _] n(j) an V Xl(cj)),

where F(x) is the point math 1 in x. We consider the estimators of 8 expressed
by functionals, i.e., 6= T[F, 41y Fa.n2] with some functional T:domain
(T) > 6. The domain of T is the set of all pairs of distributions for which
T is defined. We denote the corresponding parts of T with {;, {, and ¢ as
TV, T'* and T, respectively. We also use the notation T,V = (T,¥, T). It
is said that an estimator T is Fisher consistent (Kallianpur and Rao [16]) if

(6.3) T[Fyp Fyp] =0  for all 6€6.
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DEerFINITION 6.1. The influence functions of T at [F,, F,] are defined by

(6.4) IF (u, T; Fy, F;) = (8/0h)* T[F{*", F,]
and
(6.5) IF,(u, T, F,, F,) = (5/5h)+ T[F,, F;'h],

where (9/0h)* is right derivative at h =0 and F¥" = (1 — h)F; + hV (u).

The influence function was invented by Hampel ([9], [10]) in order to
investigate the infinitesimal behavior of real-valued functionals. We shortly
denote the influence function at [F 4, F,e] as IF;u, T; 0) (j =1, 2).

THEOREM 6.1. (Hampel et al. [11], page 196) Let F, ,,, and F, ., be
the empirical distributions of the samples from F, and F,, respectively. Let
O =TIF, 1) Fana] and 0= T[F, F,] then the limiting distribution of
NY2(0 — ), with increasing sample sizes and with keeping n(1)/n(2) constant,
is N[O, V(T; 6)], where N = n(1) + n(2),

(6.6) V(T; 0) =r{ 'V (T; ) + ry V5 (T; 0),
ri=n(j)/N and
6.7) VAT; 0) = [IF;(u, T; 6)IF(u, T; ) dF(u; n;) G=1,2).

DEerFINITION 6.2. Let ¢, and y, be functions on the product space 2 x &
to ®. Then the M-estimator given by Wy = [, ¥,] is defined by the implicit
equations:

(6.8) F=173 ¥, T)AF(x) = 0.

For the training samples or the empirical distributions F, ,,, and F, .,
the above equation with r; = n(j)/N is equivalent with

(6.9) XD Y xP; T)=0.

Note that the maximum likelihood estimator is an M-estimator. This is seen
by taking ¥; = s;(x, 0) (j =1, 2),

s(x, &y) 0
(6.10) 5:(x, 0) = 0 and s,(x, 0) =1 s(x, {,)
s(x, &) s(x, &)

where s(x, n) = (s(x, {), s(x, &) = (0/dn) log f(x; n).
It is known that the M-estimator given by y is Fisher consistent if
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(6.11) Zlerjjll/j(x; 0)dFj4(x) =0 (j=1,2) for all 6.
THEOREM 6.2. Assume the equation:
(6.12) (0/07) [¥;(x, ©)dF;(x) = [¥;(x, DdF;(x) (j=1,2)

holds, where (8/07')g(t) = (0g/0t,, 0g/01,,...,09/0T24+,) and x/}j(x, T) =
(0/0t)W;(x, 1), a 2q +r) x (29 + r) matrix. Then the influence unction of the
M-estimator is given by

(6.13)  IF;(u, T; Fy, F;) = M(y; Fy, F)) 7 r;{y;(u, T) — [;(u, T)dF ()}
(j=1,2), where M is a (2q + r) x (2q + r) matrix defined as:

(6.14) M@; Fy, Fy) = — Y0 i [¥;(u, T)dF ()

and \j;(u, 1) = (0/07);(j = 1, 2).

Proof. Let 6“" = T[F%* F,] and § = T[F,, F,]. Then
6.15) ro Y (x; 6" dFYH(x) + ry [, (x; 047 dF,(x) = 0.
Take the derivatives of both sides at h = 0, then we get
(6.16) ri{i(u; 0) — [y (x; O)dF,(x)
+ [Y1(x; )dF,(x)I[F,(u, T; F,, F,)}
+ 73 [Yy(x; O)dF,(x)[F,(u, T; F,, F,) = 0.
Hence we get
(6.17) M; Fy, F)IF (u, T; Fy, F) = ri{y,(u; 6) — (Y (x; 0)dF,,},

which gives the desired result for IF (u, T; F,, F,). The result for IF,(u, T;
F,, F,) is similarly obtained.

LEMMA 6.1. Suppose that T is Fisher consistent and that the equation:

(6.18) (0/06) [ y;(x, O)F ;4(x) = [(3/08) {¥(x, ) f (x, n))} dx
and (6.11) hold. Then it holds that
6.19) Zj_fIFj(x, T; 0)si(s; 0)dF j5(x) = I.

Proor. Take the derivative of both sides of equation in (6.11), then we
get

(6.20) Zle rj{jx/}j(x; O)dF jo(x) + [¥;(x; O)s;(x; ) dF ;5(x)} = 0.
Therefore M(y; 6) = M(Y; Fq, F,g) can be expressed as:
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(6.21) M3 6) = 31§ (x5 0)s;(x; 6 dF jo(x).
From Theorem 6.2 and [s(x; n)dF(x; n) =0, we get the desired result.

