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§1. Introduction and preliminaries

Discrete potential theory has been developed by several authors, e.g.,
R. J. Duffin [1] and M. Yamasaki [9] among others, and analogies of various
potential theoretic properties of Riemann surfaces have been discussed on
infinite networks. For example, the extremal length of a family of paths which
tend to the boundary of an infinite network is studied by T. Nakamura and
M. Yamasaki [5], the boundary limit of Dirichlet finite functions is investigated
by T. Kayano and M. Yamasaki [3] and M. Yamasaki [10] and the extremal
problems with respect to the ideal boundary components of an infinite network
are discussed by A. Murakami and M. Yamasaki [4].

In this paper, we shall be concerned with the Kuramochi boundaries of
infinite networks. In §3, we give some examples of Kuramochi functions on
infinite networks and in §4, the corresponding Kuramochi boundaries. In the
last two sections, we shall study extremal problems related to the Kuramochi
boundary; the relation between the extremal distance and the Dirichlet
principle related to the Kuramochi boundary in §5 and the relation between
the extremal width and the flow problem with respect to the Kuramochi
boundary in §6.

Let X be a countable set of nodes, Y be a countable set of arcs, K be
the node-arc incidence function and r be a positive real function on Y We
assume that the graph {X, Y, K} is connected, locally finite and has no
self-loop. The quartet N = {X, Y, K, r} is called an infinite network. For
notation and terminologies concerning infinite networks, we mainly follow [3]
and [5].

For a set S denote by L(S) (resp. L+(S)) the set of all real functions
(resp. non-negative real functions) on S. For A c X, by εA(e L+ (X)) we shall
mean the characteristic function of A. If A = {α}, we write εa for ε{a}. The
support of a function / is denoted by Sf.

For M, veL(X), we set

du(y)= - φ J - ^ ^ J C ί x j J u ί x ) , yeY
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and

(1.1) (u,v) = Σye

provided the sum is well-defined. D(u) = (w, u) is called the Dirichlet integral

of u. If D(u) < oo, then u is called a Dirichlet finite function.

For ueL(X), we set

which is called the Laplacian of u.

LEMMA 1.1 (cf. [8; Lemma 3]). If u, veL(X) and Su (or Sv) is finite, then

ΣxeX ΛU(X)V(X) = ΣxeX u(x)Δv(x) = - (w, v).

A function ueL(X) is said to be harmonic (resp. superharmonic) on a

subset A of X if Δu(x) = 0 (resp. Δu(x) ^ 0) on A.

§2. Dirichlet principle

We take a finite nonempty subset Ao of X once for all, and set

X' = X-A0. Set

g> = @Ao = {ueL(X); D(u) < oo and u = 0 on Ao}.

3) is a Hubert space with respect to the inner product defined by (1.1).

Let A be a subset of X' and let φeL(X). We denote by @Λ(φ) the

class of all functions in 3) which take values φ on A\

\u = φ on A}.

We formulate a Dirichlet principle in N as follows.

THEOREM 2.1. Lei A be a subset of X' and let φeL(X). If 3)A{φ) Φ 0,

ί/z£« there exists a unique hs3ιA(φ) which has the minimum Dirichlet integral

among the functions of 3>A{φ). The function h is harmonic in X' — A and is

characterized by

(2.1) he@A(φ) and (u - h, h) = 0 for all ue3>A{φ).

For a proof of Theorem 2.1, see for example [8; Theorem 2].

We shall denote the above function h by φA.

REMARK 2.1. In case A is finite, 3)A{φ)φQ for any φeL(X). If

D(φ) < oo, then 3)A(φ) Φ 0 for any subset A of X'.

We give some properties of φA.
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THEOREM 2.2. Let A and A' be subsets of X' such that A a A and let

φeL(X). If ®A(φ) Φ 0, then

{ΨA)A' = ΨA

PROOF. Since (φA)A'€@A(φ)9 D(φA) ^ D{{φA)A). On the other hand,

φAeS)A\φA), and hence D((φA)A) ^ D(φA). By the uniqueness, we have

(ΨA)A' = ΨA-

For a subset A of X', put LA = {φeL(X); 9A{φ) Φ&). It follows from

(2.1) that φt->φA is a linear mapping from LA into 2.

THEOREM 2.3. Let φeLA. Then

(2.2) min (0, inf^φ) ^ φA ^ max (0, sup^φ).

