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§1. Introduction and preliminaries

Discrete potential theory has been developed by several authors, e.g.,
R. J. Duffin [1] and M. Yamasaki [9] among others, and analogies of various
potential theoretic properties of Riemann surfaces have been discussed on
infinite networks. For example, the extremal length of a family of paths which
tend to the boundary of an infinite network is studied by T. Nakamura and
M. Yamasaki [5], the boundary limit of Dirichlet finite functions is investigated
by T. Kayano and M. Yamasaki [3] and M. Yamasaki [10] and the extremal
problems with respect to the ideal boundary components of an infinite network
are discussed by A. Murakami and M. Yamasaki [4].

In this paper, we shall be concerned with the Kuramochi boundaries of
infinite networks. In §3, we give some examples of Kuramochi functions on
infinite networks and in §4, the corresponding Kuramochi boundaries. In the
last two sections, we shall study extremal problems related to the Kuramochi
boundary; the relation between the extremal distance and the Dirichlet
principle related to the Kuramochi boundary in §5 and the relation between
the extremal width and the flow problem with respect to the Kuramochi
boundary in §6.

Let X be a countable set of nodes, Y be a countable set of arcs, K be
the node-arc incidence function and r be a positive real function on Y. We
assume that the graph {X, Y, K} is connected, locally finite and has no
self-loop. The quartet N ={X, Y, K, r} is called an infinite network. For
notation and terminologies concerning infinite networks, we mainly follow [3]
and [5].

For a set S denote by L(S) (resp. L*(S)) the set of all real functions
(resp. non-negative real functions) on S. For 4 = X, by ¢,(e L* (X)) we shall
mean the characteristic function of 4. If A = {a}, we write ¢, for ¢,. The
support of a function f is denoted by Sf.

For u, ve L(X), we set

du(y)= —r(y)" 'Y . x K(x, Yu(x), yeY
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and

(1.1) (u, v) = ). oy 70 [du(y)1 [dv(»)],

provided the sum is well-defined. D(u) = (u, u) is called the Dirichlet integral
of u. If D(u) < oo, then u is called a Dirichlet finite function.
For ue L(X), we set

du(x) =Y,y K(x, y)[du(y)],  xeX,
which is called the Laplacian of u.
LemMa 1.1 (cf. [8; Lemma 3]). If u, ve L(X) and Su (or Sv) is finite, then
Yeex Aux)o(x) =Y, u(x)4v(x) = — (u, v).

A function ueL(X) is said to be harmonic (resp. superharmonic) on a
subset A of X if Adu(x) =0 (resp. du(x) < 0) on A.

§2. Dirichlet principle

We take a finite nonempty subset A4, of X once for all, and set
X/ = X - Ao. Set

9 =2 ={ueL(X); D(u) < oo and u=0 on A,}.

9 is a Hilbert space with respect to the inner product defined by (1.1).
Let A be a subset of X' and let peL(X). We denote by Z,(¢) the
class of all functions in £ which take values ¢ on A4:

D4(p)={ueP;u=¢ on A}.
We formulate a Dirichlet principle in N as follows.

THEOREM 2.1. Let A be a subset of X' and let pe L(X). If 24(¢) #9,
then there exists a unique he 9 ,(¢) which has the minimum Dirichlet integral
among the functions of 2,(p). The function h is harmonic in X' — A and is
characterized by

2.1 heP (o) and (u—h, h)=0 for all ue2,(p).

For a proof of Theorem 2.1, see for example [8; Theorem 2].
We shall denote the above function 4 by ¢@,.

REMARK 2.1. In case A is finite, 9,(p)# @ for any ¢eL(X). If
D(p) < 0, then 9 ,(¢p) # @ for any subset A of X'.

We give some properties of ¢ ,.
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THEOREM 2.2. Let A and A’ be subsets of X' such that A < A' and let
vel(X). If D4(¢p) # O, then

(P4 = 04

Proor. Since (¢, ) €24(9), D(¢,) < D((¢4),). On the other hand,
04.€94(p,), and hence D((¢,)4) < D(¢,). By the uniqueness, we have

(P4 = @4

For a subset A of X', put L, = {pe L(X); 2,(¢) # 3}. Tt follows from
(2.1) that @+ ¢, is a linear mapping from L, into 2.