7. Measures of efficiency and robustness of the estimators in classification

We are interesting in obtaining an estimator R(6) of the minimax
discriminant region R(f) with certain optimalities in classification problem.
First we investigate R(f) such that R(d) minimizes the maximum of two kind
of the misclassification probabilities. For such a purpose we define a loss
L(0; 6) of & at 0 by

(7.1) L(0; 6) = max {F(R(O); 1), F(R(®); n)} — F(R(O); n,)
= max {F(R(); n,), R(é) nz)}—F(R((?) ).

LEMMA 7.1. Suppose that F(R(1);n) is c'-class as a function of t, for
any n. Then the following equation holds.

(7.2) [(@/01)F(R(X)°; 01)]e=0 + k(O)[(9/0T)F(R(1); n2)]c=g = O.

Proor. The region R(6) is also a Bayes rule when the prior probabilities
from I, and 1, are 1/{1 + k(6)} and k(6)/{1 + k(0)}, respectively. So that
the function F(R(7)°; n,) + k(0)F(R(t); n,) is minimized at t = 6.

THEOREM 7.1. Let 6 = T[F; p1y Fanz]. Suppose that the limiting
distribution of N''*(6 — 6) is N,.,(0, V(T; 6)) and the condition of Lemma 7.1
holds. Then N''2L(0; ) is asymptotically distributed as the same distribution as

(7.3) {D(6Y V(T; 6)D(0)}'/* max {U, — k(O)U},
where
(7.4) D) = [(0/071)F(R(7); n2) ] =6

and U is a standard normal variable.

ProoOF. Consider Taylor expansions of F(R(z)';#n,) and F(R(t);#n,) at
7 =40 and use Lemma 7.1. Then we get

(7.5)  L(6; 6) = max {[(3/07)F(R(x)'; n,)].=6(6 — 0),
[(0/07)F(R(1); n2)]c=o(@ — 0)} + 0,116 — 61)
= max {— k(6)D(0) (6 — 6), D0 (0 — 6)} + 0,(110 — 6]).

From the assumption of asymptotic normality of 6 the limiting distribution
of NY2D(9) (8 — 6) is N(0, D(6Y V(T; 6)D(6)), which shows the desired result.
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COROLLARY 7.1. Under the assumption of Theorem .1, the expectation
of NY2[(0; 0) under the limiting distribution is given by

(7.6) (2n)~Y2{1 + k(6)} {DO) V(T; 6)D(6)} /2.

Proor. The expectation is easily obtained with the use of
1 1
(7.7 max {U, — k(O)U} = 5{1 — k@)U + 5{1 + k(6)} | U|.

(7.6) may be called as “an asymptotic risk” of the estimator. Therefore
we define a measure e/(T; ) of efficiency of an estimator by

(7.8) e(T; 6) = {D(O) V(T; O)D(6)} ",

in the situation where our purpose is to estimate the minimax regions. The
superscript “d” means that the measure is defined for discrimination
problem. The large value of ¢%(T; 6) means small asymptotic misclassification
probabilities. For an M-estimator corresponding to Y we also denote the
efficiency as (¢ ; 6).

Next we consider the robustness of an estimator T[F; ), F2..2)]
Suppose that the n(1)-th value X,,, was an outlier. Then the influence on
our loss is expressed as

(7.9) {L(T[Fy,na) F2.n2]; 0) — L(T[Fy u4)-15 Fa.n; 0)}/{1/n(1)}

1 1
= {L(l:(l — m)Fl’"(”_l + m V(X)) F2,n(2):|a 0)

- L(T[Fl.n(l)—l’ F2,n(2)]; 9)}/{1/’1(1)}’

where the denominator means the ratio of outlier in the sample. Replacing
Fy nay-1 and F; ,,, with their limiting distributions F,, and F,,, respectively,
X, with u, and 1/n(1) with h, we obtain

(7.10) {L(TLFYs, F16]; 0) — L(T[F 14, F14]; 0)}/h.

Let h tend to zero, then we can formulate an influence function of an estimator
in the situation where we want to estimate the minimax discriminant regions
as follows.

DerNITION  7.1. The influence functions of an estimator T at 6
corresponding to /7, and II, are defined as

(7.11) IF{(u, T; 0) = (6/0h)" L(T[FY{y, F1)

and
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(7.12) IF4(u, T; 6) = (0/0h)" L(T[F 1, F59).
Using the chain rule and Lemma 7.1, we get
(7.13) IF{(u, T; 6) = max {D(OY IF j(u, T; ), — k(6)D(6) IF;(u, T; 6)}.
We define a gross-error sensitivity of T at 6 as
(7.14) yT; 0)=sup, IFu, T;0) (j=1,2).

Hampel et al. [11] defined three types of gross-error sensitivity, i.e., the
unstandardized gross-error sensitivity, the self-standardized sensitivity and the
information-standardized sensitivity, for multidimensional estimators (see [11],
page 228-229). For each sensitivity, B-robustness of an estimator means that
its sensitivity is finite. In our situation, y4(T; 6) measures a robustness of a
discriminant rule obtained by using the estimator T. Therefore we say that
T is D-robust if y2’s are finite. If k(6) = 1, then (7.14) is reduced to

(7.15) v§(T; 6) = sup, | D(O) IF(u, T; ).

This suggests that the gross-error sensitivity of the estimator should be defined
according to the purpose of estimation.

