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We study piecewise affine Markov maps with “indifferent fixed points”,
which are interesting with relation to intermittency. In the case that such a
map T has a Lebesgue-equivalent invariant o-finite infinite measure u, we give
ratio ergodic theorems which describe the limit value of the ratio of the sojourn
time of the trajectory {T*x}i_, in an interval U,; with u(U,)= oo to that in
another interval U, with p(U,) = oo for almost every x.

0. Introduction
For an interval map T, a fixed point p is called indifferent if
lim,,, T(x)=p and lim,,,|T' (x)| = 1.

Maps with indifferent fixed points are related to physical type I intermittency
(cf. [1], [10], [13]). Our interesting indifferent fixed point p is a source, that
is, |T'(x)| > 1 for almost every x in the neighborhood of the fixed point p.

In Inoue’s paper [4], the somewhat strange notion “weakly attracting
repellors” is given, that is, a fixed point p is called the weakly attracting
repellor of an interval map T if p is unstable (T*x does not converge to p
for a.e. x) and if

1 Gnt
lim,, ;Z:=Of(T"x) =f(p) ae x

for every continuous function f on the interval. In [4] we gave some
conditions for the existence of weakly atracting repellors for maps with only
one indifferent fixed point.

In this paper we are going to study maps with at least one indifferent
fixed point. A typical example of an interval map with indifferent fixed points
is

x/(1 — x) for xe[0, %)

T(x) = {
2x —1)/x for xe[3, 1],
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which is deeply related to continued fractions (see [7]). The class of piecewise
affine Markov maps with indifferent fixed points which is studied in this paper
contains a linearization of this example.

A piecewise affine Markov map with indifferent fixed points p; for some
i is defined in the following way.

Let 0=cy<cy<c¢;<---<c¢ =1 be a partition of [0, 1] and let p, =0,
pie(ci—y,¢c) for i=2,---,r—1, p,=1. Let {a;,} be an increasing sequence
satisfying the following conditions for i =2,---,r:

a;,-1=0, a;0=10¢;_1,

@1 — Giu2) —@n—a;,-1)>0 for large n,

a; ,, converges to p; as n— oo,
and let {b;,} be a decreasing sequence satisfying the following conditions for
i=1--,r—1:

b,_1=1, bi,O =,

Bin-2 = biw-1) = (biy_1 —bi) >0 for large n,

b; , converges to p; as n— oo.

Define T;: [¢;_4, ¢;] = [0, 1] for i=1,---,r by

Ain-2 — Qin—1

T(x) = (x—aip-1) + ai s

ai,n—l - ai,n
on (@,-y, ay,] for nz 1,

bin—z —bin_s
b — b,
on [bi,m bi,n—l) for n 2 1, and T(p) = p;.

Ti(x) = (x — bi,n—l) + bi,n—Z

iin—1

Let T:[0,1]—-[0, 1] be a map such that T restricted to (c;—,, c;) is T; for
i=1,---,r. Then T is uniquely defined on [0, 1]\ {c¢;}. (The values {T(c;)}
are not needed in this paper since the set of c; is of measure 0.) Such a map
T is called a piecewise affine Markov map. T is called a piecewise affine
Markov map with indifferent fixed points if

Ain-2 — Qin—1 or biy_>— bin-1

bi,n-i - bi,n

a — a;

i,n—1 i,n

converges to 1 for at least one i as n— oo.

Let U, and U, be the right or the left neighborhoods of indifferent fixed
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points p; and p; respectively (not necessary i # j). The first aim of this paper
is to research the limit value of the mean sojourn time of the trajectory
{T*x};-o in U, for almost every x and the limit value of the ratio of the
sojourn time of {T*x};., in U, to that in U, for almost every x. For this
purpose, it is important to study a Lebesgue-equivalent T-invariant ergodic
measure. Fach piecewise affine Markov map T defined above has a
Lebesgue-equivalent invariant ergodic o-finite measure, say u. But, in some
cases, this measure is not finite. See Theorem 1.1 in the present paper (cf.
(4], [11], [14], [15D).

For our aim, the Birkhoff individual ergodic theorem and the Hopf ratio
ergodic theorem give good information if u(U,) < oo and u(U,) < oo.