THEOREM 2.3. Let weL,. Then
22) min (0, inf, @) < ¢, < max (0, sup,¢).

PROOF. Suppose « = max (0, sup,¢) < oco. Then min (4, 0)e P 4(0) for
:any ue 2,(¢) and D(min (4, «)) < D(u) by [8; Corollary 1 of Lemma 2]. This
implies the second inequality in (2.2). Similarly, we obtain the first inequality.

§3. Kuramochi function g

In this section we give a discrete analogue of the Kuramochi function in
the theory of Riemann surfaces.

Let ae X', and take A as {a} and ¢ as 1 in Theorem 2.1. Namely, we
consider the function 1,e2. Obviously, 1, is not a constant function, so
that D(1,,) # 0.

DerINITION 3.1. We call the following function g,=g(:,a)e2 the
Kuramochi function with pole at ae X':

(31) ga = g( ) a) = l(a)/D(l(a})'
THEOREM 3.1. 1) 0=g,=<4,(a) on X'.
2) AG,= —¢, in X', and hence §, is harmonic in X' — {a} and

superharmonic in X'. Furthermore, §, >0 on the component of X' which
contains a, and it vanishes on the other components. Here a component of X'
is defined as a maximal connected subset of X'.

3) The function g, is the reproducing kernel of 2, i.e.,

(3.2) (Ga> u) = u(a) for every ue2.
4) If f is a function on X which has finite support Sf < X', then

(3.3) F@) = =Y oy 47 (x)G,0).
) Y oo 49a00) = 1.
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Proor. 1) follows from Theorem 2.3.

2) Let h=1,. By (21), we have (¢, h)=D(h). By Lemma 1.1,
(¢4, h) = — 4h(a), and hence D(h) = — 4h(a). This implies 4g,(a) = — 1. By
Theorem 2.1, 4G, =0 in X' — {a}. By Theorem 23, §,=0 on X’'. In the
same way as in the proof of [9; Lemma 2.1], we see that §, >0 on the
component of X’ containing a. The rest of the assertion follows from the
fact that 1y, has the smallest Dirichlet integral among the functions in Z,(1).

3) By (2.1), (u—u(a)ly,, 1,) =0, from which (3.2) follows.

We have 4) using 2) and Lemma 1.1.

5) Since 1= £4,€7, 1= (o 1 = &4) = — {r £40) = 300 45(x) by 3)
and Lemma 1.1.

COROLLARY 3.1. g,(b) = g,(a) for a, be X'.

ProOF. Setting u = g, in (3.2) and next changing the role of a and b,
we have the assertion.

Since §,€ 9, we can define (g,), for any subset 4 of X'. We have

THEOREM 3.2. Let A be a subset of X'. If aeA, then (§,)4 =g, on
X. If a¢ A then (§,)4 < g, on X under the additional assumption that A is finite.

Proor. For simplicity we put § = g, and g, =(g,)4. IfaeAd,theng,=g
by Theorem 2.2. Next, let a¢ A and put u=g—g,. By Theorem 2.2,
Ugyg = . Since u=0 on A, Theorem 2.3 implies that u = min (0, u(a)).
Since (du)(a) = — 1 (Theorem 3.1, 2) and Theorem 2.1), u cannot attain its
minimum at x =a (cf. the proof of [9; Lemma 2.1]). Hence u =0, i.e.,

g2Z9ga
Now we give a characterization of the Kuramochi function g, in terms

of flows from A, to {a}.
For we L(Y), let us put

Iw;x) =3, K(x, pw(), HWw) =3, r(p)w)*.

We say that we L(Y) is a flow from A, to {a} if I(w):= =) _, I(w;x)=
I(w; a) and I(w; x) =0 for all xe X' — {a}. Denote by F(A,, {a}) the set of
all flows from A, to {a} and by F,(A,, {a}) the closure of the set
{weF(4y, {a}); Sw is finite} in the Hilbert space L,(Y;r):= {weL(Y); H(w)
< oo} with the norm [H(-)]'/2.