8. The optimal D-robust M-estimators

In the previous section we obtained a measure y4(y; 6) (j = 1, 2) of the
robustness and a measure e/(if; 6) of the efficiency. It is impossible to obtain
the M-estimator which minimizes yf(t//; 0) and maximizes e*(y; 6), simultane-
ously. Therefore we consider to maximize the efficiency e?(y; ) in certain
class of @-functions whose gross-error sensitivity y4(y; 6) is less than some
given constant. We say that an M-estimator is optimal D-robust if it attains
the maximum in certain class. The purpose of this section is to construct
the y-functions which give the optimal D-robust M-estimator.

Let ¥ be a class of , pairs of y-functions such that the conditions
(6.11), (6.12) and (6.18) hold and the integral:

(8.1) Jwi;smpyi(x; nYydF(x;n)  (i=1,2)

exists. In this class we want to maximize the efficiency e?(y; 0) subject to
Y4 6) < ¢; for given constant ¢; (j = 1,2). The next theorem shows that if
¢; = ¢, = oo the maximum is attained by maximum likelihood estimator of 4.

THEOREM 8.1. Suppose that the score functions [s,(x, 8), s,(x, 6)] belong
to V. Let JO)=r,J,0) + r,J,(0), where
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(8.2) Ji0) = [s;(x; O)s;(x; OYdF(x;m)  (j=1,2).
Then the asymptotic covariance matrix of the maximum likelihood estimator is
J@O) ! and V(T; 0)— J(O)~! is positive semi definite for all M-estimator T
corresponding to Y which belongs to V.

ProOF. From Theorem 6.2 and Lemma 6.1, the influence function of the
maximum likelihood estimator is shown to be r;J(6)™'s;(u, 6). From Theorem
6.1, we obtain that the asymptotic covariance matrix is J(6)~!. Let X and

Y be independent random vectors distributed as F,, and F,,, respectively.
Define a 4(q + r)-dimensional random vector U by

IF (X, T; 6)
IF,(Y, T; 6)
51(X; 0)
$2(Y; 0)

(8.3) U=

For any (q + r)-dimensional vector a, let
(8.4) h=(@{Y%d,e; ?a, —ri2aJ@) 1, —ri2aJO)"Y).
From (6.7) the covariance matrix of U is given by

(8.5) Cov (U) =

V(T 0)
symmetric
0 V,(T; 0)
[IF (X, T; 0)s,(X; 0)dF 4(X) 0 J.(0)
0 JIFA(X, T; 0)5,(X; 0 dF,0(X) O J,(0)

From Theorem 6.1 and (6.19) we obtain
86) HCov(Uh=r{'aV,(T;0a+r;'adV(T;Oa
+r,aJ(0) 1,00 d +raJ(O) 1 T,0)J(6) a
—2d'{[IF(x, T; 0)sy(x; Y dF 4(x)}J ()" 'a
—2a'{[IF,(x, T; 0)s,(x; ) dF,4(x)} J(6) " 'a
=dV(T;0)a—-aJB) 'az0.
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For finite ¢; (j =1, 2), if the score functions are not bounded we must
modify the maximum likelihood estimator. Let 6 be an arbitrary fixed point
in & and T be a M-estimator given by some pair ¥ in ¥. We use
abbreviations in the rest of this section as Fj;(x) = Fjy(x), s;(x) = s;(x, §) and
IF(x)=1F;x, T;0) (j =1, 2).

From Theorem 6.2 and Lemma 6.1, it is shown that IF;’s must satisfy

(8.9) fIFj(x)dFj(x) =0 (=12
and
(8.10) ZjIFj(x)sj(x)’dFj(x) =T

Let A be an arbitrary (2g + r) x (29 + r) matrix and let a; (j = 1, 2) be any
vectors. Then using (8.9) and (8.10) we have

(8.11) > v L IDOY {IF j(u) — r;A(s;(u) — a;)}|> dF ;(u)
=Y, 'DO) [ {IF;(u)IFu) + r} A(s;(u) — a))(s;(u) — a;) A’
— ridF;(u)(sj(u) — a;y A" — rjA(s;(u) — a))IF (u)'} dF j(u)D(6)
=Y ;DO [r; ' V/(T; ) + r;A{J;(0) + a;a;}
— [ IF(u)s,(u) dF () A’ — A s;)IF,(u) dF (w)]D(6)
=e!T; 0" + DAY {AJ(O)A' — A’ + A + ryaa1 + rya,a3} D(0).

Therefore the maximization of e?(T; 6) with respect to T is equivalent with
the minimization of

(8.12) Yt M ID(O) {TF (u) — r; A(s;(u) — a))}|* dF j(u)

with respect to IF,(u) and IF,(u), the influence functions of T. The condition
y4(T; 0) < ¢; is written as

(8.13) —¢;/k(0) £ DY IF;(u) £ c; for all u.
Therefore the minimum is attained if
(8.14) D(O)IF j(u) = h[r;D(0) A{s;(u) — a;}; c;, — c;/k(O)],
where h is a translated Huber function defined as

o if o<x
(8.15) h(x; o, f)={ x if f<x=Za.