PROOF. Suppose α = max (0, s u p ^ ) < oo. Then min (w, a)e9A(φ) for

any ue@A(φ) and D(min (M, α)) g D(w) by [8; Corollary 1 of Lemma 2]. This

implies the second inequality in (2.2). Similarly, we obtain the first inequality.

§3. Kuramochi function g

In this section we give a discrete analogue of the Kuramochi function in

the theory of Riemann surfaces.

Let aeX', and take A as {a} and φ as 1 in Theorem 2.1. Namely, we

consider the function \{a)eQ). Obviously, l{fl} is not a constant function, so

that D(l{a)) Φ 0.

D E F I N I T I O N 3 .1 . W e cal l t h e f o l l o w i n g f u n c t i o n ga = g( , a)eQ) the

Kuramochi function with pole at aeX'\

(3.1) ga = g(. ,a)=\{JD(l{a}).

THEOREM 3.1. 1) 0 ^ ga ^ ga(a) on X'.

2) Δga = — εa in Xf, and hence ga is harmonic in X' — {a} and

superharmonic in X'. Furthermore, ga > 0 on the component of X' which

contains α, and it vanishes on the other components. Here a component of X'

is defined as a maximal connected subset of X''.

3) The function ga is the reproducing kernel of Q), i.e.,

(3.2) (ga, u) = u(ά) for every

4) If f is a function on X which has finite support SfczX', then

(3.3) f{a)=-YjχeXΔf{x)ga{x).



246 Atsushi MURAKAMI

PROOF. 1) follows from Theorem 2.3.

2) Let Λ = l { β ) . By (2.1), we have (εa,h) = D(h). By Lemma 1.1,

(εβ, h) = - Δh{a), and hence D(h) = - Δh(a). This implies Δga(a) = - 1. By

Theorem 2.1, Δga = 0 i n Γ - {a}. By Theorem 2.3, #fl ^ 0 on X'. In the

same way as in the proof of [9; Lemma 2.1], we see that ga > 0 on the

component of X' containing a. The rest of the assertion follows from the

fact that l {α} has the smallest Dirichlet integral among the functions in %, }(1).

3) By (2.1), (u - u(a)l{a)9 ί{a)) = 0, from which (3.2) follows.

We have 4) using 2) and Lemma 1.1.

5) Since 1 - εAoe% 1 = {ga9 1 - εAo) = - (ga9 εAo) = ΣxeAo Aga{*) by 3)

and Lemma 1.1.

COROLLARY 3.1. ga{b) = gh{d) for a, beX'.

PROOF. Setting u = gb in (3.2) and next changing the role of a and b,

we have the assertion.

Since gaeQ), we can define (ga)A for any subset A of X'. We have

THEOREM 3.2. Let A be a subset of X'. If aeA, then (ga)A = ga on

X. If aφA then (ga)A ^ ga on X under the additional assumption that A is finite.

PROOF. For simplicity we put g = ga and gA = (ga)A. If aeA, then gA = g

by Theorem 2.2. Next, let aφA and put u = g — gA. By Theorem 2.2,
uAυ{a} = u- Since u = 0 on A, Theorem 2.3 implies that u ^ min (0, u(a)).

Since (Δu)(a)= — 1 (Theorem 3.1, 2) and Theorem 2.1), u cannot attain its

minimum at x = a (cf. the proof of [9; Lemma 2.1]). Hence u ^ 0, i.e.,

Now we give a characterization of the Kuramochi function ga in terms

of flows from Ao to {a}.

For weL(Y), let us put

/(W; X) = ΣyeY *(*> yMy)> HM = ΣyeY ^ ) w ( y ) 2

We say that weL(Y) is a flow from Ao to {a} if /(w):= — X x e Λ o /(w; x) =

/(w; a) and /(w; x) = 0 for all xeX' - {a}. Denote by F(A0, {a}) the set of

all flows from Ao to {a} and by F0(A0, {a}) the closure of the set

{weF(Aθ9 {a}); Sw is finite} in the Hubert space L2(Y; r):= {weL(Y); H(w)

< oo} with the norm [ # ( ) ] 1 / 2

Given x, x'eX, a path P from x to x' is the triple (CX(P), CY(P), p) of

a finite ordered set CX(P) = {x0, xl9 x 2 >...,^} °f nodes, a finite ordered set

CY(P) = {yl9 y2, y3,...,yn} of arcs and a function /?eL(Y), called the path

index of P, such that
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Xo - X, Xn = x', xt φ Xj (i φj)9

{xeX; K(x, yt) Φ 0} = { x ^ , x j for i = 1, 2,...,n,

p(y) = 0 if y £ C r ( P ) and p(^) = - K(χ£_ l 9 ^.) for i = 1, 2,...,π.