Given x, x'€ X, a path P from x to x' is the triple (Cx(P), Cy(P), p) of
a finite ordered set Cy(P) = {xo, X, X5,...,X,} of nodes, a finite ordered set
Cy(P) = {y1, Y2, V3,...,¥n} of arcs and a function peL(Y), called the path
index of P, such that
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Xo =X, X, =X, X; #x; (i #]),

{xeX; K(x, y) #0} = {x;_{, x;} for i=1,2,...,n,
p(y)=0if y¢Cy(P) and p(y;)) = — K(x;_,, y) for i=1,2,...,n.
Consider the following extremum problem:

247

(3.4) Find e, =inf {H(W); weFy(A4o, {a}) and I(w) = 1}.

It is known ([8, p. 244]) that problem (3.4) has a unique optimal solution
w. Then, for x'e A, we can define a function v, e L(X) by

ve(x) =0 and v (x) = ), r()P()W()

where p is the path index of a path P from x' to x.

depend on the choice of P (see [8, p. 247]).

THEOREM 3.3. §,(x) = min {|v,.(x)|; X' € Ay} and §,(a) = e,.

for x # x',

This function does not

PrOOF. Let di(x) = min {|v.(x)|; X' €4o}. Then e, 'ieP,(1) and |dﬁ|e

< W (cf. [6; Lemma 12]).

e,D(1,) =1, i.e, g,(a) =e,, and that

D(e; 'it) = e, *D(8) < e *H(W) = e; ' = D(1,).

Therefore, e, 'ti = 1, by Theorem 2.1, and hence §, = .

ExampLE 3.1 (Fig. 1).

other pair of (x, y).

Let X = {Xq, X1, X25...}3
K(xn—l’ yn)= _19 K(xn, yn): 1 for n=1, 27 3»
Put A, = {xo}. Then F(A,, {x,}) = {W,}, where Ww,(y;)

As in the proof of [6; Theorem 11], we see that

Y={y1, y2 ¥3,- -}
and K(x, y)=0 for any

=1 for i=1,2,3,...,n and W,(y) =0 for any other yeY. Therefore, by

Theorem 3.3 we have

0 for k=0
(35) Gu(x0) = Z']le r(y) for k=1,2,3,..,n
Z;=1 r(yj) for k =n—+ 1, n+ 2’.
’, Vs y\3 L . Yn .Vn-\i'l
Xo 4 X i’ Xy i X3 e § xn—17 Xn . Xn+1

ExampLE 3.2 (Fig. 2). Let X = {xo}u{x;i=1,2,3,...andj=0, 1, 2,...};
Y={®;i=1,23..andj=0,12..};
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=1 for (x, )= (xo, ¥, (%, yi%) or (x{, yI* 1)

(i=1,23,...and j=1,2,3,..)
1 for (x, y) = (x¥, y) (i=1,23..and j=01,2,..)
0 for any other pair of (x, y).

K(x, y) =

Put 4, = {x,}. Then, for m=0 and nx1, Fo(Ag, {x{}) = {W,..}, where
Wun(®) =1 for i=1,2,3,. 1, W,(0)=1 for j=0,1,2,...,m and
Wp.n(y) = 0 for any other er. By Theorem 3.3 we have

Sk for xe X, k=0,1,2,...,n—1)
(k=0,1, 2,...,m)

Sp—1 +s™ for x=x¥  (k=m+1,m+2,..)
(k

=n+1,n+2,..),

. Sp1 + 5% for x =x®
(B6)  Gum(x) = !

Sy for xe X,

where X, ={xo}, X, ={x¥;j=0,1,2,...}, s0=0, s,= Z, L r0%”) and
sf,"’—ZFo roW), k=0,1,2,....,n=1,23,....

A N /L A ;L AN A A
3 (3)
x xQ X6
3
N y(lii) A y‘z:” A A e A A\y: ) A A eeeennees
x@ @ x@
A y‘lZ) A y(,lz) A A A AyP A A
x{M X (g
n
(1) 1
N )’1“ 4V A A A A yf, A A
e e e i
(0) x(0) 1(0) 4(0) o0~ ©) 1(0) (0 O ...
Xo Y1 Xy V2 XU Y3 X3 Xy Yty XnerYnt2

ExampLE 3.3 (Fig. 3). Let X, = {xo}, Xy = {x(i1,....,1); i1,...,i, = 0 or
1}, Yo = {¥(is,..rin)s isesip =0 0r 1}; X = UL o Xy Y Ui=1 Yuys
- 1 fOI' (X, y) = (x09 y(O))a (xo, ,V(l)), (x(i19--'ain), y(i15---’in9 0))
OF (X(iyy..osin)s Y(its.rsin, 1)) n=1273,..)