B if x<§p

If f = — a then (8.15) agrees with the original Huber function. The following
theorem gives a way of constructing y-functions whose influence functions
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satisfy (8.14).
THEOREM 8.2. Define Y;(x; A, a) (j=1,2) by
(8.16)  y(x; A,a) = h,[{I — P(O)}A{s;(x) — a;}; ¢;/r;]
+ D(O){D(OY D(6)} ~*h[D(O) A{s;(x) — a;}; c;/r;, — c;/{r;k(®)}],

where ¢; (j = 1, 2) is appropriately chosen constant, P(0) is a projection matrix
given by

(8.17) P(6) = D(0){D(O)D(©6)} ' D(OY
and h, is a generalized Huber function in R***" defined as
(8.18) hy(Us; ¢)=U-min {1, ¢/|U|}.

If a system of equations for A, a, and a,:

(8.19) f(x; A, a)dF4(x) =0 =12,
(8.20) Yl vix; A, a)si(x; Y dFjp(x) =1

has a solution, A=Ay, aj=a;y (=1, 2), then y=[,(x; Ay, azq), Y1(x; Ay, az)]
gives the M-estimator which maximize the efficiency.

Proor. From Theorem 6.2 and Lemma 6.1, we obtain that the influence
function IF(x, T; 0) is equal to y; (j = 1, 2) which is constructed as to satisfy
(8.14).

We note that the first term of (8.18) has no effect on either the efficiency
and the gross-error sensitivity in discrimination, but for finite samples, both
the risk and the influence of each sample point depend not only on the second
term but also on the first term.

If k(6) =1, (8.16) is written as

821)  yyx: A a) = {I— PO} Afs;(x) — a)} Wp(x; 4, a)
+PO)A{s;(x) —a} Wi(x; 4,0)  (j=1,2),

where

(8.22) Wp(x; A, a) = min [1, &/ [ r,{I — PO)} Als;(x) — a;} 1]

and

(8.23) Wi(x; A, aj) = min [1, ¢;/|r;D(0) A{s;(x) — a;}|].

Using

(8.24) M; = [{s;(x) — a;} {s;(x) — a;} Wy (x; A, a))dF 5(x)
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and

(825) M= [{s;(x)—a;} {s;0) — a;} Wi(x; 4, a)dF o)  (j=1,2),

the system of equation (8.19) and (8.20) can be written as

(8.26) Yril{I —PO}AMS + PO)AMI] =1

and

(827)  Aa;={I—PO)}A[s,(x)W(x; A, a)dF;o(x)/[ Wi (x; A, a)dF4(x)
+ P(O)A[sj(x)Wi(x; A, a))dF;4(s)/ | Wi(x; A, a;)dF j4(x).

Since Wj(x; A, a;) depends only on {I —P(0)}A and {I — P(f)}Aa;, and
Wi(x; A, a;) depends only on P(6)4 and P(f)Aa;, we can divide the system
of equation and the estimation equation into orthogonal-part and discriminant-
part as in the following lemma.

LemMMA 8.1. If a system of equation for A° and a (j =1, 2):

(8.28) XirAMi =1,
(8.29) aj = jsj(x)W}’(x; A, aj)dFjo(x)/f Wi (x; A, a))dF (x)
has a solution, and a system of equation for A® and a% (j=1,2):
(8.30) Y rAdME = 1,
(8.31) al = fsj(x) Wi(x; A, aj)dFjo(x)/j Wi(x; A, a;)dF j4(x)

has a solution, then a solution for (8.26) and (8.27) is given by
(8.32) A={I—PO)}A° + P(O)A°, Aa;={I — P(6)}Aa} + P(0)Ad.

Further, the estimation equation (6.8) for y;(x; A, a;) (j = 1, 2) is equivalent with

(8.33) (I = P@O)}Yr;[ A°{s,(x) — a2} WP(x; 4°, a%)dF,(x) = 0
and
(8.34) PO ;r;f A*{s;(x) — al} Wi(x; A% ad)dF(x) = 0.

9. Equivariant M-estimator
Consider a group of transformation on the sample space:
9.1 o = {0 Q — Q}.

Suppose the model {F(x; #); neH} is invariant under ./, that is, every ae o/
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and neH determine a unique element in H, denoted by a7y, such that
aF( ;n) = F( ; an), where &F is the distribution of a X with X being distributed
as F. We denote a = (a9, a®) corresponding to n = ({’, &Y. We assume
that a®#n depends only on ¢ Then we can define the transformation g,
associated with « on whole parameter space @ as

@Oy,

9.2) g.0=1| a“n,
&(é)é

We assume that g, is differentiable with 6.
We say that an estimator T is equivariant if T [aF,, aF,] = g,T[F,, F,]
for all a.

LeEmMA 9.1. (Hampel et al. [11], page 259) If T is equivariant then
9.3) IF(ou, T; &F, F,) = [0g,/0011F;(u, T; F,, F,) (=12,
where [0g,/00'] is the derivative of g,t at T =0.

PrOOF. Because of (&F)™" = a(F*“") and equivariance, we get
(94) TL(&F,", aF,] = g, T[F%", F,].

Take the right derivative of both sides with using chain rule, then we get the
desired result.

THEOREM 9.1. The efficiency and the gross-error sensitivities defined by
(7.8) and (7.14), respectively, are invariant if T is equivariant.