The Birkhoff individual ergodic theorem ([16], [8]): Let T be a measure
preserving transformation on a o-finite measure space (X, F,u) and let
feL'(w). Then

1 _
lim, o - Y i o f(T*X) = f* for u—a.e. x and f*eL!(u).
n

The Hopf ratio ergodic theorem ([2], [8]): Let T be a measure preserving
ergodic transformation on a o-finite measure space (X, #, p) and let f, ge L' (1)
with [gdu # 0. Then

d
Tioof (T _ Lf 8
Z:=o g9(T*x) j

X

for u—a.e. x.

lim,_,

gdu

Set f=1y, and g =1y, where 1 is the indicator function of U. If
u(U,) < oo and u(U,) < oo, then f, geL'(u) and we can apply these ergodic
theorems for T In fact, if u(U,) < o0 and p(U,) < oo, then the mean sojourn
time in U, tends to 0 in the case u([0, 1]) = o0 and to w(U,)/u([0, 1]) in
the case u([0, 1]) < oo, and the ratio of the sojourn time in U, to that in
U, tends to u(U,)/u(U,). However, if u(U,) = oo or u(U,) = oo, the previous
ergodic theorems do not describe anything of this nature. In this paper we
present two ratio ergodic theorems (Theorems 1.2 and 1.3) and two individual
ergodic theorems (Corollaries 1.2.1 and 1.3.1) which are applicable to the case
w(U,) = o0 or u(U,) = oo under some conditions.

In this paper we also research the asymptotic measure of T (Corollaries
1.2.2 and 1.3.2). If the weak limit of

1
- Zk=(1) 5T"x
n
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exists for almost every x, then its limit is called the asymptotic measure of T,
where d, is the Dirac 6 measure on x.

Now we state the organization of this paper. In §1 we state our main
results. In §2 we confirm the definition of ergodicity and state some basic
properties of the first return maps. In §3 we study piecewise affine Bernoulli
maps with countable partitions, which naturally arise from the first return
maps and we prove two lemmas which are important to prove our main
theorems. In §4 we prove Theorem 1.1 and in §5 we prove Theorems 1.2
and 1.3 and their corollaries.

The author thanks to Prof. I. Kubo for his kind remarks to the
preliminary version of the manuscript. The author also thanks to Prof.
S. Oharu and Prof. S. Takenaka for their encouragements.

1. Results

Before stating the main theorems in the present paper, we state the
following theorem which describes some estimates of m-equivalent invariant
ergodic o-finite measures for piecewise affine Markov maps defined in §0, (in
this paper m is the Lebesgue measure unless we put a particular notice).

THEOREM 1.1. Let T be a piecewise affine Markov map defined in
§0. Then T has an m-equivalent invariant ergodic o-finite measure | which
satisfies the following (1)—(3):

(1) p(([0, 11\ Ui-, nbd (p;, 4)) <0 for all 4>0,
0, 4) for i=1

where nbd (p;, 4) = \ (pi— 4, p;i+4)  for i=2,---,r—1
1-4,1) for i=r.

(2) Fix i=2,---,r arbitrarily. u((p; — 4, p;)) = oo for every small 4 >0 if
and only if

:0=0 (i — a;,,) = ©.

(3) Fix i=1,---,r— 1 arbitrarily. u((p;, p; + 4)) = o for every small 4 >0
if and only if

:0=0 (bin — pi) = 0.
To state our main theorems we denote the conditions (C, a, i) and (C, b, i):
(C, ai) (0 — a;.,) ~ v(a, n~*@d,

(€ b,1) (biw = P) ~ v(b, )n ™D,
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where v(q, i), v(b, i), x(a, i) and «(b, i) are positive constants for each i (in this
paper v, ~ w, stands for lim,_, , (v,/w,) = 1).

k(a, i) and «(b, i) are related to the closeness of the graph of T to the
diagonal line in the left neighborhood of p; and in the right neighborhood of
p; respectively. Precisely, for example, b, , ~ v(b, )n"*®! means that

T(x) —x = K(b, I)V(b, 1)—1/x(b,1)x(1/x(b,1))+1 + o(x(l/x(b,l))+ 1).
Denote

nbd (p;, w, 4) = {(pi—d’ P) Tf =4
Pipi+4) if o=»b,and

p@) = p;.