1 for (x, y) = (x(iys...,in)s Y(irs....0)) n=123,..)
0 for any other pair of (x, y).

K(x, y) =

Put A, = {xo}. Then Fo(Ao, {X(i1;...,in)}) = (Wi, . i} Where Wy, (¥)
is equal to 1 for y=y(i,...,i,) (k=1,2,...,n) and to O for any other
ye Y. Hence, we have



Kuramochi boundaries of infinite networks 249

3.7)
Yoo t0ly,...,0))  for xeC(iy,...,i,) (m=1,2,...,n)
Gxtiyoin®@ =19 Doy 0.0 0) for xeX(i,...,i,)
0 for x =x, or xeX(1 —1iy),

where C(il’---’im) = {x(ilv”'!im)’ x(il,...,im, 1- im+1)}U(U:0=2{x(il’---’im’
l"im+1’jm+2’---’jm+a);jm+2,---’jm+4=00r 1}) (m=1, 2,---,n_1);X(i1,---,in)
= {x(il’-"’in)}u(uzo:l {x(ilau"im.jn+1,'--ajn+4);jn+1,...,jn+£ =0 or 1})

x(©, 0, 0) x(1, 0, 0)
y(0, 0, 0) ¥(1, 0, 0)
0,0 x(1, 0)
0.0, N0 y(1,0, 1)
) §>x(0, L AR UL «(L0.1)
x(0) o x(1)
x0,1,0 / 7O v x(1, 1, 0)
y(©0, 1 y(1, 1)
Y010 XMoo x, ¥ YL L0
y©, 1, 1) y(1,1,1)
x0, 1, 1) x(1,1,1)
Fig. 3

ExampLE 3.4 (Fig.4). Let X = {xq, x;, X1, X3, X5,...}; Y= {y1, y1, ¥{,
Y25 Vs Visee}s
—1 for (x,y)=(xo, y1), (X0, ¥1)s
(i Yixn), (X0, yivg)or (x, p)  (1=1,2,3,..)
1 for (x, y) = (xi, y2), (x{, yi) or (x{, y{) (i=1,2,3,.)
0 for any other pair of (x, y).

K(x, y) =

Put Ay = {x,}. We can not apply Theorem 3.3 to this case. However,
solving simultaneous difference equations we have the following results.

1) The case r(y) =1 for any yeY. In this case we have

k
5+a(k, n) for x =x, (k=0,1,...,n

g+cx(n,k) for x = x, kk=n+1,n+2,..)
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(3.8) G, (x) =
E—a(k, n) for x = x; k=1,2,...,n)

n
E—a(n, k) for x=x; k=n+1n+2,..),

where a(k, n) = {2+ /3 = 2 — /34/{4./32 + /3)}; and §,,(x) = 4, ()

(X =x, if x=x, and £ = x, if x = x/).

2) The case r(y)=r(y)=1 (i=1,2,3,..) and r(y/)=i(i +2)* (i=
1,2, 3,...). In this case we have

k
E+B(n, k) for x=x, (k=0,1,...,n

g+Mkm for x=x (k=n+1,n+2..)

39 G, (x) = L
E—ﬁ(n, k) for x = x; k=1,2,...,n

g-ﬂmm for x=x; (k=n+1n+2..),

1 n+2k+2 i
where B(n, 0) =0, B(n, k) = — STV ) and G (x) = 4. (R).
B(n, 0) B(n, k) > il k+1<2,_1i+2),an (%) = G, (%)

Xy Y2 Xy Y3 X3 Y& . Xn Vn+1Xns 1 Vn+2
> > > > > > P crieranes
¥, > > >
x yu " " " ”
0 : Y, S v Yoy
yl > > > >- > >- P e
' ’ ’ ’ ' L ’y ’ !
X1 Y X% V3 X3 s Xy Vasg Xpr1 Yne2
Fig. 4