Proor. The misclassification probability of I7, can be written as
9.5) F(R(r); ny) = Pr {aX eaR(r); 12}
= F{aR(x); an,}.

So that aR(6) gives the minimax region for F, ,, and F,, o, which implies
R(g,0) = aR(A) with probability 1. If the support of f(x; 1) does not depend
on 7, then

(9.6) F(R(z); n2) = F(R(g,7); an).
Take the derivative of both sides at 7 = 6§, then we get
©.7) D(6) = [09,/06'1D(g,0).

From Lemma 9.1
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(9.3) D(O)IF(u, T; 0) = D(g,0) IF(ou, T; g,0) (j=1,2),
which implies the invariance of ¢/(T; 6) and y¥(T; 6).

The M-estimator corresponding to ¥ is equivalent if the equation

(9.9) Yo rifvi(x DdF;(x) =0
is equivalent with
(9.10) Yi il wax, g,0)dF (x) = 0.

‘Let 6(f) be the maximal invariant function on @ under the group of
transformation ¢ = {g,; ae /}. Let @;={0e@O; (0) = d}, the orbit of @
such that the value of the maximal invariant function is 6. Let 6; be an
arbitrary fixed element of @. Then there is a transformation a(= a,, say) on
Q such that g,0 = 0;4,.

THEOREM 9.2. For Y which defines an equivariant M-estimator, define
@ =[o1, 9] by

9.11) @i(x, 0) = ¥;(0x, U50) (=1, 2),
then @ defines the same M-estimator as .
Proor. Let 7 be a solution of (9.9). Substitution of « = a, in (9.10) gives
(9.12) 2 rifoi(x, dF;(x) = 0.
Similarly a solution of (9.12) is also a solution of (9.9).

The way of constructing the optimal D-robust equivalent M-estimator can
be partitioned to three steps.
Step 1. Find the maximal invariant § and choose an appropriate set of 6;.
Step 2. For each 6;, compute the likelihood scores, and calculate the
matrix A(6;) and a;(0;) (j = 1, 2) described in Theorem 8.2.
Step 3. By using Theorem 9.2, define the y-functions for all 6.
If k(6) =1, then Lemma 8.1 is useful in reducing the y-functions to simple
forms.

10. The optimal D-robust M-estimators in elliptical opulations

In this section we construct the optimal D-robust equivariant M-estimators
in elliptical populations along the steps described in the previous section.

We return to the elliptical model (1.1) considered in Part I. Since the
symmetric matrix 4 contains redundance, we parametrize the model as
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(10.1) fOesn) = 1417 Ph{x — py A (x — )} G =1,2),

where n; = {y}, vecs(4)'}’, with operator vecs defined as follows (Hampel et
al. [11], page 272):
If S is a symmetric matrix, let vecs (S) be the vector

(10.2) vecs (S) = (s;1/2Y2,..,8,,/2 %, 851, S310eeesSpp—1) -

The whole parameter is 6 = (uj, u3, vecs(4)). For any 2p+ p(p + 1)/2-
dimensional vector «, p-dimensional vector §,, f, and p X p symmetric matrix
I', we often use the notation o = (f,, B,, I') instead of writing o = (8], S5,
vecs (I))'.

From Theorem 1.2, we obtain that k(f) = 1, the minimax discriminant
region R() is given by

(103) R(O) = {x; (x — B/ A~ (uy — p2) > O},
and
(10.4) F(R(1); ny) = Py(1; 0) = Q{c,(z, )},

where ¢,(t, 0) is given by (1.3) and Q is the distribution function whose desify
function is given by (1.4). From Lemma 3.1, the derivative of c¢,(z, 0) is given
by

1
(105) [(a/aT)CZ(TS 0)]‘::8 = - E [éa éa 0]7
where
(10.6) E=A71 A2 (uy — ).

The results (10.4) and (10.5) imply
1
(10.7) D) = — Eqi[éa ¢ 01,

where g, is given by (3.9).
The model is invariant under the affine group of transformation &/ on
the sample space 2 = R?, where

(10.8) o ={a=(L,b); Lis a px p nonsingular matrix, be R?},

and ax = Lx + b for xeQ. The induced transformation on H = {5} and @
are an = (Lu + b, LAL') and g,0 = (Lu, + b, Ly, + b, LAL’), respectively. It
is known that the maximal invariant of @ under G is

(10.9) A% = (uy — po) A7y — 1)
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(cf. Muirhead [22] page 220). @ is partitioned by G as

(10.10) 0 =U, 5004

where each orbit is defined as

(10.11) Oy = {0 = (u1> o> A); (g — o) A7 (uy — ) = 4%},

For each orbit @,’s, we choose 6, = (4,0, I,), where 6 =(4,0,...,0). We
denote n; = (6, I,) and 5o = (0, I).

The transformation a, such that the induced transformation transforms 6
to 6,, defined in the previous section, is

(10.12) oy = (HA Y2, — HA-12,),

where H is an orthogonal matrix whose first row is &', where £ is given by
(10.6). We shortly denote the induced transformation by «, as g,. From
(10.7) and (10.6) the projection matrix P(f,) is given by

(v uo
(10.13) PO)=5|U U 0
0 0 0

where U is a p x p matrix whose 1-1 element is 1 and other all elements are 0.
The score function s(x, n) is given by

(10.14) (e, m) = [47(x — wyw(v), 47 (x — W) (x — uy A~ w(v) — 4717,

where

(10.15) v=(x—pA (x—p
and

(10.16) w(v) = — 2(d/dv) {log h(v)}.