In the following main theorems (Theorems 1.2 and 1.3) and their corollaries
4, 4, and 4, are arbitrary small positive numbers. We state two ratio ergodic
theorems. One of these is

THEOREM 1.2. Let T be a piecewise affine Markov map with indifferent
fixed points. Fix wo=a or b and fix o, =a or b. For j=0,1, fix i; in
such way that 2<i;<r if wj=a, 12i;Sr—1if wj=b. Assume that T
satisfies the conditions (C, w,, ip) and (C, wy, i,). If k(wy, ip) < k(w,, i) and
K(wg, ip) < 1, then

n k
2i=0 Lavacpan, o1, 41 (T*X) -0
k
dk=0 Labd p(io), w0, 40 (T X)

From this theorem we can obtain the following individual ergodic theorem
as a corollary.

lim, , ,, for m—a.e. x.

COROLLARY 1.2.1. Assume that T satisfies the conditions (C, w, i) for all
(w, i). If there exists only one (wg, iy) such that k(w,, i) < k(w, i) for all
(w, i) # (g, i) and that k(wy, ip) < 1, then

n—ll

. 1
lim,, ;Zk=0 nbd(plio), w0, ) (T¥X) =1 for m—a. e x.

Concerning to the asymptotic measure, we have

COROLLARY 1.2.2. Assume that T satisfies the conditions (C, w, i) for all
(w, i). If there exists only one iy such that

min {k(a, io), x(b, ig)} < min {k(w, i); i # iy, ® = a, b}
min {1(a, io), K(b, ig)} < 1,

then
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"o =0 ki -
m,_, ;zkzo e = Opioy  Weakly for m— a.e. x.

This corollary means that p, is the weakly attracting repellor.
In Theorem 1.2 we assume that k(w,, ig) < kK(w,, i;). In the following
ratio ergodic theorem we consider the case x(w,, i) = k(®w;, i;) = L.

THEOREM 1.3. Let T be a piecewise affine Markov map with indiﬁ'erent
fixed points. Fix wo=a or b and fix wy=a or b. For j=0,1, fix i
such way that 2<i;<r if w;=a, 1 Si;<r—1if wj=b. Assume that T
satisfies the conditions (C, wy, ig) and (C, ., iy). If k(wy, ip) = k(wy, i) =1,
then

k
Z:=o Lyva(ptin). w40 (T"X)

=p for m —a.e. x,
k
Yk=0 Lnbd(ptio), wo.acy (TX)

lim

n— oo

where p is a positive finite constant, which is independent of A,, 4, and x. In
particular,
(1) If r=2 and x(b, 1) = k(a, 2) = 1, then

Yr=o Lla-a,,1)(T*x) _ v ?)
T Yoo Loan (TFx) (1 —cy)v(b, 1)
2) If (b, iy) =x(a, iy) = 1, then

Yr=0 Livtior-a1.p60n (T*X) _ ¥(a, io)
T Y k=0 Listior.pioy+ 4oy (T x)  v(b, io)

From this theorem we can obtain the following individual ergodic theorem.

lim

for m—a.e. x.

lim, for m —a.e. x.

CoOROLLARY 1.3.1. Assume that T satisfies the conditions (C, w, i) for all
(w,9). If k(a,i), k(b,i)=1 for all i and if k(wg, io) =1, then

1
m,_ Z" Libaptioy. wo.ay (T*X) =5 for m —a.e. x,

where s is a positive finite constant, which is independent of small A and x.
Concerning to the asymptotic measure, we have

COROLLARY 1.3.2. Assume that T satisfies the conditions (C, w, i) for all
(w, ). If x(a,i), kb,iy=1 for all i and if k(a,i)=1 or k(b,i)=1 for at
least one i, then

. |
lim,_, ;ZLO Orriey = Doy Si0p  weakly for m —a.e. x,



Ergodic theorems for maps with indifferent fixed points 453

where s;’s are constants satisfying
Yioysi=land 5,20  for all i=1,--,r,
and further s; # 0 if and only if k(a,i)=1 or k(b, i) = 1.

In the case x(w,, ip) = k(wy, i;) < 1, the author conjectures that the limit
value of the ratio ergodic theorem does not exist.

2. Preliminaries

In this section we give the definition of ergodicity and a basic corollary
of the Hopf ratio ergodic theorem, and we summarize some basic properties
of the first return maps. First we give the definition of ergodicity for a
transformation T on a o-finite measure space (X, &, u).