§4. Definition of the Kuramochi boundary of N

In this section we use notation §(x, a) for g,(x). We say that a sequence
{x;} in X' tends to the boundary of N if, for any finite subset A4 of X' there
exists j, such that x;¢ A for all j = j,. Given such a sequence {x;}, we see
by Corollary 3.1 and Theorem 3.1, 1) that {G(x, x;)}; is bounded for each
xeX'. Consequently, {G(- , x;)} has a convergent subsequence. If {g(-, x))}
converges, then {x;} will be called a fundamental sequence. When the limit
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functions of two fundamental sequences {g(-, x;)} and {g(-, xj)} are equal
to each other, we say that {x;} and {x} are equivalent and call an equivalence
class a Kuramochi boundary point of N. We call the set of all Kuramochi
boundary points the Kuramochi boundary of N and denote it by dN. If xe X,
ze0N and {x;} in X' determines z, then we set §(x, z) = §,(x) = lim;_ , §(x, x)),
which does not depend on the choice of fundamental sequence {x;}. Obviously,
g(x,z) =0 for xe Ay and §(-, z) is harmonic on X’'. By Theorem 3.1, 5) we
see that ), Ag(x, z) =1 for any zedN.
We denote X’UON by X and introduce a metric by

_ lg(X, xl) - g(x: xz)l
A0t X3 = Do ) e — 500, %)

for x,, x, € X, where a(x) is a positive function on X’ such that erx, a(x) < oo.
It is easy to see that with this metric, X is a compact metric space and that
the topology induced by d on X' is the discrete topology. By our definition
a sequence {x;} c X converges to an xe X in d if and only if §(- , x) = g(-, x)
as j — oo ; in particular, g(x, z) is a continuous function of z for each xe X'.

REMARK. As in the continuous case, we can show that the definition of
boundary points of N does not depend on the choice of A, (cf. [6; Theorem
12]).

The Kuramochi boundaries of the networks given in §3 are described as
follows:

ExampLE 4.1. Let N and A, be the same as in Example 3.1 with
r(y) =r,. We can see that lim;,, g(x, x;) is equal to 0 for k =0 and to
S rifor k=1,23,.. This implies that {x;} is a fundamental sequence

and that ON consists of only one point.

ExaMPLE 4.2. Let N and A, be the same as in Example 3.2. We can
easily verify that {x{”};, and {x¥}; for n=1,2,3,... are fundamental
sequences. Let z® and z, be the boundary points determined by {x{”}; and
{x{"}; respectively. Then we have

gx, 2 =5, for xeX, (k=0,1,2,.),
and
Sk for xe X, k=0,1,2,...,n—1)
g, z) =4 s,_y +s® for x=x¥ (k=0,1,2,.)
S, for xe X, (k=n+1,n+2..).

It is easy to show that any fundamental sequence is equivalent to one of the
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above ones. Hence we know that oN = {9, z, z,,...}. Each z, is isolated
in ON and lim,_, , z, = z(?.

ExampLE 4.3. Let N and A, be the same as in Example 3.3. Let {i,}
be a sequence whose elements consist of 0 or 1. Then, it is evident that
{x(iy, iz,...,in)}, forms a fundamental sequence. In fact, let z({i,})edN be
determined by {x(iy, i,,...,i,)}, Then we have by (3.7)

Yi=y TOirseni))  for xeCliy,...,i,) (m=1,2,3,..)
0 for x = x5 0or xeX(1 —iy).

§x, 2({i,}) = {

Identifying z({i,}) with {i,}, we see that ON = {{i,}2;i,=0 or 1}, and in
fact it is homeomorphic to the Cantor set in [0, 1].

ExaMPLE 4.4. Let N and A4, be the same as in Example 3.4. Then, in
the case 1) we know that N consists of only one point z and that g(x, z) = k/2
for x =x, x; (k=1,2,3,..). In the case 2), we see that {x;} and {xj} are
different fundamental sequences. Let z and z' be the Kuramochi boundary
points determined by {x;} and {x}} respectively. Then we have

1 k+2e, i
k- Iyk
{ k+1<71i42

5 } for x = x, k=1,23,..)

1 i

k+2
——{k—L :.‘zl_;—} for x =x, k=1,23,.)
2 k+1 i+2

g.(x) =

and §,(x)=4,x) X=x, if x=x, and £=x, if x=1x;). We see that
ON = {z, Z'} in this case.