Therefore we obtain s,(x, 6,4) = s;(x — 0, 6,) and s,(x, 8,) = s,(x, 6),
where

zw(z'z)
(10.17) 5:(z, 6p) = 0
vecs {zz’w(z'z) — I}

and
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0
(10.18) s,(x, 0,) = zw(z'z)
vecs {zz'w(z'z) — I}

Let the optimal estimation function be [, ¥,]. From Theorem 8.2 and
Lemma 8.1 we obtain

(10.19) ¥ j(x, BA) P(0,)A%{s;(x, 0,) — al} Wi(x, 6,)
+{I — P(0,)} A°{sj(x, 0,4) — a5} W} (x, 6,)

where

(10.20) Wi(x, 8,) = min [1, ¢;/|r;D(8,) A{s;(x, 6,) — a?} ]
and

(10.21) Wp(x, 04) = min [1, &/[Ir,{I — P(6,)} A°{s;(x, 0,) — a3} 1]

(j=1,2), and where A", a" (h=4d, 0;j=1,2) is a solution of the system of
equations:

(10.22) al = [s;(x, 0,)Wi(x; 0,)dF

1000/ [ WH (x5 0,4)dF jp ,(x)

and

(10.23) P(O4)A*Y ;r;M{ = P(8,), {I—P0,)}A°Y,;r;M;=1— P(6,)

with

(10.24) M} = [ {s;(x, 64) — d}} {s;(x, 0,) — a}} W}(x, 0,)dF jq,(x).
Let

(10.25) i =c;/{r;ID@LI} =2"%¢c;/(r;q) and ¢ =&/r; (j=1,2).

Then the weighting function W}‘(x, 6,)’s are written as

(10.26) Wh(x, ,) = Wh(x — 9, 6,)

and

(10.27) Wi(x, 8,) = Wi(x, 0,) (h=d, o)

where

(10.28) Wi(z, 6,) = min [1, ¢/ || P(6,) A% {s,(z, 8,) — a%} ||}
and

(10.29) Wr(z, 05) = min [1, ¢2/ | {I — P(8,)} A°{s;(z, 6,) — a} ||}
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The system of equations for 4" and a)(h =d, 0;j =1, 2) are given by
(10.30) d} = [ 5z, 00)W}(z; 0o)dF (z; no)/ | W}(z; 6o)dF (25 o)
and

(1031)  PO)A'Y,r;Mé=P(O,), {I—PO)}A°Y,;r;M? =1~ P(0,)

with

(10.32) M = [{s;(z, 05) — a"} {s;(z, Oo) — a} Wi(z; 00)dF (z; n).
Therefore A" and a} (h=d, 0;j =1, 2) do not depend on 4 for given ¢f and
g i=12).

The optimal values of 4" and a} (h =d, 0;j =1, 2) may be calculated by
following iterative method.
The j-th influence function (j = 1, 2) of the maximal likelihood estimator

at F( ;ns) and F( ; n,) is given by er(HA)‘lsj(x, 6,) where J(0,) =r J,(0,) +
r,J,(0,4) with

(10.33) J104) = ['5,(z, O)s;(z, Bo) dF (z: o).

Therefore we set the starting values 4" =J(0,)"' and a}© =0 (h =4, o;
j=1,2). For the k-th value A"® and /™, the k-th weighting functions are
defined as

(10.34) Wi(z, 6,) = min [1, ¢?/|| P(6,) A*®{s;(z, 6o) — a?®} ||}
and
(10.35) Wr®(z, 0,) = min [1, ¢/ |[{I — P(6,)} A°® {s;(z, 6) — a;®} | }.
The (k + 1)th values are given by
(10.36) di** D = [s(z, 0) W (z, 00)dF (z; no)/§ W™z, 00)dF (z; no)
and
(10.37) A+ D — [erMJ'-“"“’]‘l.
where
(10.38) M}'”‘*”

= [{s;(z, 0o) — &}** U} {5,(z, Oo) — A} ** VY WM (z, Oo)dF (z; o)
(h=d, 0;j=1,2).

Actual calculations on the first few cycles of the above iterative process
show that Wi®(z, 6,) is a function of z? and |z,||*> where z = (z,, z;) with
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z, is a (p—1) x 1 vector, and that a}® =[0, 0, («* — 1)I,] and A4"® =
Diag {a}¥,, ai¥,1,_ 1, ai®y, a9, 1,1, A""‘)} with some constants of®), ah®,,
ard),, at¥),, af‘}z") and a semi-d-type matrix A4®. Here Diag {B,, Bz,... Bk}

for scalar or square matrix B)’s (j = 1, 2,--- k), means a square matrix given by

B, 0o --- 0
‘ 0 B, - 0

(10.39) Diag {B,, B,,* B} = ;
0 0 Bk

and the semi-d-type matrix is defined as follows.