DerINITION 2.1. (T, ) is called ergodic if u(A)=0 or u(X\A4)=0 for
every AeF with T"'A=A4 p—a.e.

Now we give a basic corollary of the Hopf ratio ergodic theorem.

LEMMA 2.1. Let T be a measure preserving ergodic transformation on a
o-finite measure space (X, &, ), let fe L'(u) and let {gdu = co. Then

Z:=of(Tkx) _
e z:=o g9(T*x)
PrROOF. Let g;1g and [g;du < oo for each i. Then we have
ZZ=0f(Tkx) Z:=of(Tkx)
Yi=09(T) [ 7 [ X0 9:(T*)

From the Hopf ratio ergodic theorem, it follows that

j fdu
J gidu

The right hand side of this inequality converges to O as i goes to
infinity. Therefore we obtain the lemma.

lim for u—a.e. x.

Zk of(Tkx)

for p-a.e. x.
Zk=0 g(T*x)| ~

lim sup

n— o

Next we state some basic properties of first return maps.
The first return map of T on A is defined as T"™¥(x), where n(x) is
inf{n>1; T"(x)e A}. In the following three lemmas, let T be a transforma-
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tion on a measure space (X, #,m) and A< X a measurable set with
Ac U, T™"(A). Then the first return map is well defined.

LEMMA 2.2. Let R be the first return map of T on A and p, an R-invariant
o-finite measure. Then the measure u defined by

2.1 uD) =), pa(A4,nT""D)  for DeF
is T-invariant, where A, = A and A,,, = A,nT "(A°) for n = 1.
For the proof of this, see the proof of Lemma 2 in [11].

LEMMA 2.3. Under the same situation as Lemma 2.2, if the first return
map R of T is p,-ergodic, then T is u-ergodic.

The proof of this lemma is a minor modification of the proof of Lemma
3.2 in [4].

LEMMA 2.4. Let p be a T-invariant ergodic o-finite measure and let 1|,
be the restriction of n to A. Then the first return map R of T on A is
Ul 4-invariant ergodic. As a consequence, if u¥ is a p-absolutely continuous
R-invariant o-finite measure, then p% = const. ul,.

The proof of this lemma is a minor modification of the proof of Lemma
1 in [11].

3. Ergodic properties for piecewise affine Bernoulli maps with countable
partitions

We devote this section to investigate some ergodic properties for piecewise
affine Bernoulli maps with countable partitions which naturally arise from the
first return maps and to prepare important lemmas.

In the whole of this section we assume that a piecewise affine Bernoulli
map R: [v, w] — [v, w] satisfies the following condition:

There exists a countable partition {I;,} of [v, w] such that I;, is an
interval for each i, n and that

R(x) = (Wip — v W — 0)(x — ;) + 0
for x in the interior of I;,, where v;, and w; , is the left and right endpoints
of I, , respectively, and w; , converges monotonically to w; as n — oo for each i.

PROPOSITION 3.1.  There exists a unique m-absolutely continuous R-invariant
ergodic probability measure p.



Ergodic theorems for maps with indifferent fixed points 455

This is a special case of Proposition 5.1 in [4].

PROPOSITION 3.2. The m-absolutely continuous R-invariant ergodic probabi-
lity measure u is the normalized Lebesque measure on [v, w].

PrROOF. Let £ : L'(m) — L'(m) be the Frobenius-Perron operator associa-
ted with (R, m), which is defined by

j 2 f(x)m(dx) =f f(x)m(dx) for Ae#, feL'(m).
A R-1(A)

(Some basic properties of the Frobenius-Perron operator are found in [6] and
[9]. For the proof of the proposition, it is important that % f = f implies
that f is the Radon-Nikodym derivative of an invariant measure.) Let R;,
be the restriction to I;, of R. Then

ZL1(x) = dd_xZi’” R Hx)=1.
Thus the Lebesgue measure is R-invariant. Therefore we obtain the
proposition.
In the rest of this section, put
E, = U;([wi wi,] (or [w;,, w])) and
L= {z;log, (log, z) is a positive integer},
and let u: N— N be a monotonic increasing function satisfying
(w—2v)""-z-m(E,) ~ const - log,(log, 2).