Consider the following extremum problem:

(3.4) Find eα = inf {H(xv); wsF0(A0, {a}) and /(w) = 1}.

It is known ([8, p. 244]) that problem (3.4) has a unique optimal solution

w. Then, for xfeA0 we can define a function vx>eL(X) by

M O = o and υx.(χ) = ΣyeY Hy)p(y)My) for x Φ x',

where p is the path index of a path P from x' to x. This function does not

depend on the choice of P (see [8, p. 247]).

THEOREM 3.3. ga(x) = min {|ιv(x)|; x'^Ao} a n d ga{a) = ea.

PROOF. Let ύ(x) = min{\υx.(x)\; x'eA0}. Then e^ύeS^l) and \dύ\ {

S w (cf. [6; Lemma 12]). As in the proof of [6; Theorem 11], we see that

eaD(la) = 1, i.e., ga(a) = eai and that

D{e;ιύ) = e~2Ώ(u) ^ e~2H(w) = e~ι = D(la).

Therefore, e~1ύ= \{a] by Theorem 2.1, and hence ga = ύ.

EXAMPLE 3.1 (Fig. 1). Let X = {x0, x l 5 x 2 , . . . } ; Y= {yί9 y2> )̂ 3». }»

K(xn.uyn)= - 1 , X ( x n , j ; J = l for n = l , 2 , 3 , . . . and K(x9 y) = 0 for any

other pair of (x, y). Put Ao = {xo} Then F ( X 0 ? {*„}) = {wπ}, where w^y,)

= 1 for i = 1, 2, 3,...,n and wπ(y) = 0 for any other j / e l ^ Therefore, by

Theorem 3.3 we have

0 for k = 0

(3.5)

for k = n + 1, n + 2,. . . .

Xn-l xn Xn+1

Fig. 1

EXAMPLE 3.2 (Fig. 2). Let X = {x0} u{xF } ; i = l , 2, 3,... a n d ; = 0, 1, 2,...};

y = { y y > ; f = l , 2 , 3 , . . . and j = 0 , l , 2 , . . . } ;
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K(χ9 y) =

- 1 for (x, y) = (x0, /°>), (x<°>, >fΛ) or (xγ\ tf+ ^

0 = 1 , 2 , 3 , . . . and j = 1 , 2 , 3,...)

1 for (x, y) = (χ}Λ, yψ) (i = 1, 2, 3,... and j = 0, 1, 2,...)

0 for any other pair of (x, y).

Put Ao = {x0}. Then, for m ^ 0 and n ^ 1, Fo(Aθ9 {xjΓ0}) = {wm>n}, where

f ) ) = l for ι = l , 2, 3 , . . . , n - l , w ^ G ^ ) = 1 for 7 = 0, 1, 2,'...,m and

•) = 0 for any other yeY. By Theorem 3.3 we have

(3.6)

where

sk for x e X t (fc = 0, 1, 2 , . . . , n - 1)

s.-i + sf) for x = x<*' (fc = 0, l,2,...,m)

s , _ 1 + s < " ) for x = x*> (k = m+ 1, m + 2,...)

sπ for xeXfc (fe = n + 1, n + 2,...),

o = {x0}, ΛΓ, = {4}) = 0, 1, 2,...}, s0 = 0, s, = Σ J . t r(^ 0 ) ) and

^ ) ) ' * = 0, 1, 2,..., n = 1, 2, 3,....

χo ϊ? x™ y[0)

/

1

1

/
x i (

/

••- r 4

v /

2

γ(2)'
Λ 2

1

 γ(l)ι
χ2

v /

3

^ y2 *

*. /

^ /

V / <

χ (3) (

n

<

, v(3)

^ y,υ ,

k

V

Fig. 2

E X A M P L E 3.3 ( F i g . 3) . L e t X{0) = { x 0 } , Xin) = { x ( h , . . . , ϋ ; i i , . . o i Λ = 0 o r

- 1 for (x,y) = (xθ9y(0))9(xθ9y{ί))9 (x{h,...9Q9 y(h, ..,in> ° ) )

or ( x ( i l 5 . . . , i n ) , y( i i , . . . , i n , 1)) (w = 1, 2, 3,...)