DerINITION 10.1. The semi-d-type matrix D of order p = 2, given by five
numbers d; ;, d; ,,d,, d, and d,, is defined as

D, 0 0 }p
(10.40) D=| 0 d, I, , 0 Jp—1)
0 0 dl,ZI(p—l)(p—Z)/Z } r—1Hp-2)/2

where D, is a p x p matrix given by

d, d, - - d

d, d,, d,, d,,
(10.41) Dy=|: d, d, -

Co od,y,

dp dp,Z dp,l dvz
with

1

(10.42) dy,=d;,+d,,, d,,= P d,—d; ).

We use the notation A = D*[d, ,, d, ,, d,, d,, d,] which means that A is
a semi-d-type matrix given by d; ;,d; ,,d,, d, and d,.

If the sequence [a"®, a4®, A*®7] converges to [a", a4, A*] for h =d and
o, then aj and A" (h=d, 0;j =1, 2) are the optimal values and have the same
form as a'® and 4"®, respectively Therefore we guess that a} = [0, 0,
(@"—1)1,] and A" =Diag{a}, , ahy 21,-1, iz 1, ahs, 21‘7 - Aﬁ‘} w1th some
constans o, ak, ’s (k,1=1,2) and A" = D*[d},, d:,, dal, ai, a?]. In order
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to simplify the y-functions we prepare the following lemma which is a modified
vergion of Lemma 1 given by Hample et al. [11] (page 276).

LemMA 10.1. Let A(z) be a p x p symmetric matrix whose elements are
Sfunctions of z = (z,, z3), where z, is a scalar and z, is a (p — 1)-dimensional
vector. If A(z) satisfies the equation

(10.43) A(Tz)=TA@)T,
where I" = Diag {1, I'} for all (p — 1) x (p — 1) orthogonal matrix I'. then

2y, 252 symmetric
(1044)  A(2) =< Vaule 22,2) , et , )
23Wa,2(215 2325) 222504 53(21, 222) — TV 4 4(24, 23 25)
Sfor some functions Y, ,(x, y)’s (k=1,2,3 and 4).

Using the fact that al — bz,z; has the latent roots a of multiplicity p — 2
and a — bz,z,, the norm of vecs {A(z)} is given by

(10.45) | vecs {A(2)} | = = tr {A4(2)*}

RO =

1
= > Wi+ 20205, + (0 — Vi o+ (Yaa — 252,04 517

LEMMA 10.2. Let A(z) has the form given by Lemma 10.1, and
A =D*[a, ,,a;,, a,, a, a]. Let Z(z) be a symmetric matrix given by

vecs {Z(z)} = A vecs {A(z)}. Then Z(z) has the same form as one of A(z)
with Yg,’s (k=1, 2,3 and 4), where

(1046)  Yz1(x, ) = a¥a, 106 Y) + @, {y¥a,3(x ¥) — (P — D¥aalx 1)},

(10.47) Ve, Y)=a;1W42(% ), Yzs(x, )= a;2¥a,3(x, y)
and
(10.48) Vg alx, y) = —a,¥, (% y) + a; 2y¥a,3(% )

p—1

51 a {yWa,3(% ¥) — (p = D¥aalx, 1)}

From (10.17), (10.18) and the above lemma,we obtain
#i(2)

(10.49) AM{s,(z, 0p) — d'} = 0
vecs {A'(2)}
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and
0
(10.50) Asyz, ) — i} = | e |,
vecs {A%(2)}
where
a 121w(Z'2) .
(10.51) 1j(2) =< :,” , ) =12
ay;22,W(z'2)
and
1052) A = ( Yhia(2) symmetric )
! Zz‘ﬁ'/'xj,z(z) Zzzé‘//'kj,s(z) - 1‘/"/'11,4(2)
with
(10.53) Yhi(@) = di{ziw(z'z) — o} + al{z5z,w(Z'2) — (p — 1)},
(10.54) Whia(@) = df 2z, w(Z'2), Yl s(2) = df ,w(z'2)
and

1
_at{z32;w(2) — (p — Dt}

(10.55)  yYh;4(e) = — d{Z2w(zz) — d} —

1
+—la’,{‘zz§zzw(z’z) (h=d,0;j=1,2).
Therefore, from (10.45), we can see that the norm of A"{s;(z, 6,) — a’} is a
function of z? and z,z,, which is given as follows.
(10.56) Il A" {s,(z, 6o) — aj} |I?
= (aZj,l)ZZ%W(Z,Z)Z + (aﬁj.z)zzézz w(z’z)2
1

+ EE{ZfW(Z'Z) — o} {@) + (p — 1)(a)*}

+ {z2,w(22) — (p — Do} {(ap)” + 1/(p — 1)(a7)*}

+ 2{ziw(z'2) — d}} {252, w(z'2) — (p — D)o} {aba} + alal

+ 23232, w(@2' 2@ 1) + 22 1*w(2'2)* (p — 2)/(p — 1)(d] 2)*].

From (10.13), (10.49), (10.50) and (10.51)
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1
(10.57) | P(6s) {A%s,(z Bo) — i} 12 = - (a2 Zhwi(z'2)

Therefore V~V}'(z, 6,) is a function of zZ and ||z,||> (h=d, 0;j =1, 2).
In order to get the system of equations for of, a%;,, di,, a and a!
(h=d, 0;j, k=1,2), we use the following two lemmas.