§5. Extremal distance and Dirichlet principle related to the Kuramochi
boundary

For a subset 4 of X, a path from A to the ideal boundary of N is the
triple (Cx(P), Cy(P), p) of an infinite ordered set Cy(P)= {xo, X;, X3,...} of
nodes, an infinite ordered set Cy(P) = {y;, ¥, V3,...} of arcs and the path index
p of P such that Cx(P)nA = {xo}, x; # x; for i #j, {xeX; K(x,y) # 0} =
{xi—1, x;} for i=1,2,..,p(y) =0 if y¢Cy(P) and p(y) = — K(x;—y, y) for
i=1,2,.... We denote by P, ., the set of all paths from A to the ideal
boundary of N. We put P, =,

Let I' be a family of paths in N. The extremal length A(I") of I is
defined by

Py, -

AMI)~! = inf {H(W); WeE(')},
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where
E(I'y={WeL"(Y); HW) < o0 and Zyecym r()W(y) =1 for all Perl'}.

In case I' =0, we set A(I') = o0. We say that a property holds for almost
every path of I" if there is I'" = I'" such that A(I" — I'') = o0 and the property
holds for all PelI'’. Note that if {I},} is a countable set of families of paths
and A(I,) = oo for each n, then A(,I,) = oo.

For PeP,, with Cx(P) = {xq, Xy, X,,...} and ueL(X), we write u(P) =
lim, _, ., u(x,) if exists. We know ([3; Theorem 3.1]) that u(P) exists for almost
every PeP_ if u is a Dirichlet finite function.

We say that a path PeP,, , with Cy(P)= {x,, X;, x,,...} tends to a
point of ON if {x;} is a fundamental sequence, i.c., if {g,,} is convergent.

THEOREM 5.1 (cf. [2; Proposition 1]). Almost every path of P, ,, tends
to one point of ON.

ProoF. Let I' be the set of all paths of P, ., which do not tend to
any point of ON. Then, I' = ) . I',, where I', = {PeP,, ,; g(x, P) does not
exist}. On the other hand, we know that for each xe X', §(- , x) is Dirichlet
finite, and hence by Corollary 3.1, so is g(x, -). Thus we see that A(/",) = oo,
and hence A(I") = oo since X' is a countably infinite set.

Now we prove a kind of Dirichlet principle similar to [7; Theorem 1]:

THEOREM 5.2. Let I" be a subfamily of P, with A(I') < o, and let ¢(P)
be a function defined for almost every path P of I'. Let

9] ={ue2; u(P) = ¢(P) for almost every PeI}.

If 9L # @, then there exists a unique function HI which minimizes D(u) among
the functions u in 9;. H[ is harmonic on X' and is characterized by

(5.1) Hfe 2! and (H,uy=0  for all ue2}.

Proor. It is enough to show that 2 is a colsed convex subset of
9. Obviously, 9; is convex. Now let {u,} be a sequence in &, such that
D(u, — ug) >0 for some uoe?2. We shall show that uoe2,. Let W,(y) =
|du,(y) — dug(y)|. Then H(W,) = D(u, — uy) » 0(n - 00). Set

I'' ={Perl; uy(P) exists and u,(P) = ¢(P) for all n}.
Then A(I"' — I'') = 0. We can find a subfamily I"” of I"’ and a subsequence
{W,.} of {W,} such that lim,_, ) o "MW, ()=0 for all Pel'" and

MI'—TI"y= oo (cf. [4; Lemma 1.3]). Then A(l'—I'") = oo and for each
Perl'" we have
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ZyeCy(P)r(y) VVnk(y) g limi—’oo lunk(xi+1) - uO(xi+ 1)' - 'unk(xO) - uO(xO)I
= |ty (P) — uo(P)| — |y, (x0) — 1o (xo)]
= [¢(P) — uo(P)| — |up, (xo) — uo(Xo)l,

where Cy(P) = {Xo, X;,...}. Letting k — oo, we conclude that uy(P) = ¢(P) for
Pel'". Hence uoe 2!, which implies that 9 is closed.

Let Z be a subset of N and let
P, z={PeP, ;P tends to a point in Z}.

Then, Theorem 5.2 shows that H}Z is the optimal solution of the following
extremal problem:

(5.2)
Find e(4y, Z) = inf {D(u); u€ 2 and u(P) =1 for almost every PeP,, ,}.

Thus, e(A,, Z) = D(H{?). Here, P, implies P, ,. We shall show
THEOREM 5.3. e(Aq, Z) = A(P4, )" ".