The following lemmas are important to prove Theorems 1.2 and 1.3.

Lemma 3.3.
lim,,,, —Z—‘N—_U—Zzz:O lg, ., (R¥x) =0 for m-ae. x.
z* - m(E,)
Proor. Put

& (%) = 1, (R“()).

Let P be the normalized Lebesgue measure on [v, w]. Then £, ,’s are random
variables on the probability space ([v, w], P). Since R is affine on (v;,, w; ,)
and R(v; ,, w;,) = (v, w) for each i, n, &, o, &, 4,--+, &, ., are independent random
variables with a common distribution. Put

X,=%: &« and p,=P(E,y,).
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Let ¢ > 0 be arbitrary. Then it follows from the Chebyshev inequality that
P({l(zp) 72 X.| > ¢}) = P({|X.| > ez*p})
< (2’p) 7 f1X.|*aP
< const. ¢~ 2(log, (log, z))"2  for sufficiently large z.

Hence
Y. PI(zp,)™?X,| > ¢}) < comst. e %) 2, 17 <
Therefore we obtain the lemma by the Borel-Cantelli lemma.
LeEMMmA 3.4. If m(E) ~ const. 1% for some 0 <k <1, then

. w—v (@) .
limp,, ., Z—T—Zk o2 15, (R*x) =1 for m-a.e. x.
=1

Proor. Put

Con®) = 238 15, (R¥(x

Let P be the normalized Lebesgue measure on [v, w]. Then {,,’s are random
variables on the probability space ([v, w], P). Since R is affine on (v;,, w;,)
and R(v;,, w;,) = (v, w) for each i, n, {, 4, (, 1, --,(, , are independent random
variables such that P({,, =1) = P(E)) — P(E,,,). Put

Y. =) 0lek
First we assume that m(E;) ~ const. ["!. Then
u(z) ~ const. z/log, (log, z).
Let ¢ > 0 be arbitrary. By the Chebyshev inequality we have
P({lz ;% P(E) 'Y, — 1| > ¢})
< (ez )2} P(E) 2 IY 2315} P(E)*dP
< const. ¢~ %(z log u(z))~*(zu(z))

-1

< const. ¢~ 2(log z) for sufficiently large z.

If m(E)~const. [ (x<1), then u(z)~ const. (z/log, (log, z))!/*. By
considering the third moment we have

P({IX}%) P(E))™'Y, — 1] > &}) < const. (log, (log, 2))

for sufficiently large z. Therefore we obtain the lemma.
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4. Proof of Theorem 1.1

We are going to prove Theorem 1.1 using the first return maps defined
in §2.

In this section we assume that T is a piecewise affine Markov map defined
in §0. Let S; be the first return map of T on [p;, ¢;]. Then S;: [p;, ¢.1—[p;, ¢l
satisfies the following condition:

There exists a countable partition {I;|jeJ} of [p;, ¢;] such that the
restriction of S; to the interior of each I; is a monotonic continuous function
and that S;; maps the closure of I; onto [p;, ¢;] for each j, where S;; is the
continuous extension to the closure of I; of the restriction of S; to the interior
of I.

Let j, be the index such that I; = [p;, b;;]. Put

o, = S;;7(b; 1) for n =0 and
Bin=S;"(a,) for jeJ\{j,} and n=0.

Now we consider the first return map R; of S; on [b;,, ¢;]. Then R;
can be represented in the following form. For jeJ\{j,},

Ri(x) = Si(x) if S;(x) > b,

R(x) = SI*'(x) if Sy()e d-r), for n2 1.
It is clear that R;(x) is defined except on the set of the endpoints of the
countable partition of [b;, ¢;]. Thus, it follows from Proposition 3.2 that

R; has an invariant probability measure u,; whose density is a constant. Let
u; be the measure on [p;, ¢;] defined by

(4.1) u(D) = 3. 1ai(A,n S "D)

for any measurable set D < [p;, ¢;], where A, =[b;,,c] and A4,,, = A4,
nS;"([ps, bi,y) for n 2 1.

LemMa 4.1. pu; defined by (4.1) is an m-equivalent S;-invariant ergodic
o-finite measure. Further, u; satisfies the following (1)—(3):
) w(lpi+ 4,¢])< for every 4> 0.
@ I
:0=0 (an - pl) = O,
then p;([p;, ¢;]) = .
Q) If

2:;0 (an - pl) < oo,
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then p,([p;, ¢;]) < oo.