1 for (x9y) = (x(il9...9in)9y(iί9...9in)) (w = 1, 2,3,...)

0 for any other pair of (x, y).

P u t Λ o = {x o } T h e n Fo{Λθ9 {x(il9...9in)}) = { w i l t . . . f i J , w h e r e wiίt...,in(y)

is equal to 1 for y = y{iί9...9ik) (k = 1, 2,...,n) and to 0 for any other

yeY. Hence, we have
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Σ Γ = i Φ 0 Ί , . . Λ)) for xeC(iu...Jm) (m = 1, 2,...,n)

ΣΊc=ίr(y(iί9...9ik)) for x e l ( i l 5 , . . , i j

0 for x = x 0 or x e X ( l — IΊ),

where C(il9...9iJ = {x(iu...Jm), x(iί9...9im9 1 - W i l l u d J ^ z W ί i ' - ^

1 - i m + ιJm + 29... J n + t ) ' 9 j m + 2 , . . » J m + t = 0 o r 1}) ( m = 1, 2 , . . . , n - 1 ) ; X ( i \ , . . . , / „ )

. . o ί π » 7 ι i + i» J n + ι ) 5 J π + i> J π + ι = 0 o r 1 } ) .

Fig. 3

EXAMPLE 3.4 (Fig. 4). Let X = {x0, x l 9 x i , χ 2 , x'2,...}; Y= {yί9 y'l9 y'{,

κ(χ9 y) =

- 1 for (x, y) = (χ0, yj9 (χ0, yi),

(xf, j ; i + 1 ) , (xt , j;/+ 1) or (xi9 y'{) (ί = 1, 2, 3,...)

1 for (x, y) = (χi9 yt), (x;, Λ ') or (x£', Λ") (i = 1, 2, 3,...)

0 for any other pair of (x, y).

Put Ao = {x0}. We can not apply Theorem 3.3 to this case. However,

solving simultaneous difference equations we have the following results.

1) The case r(y) = 1 for any yeY. In this case we have

— h α(/c, n) for x = xk (k = 0, l,...,n)

- + ( φ , k) for x = xk (k = n + 1, n + 2,...)
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(3.8) Sxn(χ) =

--φ,n) for x = xi (k= 1, 2,...,w)

k α(rc, /c) for x = x,[ (k = n + 1, n + 2,...),

where α(/c, π) = {(2 + ^3)k - (2 - v ^ l / ί ^ ( 2 + 73)"} and gχ,(x) = gXn{x)
(x = x'n if x = χn and x = xn if x = xβ.

2) The case rfa) = r{yί) = I (/= 1, 2, 3,...) and φ / ' ) = ((i + 2)2 (i =
1, 2, 3,...). In this case we have

(3.9)

- + β(n,k) for x = xk (k = 0, l,...,

- + j8(fc, n) for x = xfc (fc = n + 1, w + 2,...)

--β(n,k) for * = *; ( k = l , 2 , . . . , n )

/?(fc, w) for x = x'k (k = n+l,n + 2,...),

where β(n, 0) = 0, β(n, k) = I
22 n + 1 fc Σf ' a n d ^ W =

y

C O '

y2

Fig. 4

§4. Definition of the Kuramochi boundary of N

In this section we use notation g(x, a) for ga(x). We say that a sequence

{xj} in X' tends to the boundary of N if, for any finite subset A oϊ X' there

exists j 0 such that x,<M for all j ^ j 0 . Given such a sequence {*,•}, we see

by Corollary 3.1 and Theorem 3.1, 1) that {g(x, Xj)}j is bounded for each

x e Γ . Consequently, {g( , x7)} has a convergent subsequence. If {g( , x7)}

converges, then {x7-} will be called a fundamental sequence. When the limit
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functions of two fundamental sequences {g(- , Xj)} and {g( , xj)} are equal

to each other, we say that {xj} and {xj} are equivalent and call an equivalence

class a Kuramochi boundary point of N. We call the set of all Kuramochi

boundary points the Kuramochi boundary of N and denote it by dN. If xeX,

zedN and {xj} in X' determines z, then we set g(x, z) = gz(x) = l im^^ g(x9 Xj),

which does not depend on the choice of fundamental sequence {x7-}. Obviously,

g(x9 z) = 0 for xeA0 and g( , z) is harmonic on X'. By Theorem 3.1, 5) we

see that Σ x e y 4 o Δg{x9 z) = 1 for any zedN.