The value A(P,, ;) may be called the extremal distance between A, and Z.
In order to prove Theorem 5.3, we consider the following extremal
problems: Let ce L*(Y).

(53) (Min-work problem) Find N(P,, ;; ¢) = inf {ZyECy(P)C(y); PeP,, ;};

(5.4) (Max-potential problem) Find
N*(Ao, Z; ¢) = sup {inf {u(x); xe Ao} — sup {u(P); Pel,, 7..}; ueS¥},

where
S¥ ={ueL(X); ) . x K(x, yu(x)| < c(y) for all yeY}
and
Iy z.0= {PEPAO,Z; Zyscy(p)c(y) < 00}.
In the same way as [4; Theorem 2.1] we obtain

LemMma 5.1, If Iy, ;.. # 9, then N(P4, z;¢)=N*(Ao, Z;c) and the
problem (5.4) has an optimal solution ti(x) such that i(P) = 0 for all PeT 4, ;...

Using this lemma, we can prove Theorem 5.3 in the same way as in the
proof of [4; Theorem 2.2].
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§6. Extremal width and extremal flow problem with respect to Kuramochi
boundary

First we recall the notions of cuts and extremal width.

Let A and B be mutually disjoint subsets of X. A cut between 4 and
B is a nonempty subset Q of Y such that there exist mutually disjoint subsets
Q(A) and Q(B) of X satisfying the following conditions:

0(4)> A, Q(B)> B, Q(A)uQ(B)=X
and
Q={yeY;e(»)nQ(A4) # D and e(y)nQ(B) # O},

where e(y) = {xe X ; K(x, y) # 0}. Let Q, 5 be the set of all cuts between A
and B. A cutin N is a subset Q of Y such that Qe Q, p for some mutually
disjoint subsets A and B of X.

Let A be a family of cuts in N. The extremal width u(A) of A is defined
by

w(A)~! =inf {(H(W); We E*(A)},
where

E*(A)={WeL*(Y); HW)< o and Y _,W(y) 21 for all QeA}.

yeQ

If A =0, we set u(A) = oo.

Now, let Z be a closed subset of N and let Z,,, = {xe X'; d(x, Z) < 1/m},
where d is the metric introduced in §4. Set Q4 7z = Un-1 Quo.2,n We shall
show that the extremal width u(Q,, ;) is given by the value of an extremal
flow problem.

Denote by F(Ay, Z,) the set of all flows from A, to Z,, i.e.,

F(Ay, Zy) = {weL(Y); I(w; x) =0 for all xeX' —Z,,,
Y vezom W5 X)| < 00 and I(w; Ag) + 3., 1(w; x) =0}

and let Fy(Ay, Z,,,) be the closure of {we F(Ay, Z,,); Sw is finite} in L,(Y;r)
(cf. §3). Put Fo(Ag, Z) = =1 Fo(Ao, Zy) and call weFy(4y, Z) a flow
from A, to Z. We condider the following extremal problems:

6.1) Find e*(4y, Z,) = inf {H(w); we Fo(Aq, Z,,)) and I(w; Ag) = — 1};
(6.2) Find e*(4o, Z) = inf {H(w); we Fo(Ag, Z) and I(w; Ay) = — 1}.
By a slight modification of the proof of [5; Theorem 4.1], we can prove

LEMMA 6.1. e*(Ag, Z ) = 1(Q40.2,.,) " " for every m.
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Also, in the same way as [4; Theorem 3.1], we have
LemMMa 6.2. lim,,_, e*(A4q, Z,) = e*(4y, Z).

Using these lemmas, we obtain the following theorem in the same way

as in the proof of [4; Theorem 4.1]:

THEOREM 6.1. e*(Ag, Z) = u(Q4,.2) "

REMARK. If ue%D,,(1), then u(P)=1 for every PeP,,,. Hence

D(1z,) = e(A4y, Z). On the other hand, as in the proof of [8; Theorem 11],
we can show that D(l;,) = e*(4q, Z,)~*'. Therefore, by Lemma 6.2 and
Theorems 5.3 and 6.1, we have

)“(PAO,Z)_X = e(4y, Z) £ e*(Ao, Z)-1 = #(QAO,Z)-

We do not know whether the equality e(A4,, Z) = e*(4y, Z)~* holds or not.
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