Proor. The proof is similar to that of Lemma 4.2 in [3] and to that
of Lemma 3.3 in [4]. In the proof of this lemma we omit index i for the
simplicity of notations. It follows from Lemmas 2.2 and 2.3 that pu is an
m-equivalent S-invariant ergodic o-finite measure. Let 4, (n =1, 2,---) be as
in the expression (4.1). First we prove (1). Let k be an integer with
o <p+ 4. Then it is easy to see that

A0S0, €] = Uney—ij,y S5 @ en—15 #p) m-ae.  for nz2.
From this ft follows that
.u'([p + A9 C]) é Zjej—(jp) (ﬂA(Sj_l[“ka C]) + Z::O .uA(Sj—l(p, an))) < 0.

Next we prove (2). Fix one j and let a; be the left endpoint of I;. Then,
it is easy to see that

An = [aj, ﬂj,n—z] for n = 2.
Thus
W cl) =Y, ua ) 22, ua([a; Bin-2)) 27 Y2, 10, — Bials

where y is (¢ — b;;)”'. Therefore u([p, c]) = oo.
Finally we prove (3). It is easy to see that

Ap=Ujes-gjy [aj, Bjn-21  for n22.
Thus
#(Tp, €1) = 2 a4 S Fjes— i Loz #all0), Bin-2]) + 1
SV jer—tp 2one2 85— Bial +1
<Y, —p)+1<o0.
ProOF OF THEOREM 1.1. Let u be the measure on [0, 1] defined by
uD) =YY" u(4,nT""D)  for any measurable set D,

where A4, =[p;,¢;] A,+1 =4,nS7"([py, ¢, ]) for n=1. Then, it follows
from Lemmas 2.2 and 2.3 that y is an m-equivalent T-invariant ergodic o-finite
measure. By Lemma 2.4, u restricted to [p;, ¢;] is invariant under the first
return map on [p;, ¢;] of T for each i and this measure equals to y; multiplied
by constant. Thus, by Lemma 4.1 we obtain a half of (1) and (3) of Theorem
1.1. The rest of Theorem 1.1 is similarly proved.
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5. Proof of Theorems 1.2 and 1.3

In this section we are going to prove Theorems 1.2 and 1.3.

We assume that T is a piecewise affine Markov map with indifferent fixed
points defined in §0. Fix i=1,---,r—1 and fix j=2,---,r. We allow all
the cases i <j, i=j ori>j. Let 4, 4, >0 be arbitrary. First we consider
the ratio of the sojourn time of the trajectory {T*x};_, in [p;, p; + 4,) to
that in (p; — 4,, p;] for almost every x. Put p=p;,, c=¢;, d=c;_, and
q=p;. Let S be the first return map of T on B=[p,c]U[d, q]. Then
S: B — B satisfies the following condition:

There exists a countable partition {I,: Ae A} of B such that the restriction
of S to the interior of I, is a monotonic continuous function and that S,(I{)
is either [p, c] or [d, q] for each A, where I¢ is the closure of I, and S; is
the continuous extension to I§ of the restriction of S to the interior of I;.

Let A4, be the set of indices A satisfying S,(I5) = [p, c] and let 4, be the
set of indices A satisfying S;(I§) = [d, q]. Let 4, and 4, be indices such that

I, = [p, b; ;] and I, = [aj 1, q]-
Put
Bin=S;'b;,) for LeA\{4,} and n =0, and
;. =S;"(aj,) for Aed;\ {4} and n = 0.

Then the first return map R of S on A =[b; ;, c]U[d, a; ;] can be represented
in the following form. For n =1,

R(x) = §"(x) if xe(UleAd—(lq) @an-15 %)V (Usea, -y (Bin> Bin-1))-

It is clear that R(x) is defined except on the set of the endpoints of the
countable partition of A.

Let R, be the first return map on [d, a;,;] of R and let R, be the first
return map on [b; ;, ¢] of R. Then it follows from Proposition 3.1 that there
exist an R,-invariant measure on [d, a;;] and an R,-invariant measure on
[b;1, c], which are m-absolutely continuous ergodic probability measures.
Thus, by Lemmas 2.2, 2.3 and 2.4 there exists an m-absolutely continuous
R-invariant ergodic probability measure u, on A. Let ug be the m-absolutely
continuous S-invariant ergodic o-finite measure as in Lemma 2.2.