LemMa 10.3. Let M"=r M} + r,M}, where M! (j=1,2) is given by
(10.32). Then

(10.58) M" = Diag {mu1s mZI,ZIp—I’ mZ1,1, LAY P MY},
with semi-d-type matrix M"Y given by
(1059) Mfi = D*[m’)l.,la mﬁ,l’ m27 mZ’ mf]s
where
mh; | = lew(z z)? W"(z 00)dF(z; no),
mh,=r; — [z5z,w(z'2)? I7Vj"(z; 00)dF(z; no),

mh | = Zr jz z5z,w(z'z)? W"(z 0o)dF(z; 1o),

m 2=Z’j

1
———— [z, I*w(Z'2)? W}(z; 00)dF(z; 1),
-1 1
(10.60) P—D+1

1 -
mh = erif{y?W(y}yj) — o Y2Wh(z; 00)dF(z; 1),

1
mj, = erif{sz(z/z) — )

1 ~
: {p 1 z3z,w(zZ'z) — “;’,2} W,h( 00)dF(z; 1),

h__: 1 _1 { 1
m=2ri (0 =1f T

Lemma 10.4. Let M, be a semi-d-type matrix. D*[m; , m; ,, m,, m,,
m,]. Then the inverse matrix is also semi-d-type, which is given by

(1061) M/; D*[m,t 1 m}. 2’ r/% - mp/"/, mt/y]’

where

2
z32,w(Z'z) — a?,z} W}'(Z; 00)dF(z; no).

(10.62) y=mym, — (p — 1)m?.
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Now the system of equations (10.22) and (10.23) with (10.20), (10.21) and
(10.24) can be reduced to the following system of equations.

“5",1 = IZfW(Z'Z) W}h(z, 0o)dF(z; ’10)/_( VV;‘(Z, 0o)dF(z; 10),

1 ~ ~
“7.2 = p—1 fzézzw(z’z) W}'(Z, 0o)dF (z; "Io)/f VV;'(Z, 00)dF(z; n,),
(10.63) h h -1 _h h -1
Aujk = (muj,k) s Q= (M3 ",
ay=my/y", ap = —mh/y* and al =m}/y"

(h=d,o0;j, k=1,2), where
(10.64) Y =mim! — (p — )m,.

h

Here Myjks

are given by (10.60) and
(10.65) Wi (z, 6o) = min [1, ¢}/vh(z3, 232,)]1,

where the function v%(x, y) is non-negative and is given by
1
(10.66) {tie, y)}? = 5(“2],1)2xw(x +y)?

and

(10.67)

1
{v’(x, )} = E(aZj,1)2XW(x + 9% + (a,‘jj,z)zyw(x + y)?

1
t3 [{xwlx +y) — a5} {(@)* + (p — D (ap)*}

+ {ywlx +y) — (p — Do} {(@)* + 1/(p — 1)(a))*}
+ 2{xw(x +y) — oS} {yw(x + y) — (p — Do} {a%a; + ara)
+ xyw(x + (@3, + y*w(x + y)2(p — 2)/(p — 1)(a5,2)*].

From Theorem 9.2, the optimal estimation functions are ¥ ;(%x, 64)
(j=1,2), where «, and y;(x, 0,) are given by (10.12) and (10.19),
respectively. We can easily check

(10.68) dgx —0=HA Y?(x —p,) and apx = HA Y2(x — py),
and the first elements of ayx — § and ayzx are given by
(10.69) EAT2(x —py) and  EATVE(x — py),

respectively, where ¢ is given by (10.6). - Therefore using Theorem 8.2, Lemma
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8.1 and Theorem 9.2 we obtain the estimation equations which define the
optimal D-robust equivariant M-estimator of § as in the following theorem.

THEOREM 10.1.  Suppose that of, at;,, a5, ab and a! (h=d, 0;j, k=1, 2)
solves the system of equations given by (10.63). Then the following system of
equations for T = (i, li,, A) defines the optimal D-robust equivariant M-
estimator.

;Ti055.1 § D €W P ) W (x)dF (x) = O,
r1agy,1 [ 91Ew(1 9 ) Wi ()dF 1 (x)
= 232 [ 92w (D5 D) W3 (x)dF, (),
ST, J U = EEVPw(;9) Wi (x)dF (x) = O,
Y Lap (i — E8)5; + 39587 Tw(9;9) Wy (x)dF y(x)

(10.70)
=Y ;rjo0{a + (p — Das} [ Wy (x)dF (x),
Y ria% . f(I — E&E)5;9;Ew (99, WP (x)dF (x) = 0,
> rias [ — EEVipid — EEYW(H} D) WP (x)dF (x)
1 a A u
=Yy H - (@, — a)yiI — E&Yp; — az(ﬁ;é)Z} w(9)
+ a%(al + a;:)] W2 (x)dF(x) (I — &),
where
(10.71) Pi= A"V (x — @),
(10.72) E= A2y — i)/ | 4”2y — i)l
and
(10.73) Wh(x) = min [1, c&/o"{(9;&)%, 9;(I — E&)5,}]

with vi(x, y) given by (10.66) and (10.67) (h=d, 0;j =1, 2).

The question of existence and uniqueness of the above estimator should
be answered for each model, i.e., for each function h in (10.1). These problems
are remained for further study.
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