We denote X'\jdN by X and introduce a metric by

< i . *) Σ - x ( )
1 + |#(x, x j-gf ίx, x2)\

for x 1 ? x 2 eX, where α(x) is a positive function on X' such that £ x e j r α(x) < oo.

It is easy to see that with this metric, I is a compact metric space and that

the topology induced by d on X' is the discrete topology. By our definition

a sequence {xj} <z X converges to an xeX in d if and only if g( , x7) -»<?( , x)

as j -• oo in particular, ^(x, z) is a continuous function of z for each xeX'.

REMARK. AS in the continuous case, we can show that the definition of

boundary points of N does not depend on the choice of Ao (cf. [6 Theorem

12]).

The Kuramochi boundaries of the networks given in § 3 are described as

follows:

EXAMPLE 4.1. Let N and Ao be the same as in Example 3.1 with

r(yi) = rt. We can see that l i m ^ ^ g(xk, Xj) is equal to 0 for k = 0 and to

Σ?=i ri for fc = 1, 2, 3,.... This implies that {x̂ } is a fundamental sequence

and that dN consists of only one point.

EXAMPLE 4.2. Let N and Ao be the same as in Example 3.2. We can

easily verify that {xf]}j and {x\P}j for n= 1,2,3,... are fundamental

sequences. Let z(0) and zn be the boundary points determined by {xJ 0 )}7 and

{x(

n

j)}j respectively. Then we have

g(x, z(0)) = sk for x e Xk (k = 0, 1, 2,...),

and

(fc = 0, 1, 2,...)

(fc = n + 1, n + 2,...).

It is easy to show that any fundamental sequence is equivalent to one of the
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above ones. Hence we know that δN = {z(0), zl9 z2,...}. Each zn is isolated

in δN and l im,,^ zn — z ( 0 ).

EXAMPLE 4.3. Let N and Ao be the same as in Example 3.3. Let {/„}

be a sequence whose elements consist of 0 or 1. Then, it is evident that

{x{iι, i29...,in)}n forms a fundamental sequence. In fact, let z({in})eδN be

determined by {x(/l9 *2>•••>**)}*• Then we have by (3.7)

Σ ϊ ^ i r(y(iί9...9ik)) for xeC(il9...9im) (m = 1, 2, 3,...)

0 for x = x 0 or xeX(l — i^).

Identifying z({in}) with {/„}, we see that δN = {{/„}*=! in = 0 or 1}, and in

fact it is homeomorphic to the Cantor set in [0, 1].

EXAMPLE 4.4. Let N and Ao be the same as in Example 3.4. Then, in

the case 1) we know that δN consists of only one point z and that #(x, z) = k/2

for x = xk, xk (k = 1, 2, 3,...). In the case 2), we see that {xj} and {xj} are

different fundamental sequences. Let z and z' be the Kuramochi boundary

points determined by {x7} and {xj} respectively. Then we have

9z(x) =

2 l fc+lZ"-1f + 2
^ ^ - 7 ^ Σ = 1 ^ forx = x; (fc = l, 2, 3,...)

and gz\
χ) = 9z(*) (* = xk if x = xk a n d x = xu if χ = χk) We see that

δN = {z, zr} in this case.

§5. Extremal distance and Dirichlet principle related to the Kuramochi

boundary

For a subset A of X, a path from A to the ideal boundary of N is the

triple (CX(P), CY(P), p) of an infinite ordered set CX(P) = {xθ9 xί9 x2,...} of

nodes, an infinite ordered set CY(P) = {yί9 y2, J>3,...} of arcs and the path index

p of P such that CX(P)[)A = {x0}, xf φ xj for ί # ; , {xeX; X(x, ^) # 0} =

{Xi-^xJ for i = l , 2 , . . . , p ( y ) = 0 if y^C y (P) and p ^ ) = - X(x f -i, yt) for

i = 1, 2,.... We denote by PAo0 the set of all paths from A to the ideal

boundary of JV. We put P ^ = \JxeX P{x},oo

Let Γ be a family of paths in N. The extremal length λ(Γ) of Γ is

defined by



Kuramochi boundaries of infinite networks 253

where

E(Γ) = {WEL+(Y); H(W) < oo and £ y e C r ( P ) r(y)W(y) ̂  1 for all PeΓ}.