Now we prepare some notations.

Notations:
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Zk 0 (d q)(T x)
P L x)= Zk=0 l(p,c)(T"x)

F(S, 1, x)i= bz hea(S9).
Zk=0 l(p,C)(S x)
E,, = E():=Ujsen,-pgy X105 x Z ;.
Eg, = EB,):= Usea. -, {(X€Lis x = B1.0}-
ti=max {t; ) 1 _, 1,(8*x) =t}.
t*: the integer satisfying log, (log, t*) = [log, (log, t)] + 1,

where [ ] is the Gaussian symbol.
n(t):= n,: the maximal integer satisfying
log, (log, t*) < t*(ua(E(%,)) + pa(E(B,)))-
Hy(t, x):= Y7 o L apmn (8¥%).
H(t, x):=Y 7", Lipincr0) (S*x).
H(t, x):= Y7~ 0 Lamena (85%).
H,(t, x):=Yr_, l(p,,,m(t))(S"x).

. Hu, x)
n(t, x):= Hi )

REMARK 5.1. For m-a.e. xe A we have

Hd(t’ x) Zk 0 l 1 1(a, 1- 1,45, x] S x) Zk 0 Z lE(au—l)(ka)’
Ho(t, x) =Yoo 2rsy Leg o (R¥X).
The following lemma means that it is essential for our purpose to calculate

the limit value of F(S, t, x).

LEMMA S5.1. Assume that
up((p, p + €)) = 00, up((g — &, q)) = o0 and
up((p + ¢ c)u(d, g —¢)) < o for every small ¢>0

and that lim,, _ F(S, t, x) exists. Then

t k
lim;-»m F(S, t, X) = lim"’oo Z:‘=0 l(q—Al,q)(Tkx)
Zk=0 1(p,p+Ao)(T x)
Jor pg-a.e. x and any small 4,, 4, > 0.
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Proor. If the limit value of F(S, t, x) exists, then obviously,
lim,, , F(T, t, x) = lim,_, , F(S, t, x).

By Lemma 2.1 we have
Li=0 Laa-an(T*X) k=0 Lip+ 40,0 (T*X) =0
Z;c=0 l(p,p+Ao)(Tkx) Z;c=0 l(p,p+Ao>(Tkx)
for ug-a.e. x and any small 4,, 4, > 0. Thus, we easily have
k=0 lua(T*x)
Y=o Lipo(T X)
k=0 la-a,,0(T* ) + 3o Liag-an(T*%)
Y=o Lippr 2o (TX) + Yi_ g Lip+ a0,0(T*X)
=0 lg-a,,0(T*x)
Zi:o l(p,p+Ao)(Tkx)

lim, , =0 and lim,,

lim,, ,, F(S, t, x) = lim,_,

= lim,, ,

=lim,, ,

for ug-a.e. x.

In the lemmas in the rest of this section we assume the conditions (C, a, j)

and (C, b, i). The following lemma is important to determine the limit value
of F(S, t, x).

LEMMA 5.2. Assume that k(b, i) < k(a,j) < 1. Then: (1)

“A(Ean) = a/(q - aj,n) ~ a"n—K(a’j)a

ﬂA(Ep") = bl(bi,n —-p~ b"'n~x®D,

. .uA(Ea )
5.1 =1 n
Gh = (E,)

exists and 0 < p < oo, where a',a", b’ and b" are positive finite constants.
Further,

(1) pis 0 if kb, i) <«la,j).

(2) p is positive and finite if k(b, i) = k(a, j).
v(a, j)(c — p)

3) p= ( {)( p
v(b, i)(g —¢)

if r=2,i=1,j=2 and x(b, i) = k(a, j) = 1.

v(a, j)

@ p="21
v(b, i)

(I1) p in (5.1) satisfies the following property: for any ¢ > 0 and for u,-a.e. x

there exists an integer ty, such that for t = t,

if j=1i and k(b, i) =k(a,j)=1.
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;‘t=1 Z;c=0 lE(au)(ka) _
;“=1 Z;c'=o 1E(ﬁ1)(ka)

As a consequence n(t, x) converges to p for uy-a.e. x.