In case Γ = 0, we set λ(Γ) = oo. We say that a property holds for almost

every path of Γ if there is Γ' a Γ such that x(Γ — Γ') = oo and the property

holds for all PeΓ'. Note that if {Γn} is a countable set of families of paths

and λ(Γn) = oo for each n, then λ(\Jn Γn) = oo.

For PePoo with ^ ( P ) = {x0, x l 5 x2,...}
 a n d weL(X), we write u(P) =

l i m ^ ^ u(xk) if exists. We know ([3; Theorem 3.1]) that u(P) exists for almost

every PeP^ if u is a Dirichlet finite function.

We say that a path PePAθt00 with CX(P) = {x0, x x, x2,...} tends to a

point of diV if {xk} is a fundamental sequence, i.e., if {gXk} is convergent.

THEOREM 5.1 (cf. [2; Proposition 1]). Almost every path of PAo^ tends

to one point of dN.

PROOF. Let Γ be the set of all paths of PAθyOD which do not tend to

any point of dN. Then, Γ = UxeX>Γx, where Γx = {PePAoao\ g(x, P) does not

exist}. On the other hand, we know that for each xeX', g{ , x) is Dirichlet

finite, and hence by Corollary 3.1, so is g(x, -). Thus we see that λ(Γx) = oo,

and hence λ(Γ) = oo since X' is a countably infinite set.

Now we prove a kind of Dirichlet principle similar to [7; Theorem 1]:

THEOREM 5.2. Let Γ be a subfamily of P^ with λ(Γ) < oo, and let φ(P)

be a function defined for almost every path P of Γ. Let

@£= {UE@; u(P) = φ(P) for almost every PEΓ}.

If @φφ 0, then there exists a unique function H£ which minimizes D(u) among

the functions u in 9)^. H[ is harmonic on X' and is characterized by

(5.1) H[E@£ and (///; u) = Q for a[

PROOF. It is enough to show that ^ is a colsed convex subset of

Q). Obviously, 2% is convex. Now let {un} be a sequence in Q)^ such that

D{un- u o )->0 for some uoe@. We shall show that uoeQ)^. Let Wn(y) =

\dun(y) - duo(y)\. Then H(Wn) = D(un - u0) - 0(n -> oo). Set

Γ' = {PeΓ; uo{P) exists and un(P) = φ(P) for all n}.

Then λ(Γ — Γ') = oo. We can find a subfamily Γ" of Γ' and a subsequence

{WJ of {Wn} such that l i m ^ β ) Σ ^ C i r ( P ) φ ) W i k ( y ) = O for all PEΓ" and

λ(Γ' -Γ")= oo (cf. [4; Lemma 1.3]). Then λ{Γ-Γ")=ao and for each

PeΓ" we have
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= \unk(P) - uo(P)\ - \unk(x0) - uo(xo)\

= \φ(P)-uo(P)\-\unk(xo)-uo(xo)U

where CX(P) = {x0, x l 9 . . .}. Letting k -> oo, we conclude that uo(P) = φ(P) for

PeΓ". Hence uoe@£, which implies that ^ is closed.

Let Z be a subset of dN and let

PAθtZ = {PePAotOD;P tends to a point in Z}.

Then, Theorem 5.2 shows that Hζz is the optimal solution of the following

extremal problem:

(5.2)

Find e(A09 Z) = inf{D(u); ue® and u(P) = 1 for almost every PePAoZ}.

Thus, e(A0, Z) = D{H[Z). Here, Pz implies PAoZ. We shall show

THEOREM 5.3. e(A0, Z) = λ{PAoZ)~ι.

The value λ(PAo z) may be called the extremal distance between Ao and Z.

In order to prove Theorem 5.3, we consider the following extremal

problems: Let cεL+(Y).

(5.3) (Min-work problem) Find N(PAo,z c) = inf ( Σ , e C y ( P ) Φ ) - P e P A o , z )

(5.4) (Max-potential problem) Find

ΛΓ*μ0, Z ; c) = sup {inf {u(x); xeA0} - sup {u(P); PeΓAo,Z;c}; ueS?},

where

S* = {ueL(X); \ΣxeXK(x, y)u(x)\ ̂  c{y) for all ye Y}

and

ΓAo.Z;c = {PePAo,Zl lysCyiP)^) < °°}'

In the same way as [4; Theorem 2.1] we obtain

LEMMA 5.1. If ΓAoZ.cφQ, then N(PAo,z; c) = N*(A0, Z ; c) and the

problem (5.4) has an optimal solution ύ(x) such that ύ(P) = 0 for all PeΓAo Z ; c .

Using this lemma, we can prove Theorem 5.3 in the same way as in the

proof of [4; Theorem 2.2].
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§6. Extremal width and extremal flow problem with respect to Kuramochi

boundary

First we recall the notions of cuts and extremal width.

Let A and B be mutually disjoint subsets of X. A cut between A and

B is a nonempty subset Q of Y such that there exist mutually disjoint subsets

Q(A) and Q(B) of X satisfying the following conditions:

Q(A) 3 A, Q(B) 3 B, Q(A) U Q(B) = X

and

Q = {yeY;e(y)f]Q{A)Φ0 and e(y)f]Q(B) Φ 0},

where e(y) = {xeX K(x, y) Φ 0}. Let QAB be the set of all cuts between A

and B. A cut in AT is a subset Q of Y such that QeQAB for some mutually

disjoint subsets A and B of X.

Let /ί be a family of cuts in N. The extremal width μ(Λ) of A is defined

by

μ(A)'1 = inf {if (W); WeE*(Λ)},

where

E*(Λ) = {WeL+{Y); H(W) < oo and ΣyeQ

w(y) ^ ! f o r a 1 1 6 e / ί }

lί Λ = 0, we set μ(Λ) = oo.

Now, let Z be a closed subset of dN and let Z ( m ) = {xeX' d(x, Z) ^ 1/m},

where d is the metric introduced in §4. Set QAQZ = Um = i6^0,z ( m )

 W e s h a 1 1

show that the extremal width μ(QAθtZ) is given by the value of an extremal

flow problem.

Denote by F(A0, Z(m)) the set of all flows from Ao to Z ( m ), i.e.,

0 , Z(m)) = ( W G L ( 7 ) ; /(W; X) = 0 for all xeX' - Z ( m ) ,

)̂i < ° ° a n d 7 ( w ; Λ) + Σ^z^w; )̂ = °}

and let F0(A0, Z(m)) be the closure of {weF(A0, Z ( m ) ); 5w is finite} in L2(Y\ r)

(cf. §3). Put F0(A0,Z) = 0™=1Fo(A0,Z{m)) and call weF0(A0,Z) a flow

from Ao to Z. We condider the following extremal problems:

(6.1) Find e*(A0, Z ( w )) = inf {H(w); weF0(A0, Z(m)) and /(w; Ao) = - 1};

(6.2) Find e * μ 0 , Z) = inf {/f(w); weF0(A0, Z) and /(w; Xo) = - 1}.

By a slight modification of the proof of [5; Theorem 4.1], we can prove

LEMMA 6.1. e*(Aθ9 Z(m)) = 1
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Also, in the same way as [4; Theorem 3.1], we have

LEMMA 6.2. l i m , ^ e*(Aθ9 Z(m)) = e*{Aθ9 Z).

Using these lemmas, we obtain the following theorem in the same way

as in the proof of [4; Theorem 4.1]:

THEOREM 6.1. e*(A0, Z) = μ{QAQ,zy\

REMARK. If we^ Z ( m ) (l), then u(P) = 1 for every PePAoZ. Hence

Z)(lZ(m)) ^ e(A0, Z). On the other hand, as in the proof of [8; Theorem 11],

we can show that D(lZ(m)) = e*(A0, Z{m^~ι. Therefore, by Lemma 6.2 and

Theorems 5.3 and 6.1, we have

HPACZΓ1 = e(A0, Z) ^ e*(A09 Z ) " 1 = μ(QAo,z).

We do not know whether the equality e(A0, Z) = e*(A0, Z)~ι holds or not.
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