<é&.

PrOOF. Let g be the Radon-Nikodym derivative of u, with respect to the
Lebesgue measure m. By the virtue of Proposition 3.2 we have

y. fora.e. xe[b; , c]
glx) =
74 forae xe[d, a;,],

where y, and y, are positive finite constants. Put

Kyee = [b;,1, €] n(U;.sA,—(;.,,) L), Kyeq = [b;,, ] n(U}.eAd—(}.q) 1),
K = [4, aj,l] n(UleAc—().p) I;) and K,y =[d, aj,l] n(U}.eAd—{lq) 1)).

Since
b, — K
m(Eﬁ"nKbcc) - ( in p)m( bcc) ,
c—p
m(Eﬂn n Kdac) — (bi,n - p)m(Kdac) ,
c—p
—a, K
m(Ea"nKde) — (q a],n)m( bcd) and
q—d
B K
m(Ea" n Kdad) — (q a],n)m( dad) ,
q—d
we have
Ba(Eq) = pa(Ey, N Kiyeg) + pa(Eqy N K gog)
= )Icm(Ea,. n Kbcd) + ydm(Ea,. n Kdad)
=(@q@—-d)'(@q- aj,n)()’cm(Kbcd) + Yam(K 44))
and

/’tA(Eﬁn) = (C - p)_l(bi,n - p)(ycm(Kbcc) + ydm(Kdac)),

which show the first two assertions in (I). Since

ﬂA(Kbcc v Kbcd) = .uA(R -t (Kbcc u Kbcd)) = uA(Kbcc U Kdac)’
Kbcc n Kbcd = 0 and Kbccn Kdac = 0’

we have
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YeM(Kpea) = 7am(Kgae)-
Therefore
.uA(Ea,.) — m(Kbcd) : (m(Kdac) + m(Kdad)) : (C - p) : (q - aj,n) .
#A(Eﬂn) m(Kdac) ) (m(Kbcc) + m(Kbcd)) - (q - d) : (bi,n - p)

Clearly, m(Kpg) - (m(Kyae) + m(Kgag) - (¢ — p) and m(Ky,.) - (m(Kpee) + m(Kyeg)) -
(9 — d) are positive and finite. Thus, the limit (5.1) exists and we obtain (1)
and (2). Next, we show (3). If r=2 and j=i+ 1, it is obvious that
Mm(Kpe) = m(Kg) = 0. Hence,

“A(Ea") — c- (1 - aj,n)
#A(Ep,.) (1-o- bi,n '

In addition, if k(b, i) = k(a,j) =1,

(5.2)

m(E,) _ cvia,))
1a(Ey) (1= ) vib, i)

This implies (3). Finaly we show (4). If j =i, it is obvious that
m(Kbcc)/m(Kbcd) = (C - p)/(p - d) and
M(K 4oc)/m(K goq) = (¢ — p)/(p — ).

Thus, from the trivial equalities K. UK,y = [b;;, c], Ky UKy = [d, a;1],
K. .NKyy =9 and Ky, .NK,,; =9, we have

m(Kpea) _ (¢ —bi)(p —d)
m(Kae)  (aj,, —d)(c —p)

Hence it follows from (5.2) that

lim

n— oo

.uA(Ea,.) — (p - aj,n)
HA(Ep,.) (bi,n - D)
In addition, if (b, i) = x(a, i) =1,

o BB _ v ))

" pa(Ep) Vb, i)

This implies (4).
Next we prove (IT). Let t,=[t- uy([d, a;,])] and let t, = [t - u,([b; 1, D]
Let ¢ > 0 be arbitrary. Notice that
Z7=1 Au'A(Eau) _ lm uA(Eu,.) _

lim,, & ——"— = — =

Z?:l NA(Eﬂ,) e ﬂA(Ep,.)
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since Y2, pa(E,) =Y 2, pa(Eg) = 0. Then, by applying Lemma 3.4 for R,
and R,, it is easy to see that for p,-a.e. x there exists an integer ¢, such that

ne ta 1 ka
il odk=0 2 2 )—p.§2_1£ for t>t,.
1=1 k=0 LE@y (RpX)

It follows from the Birkhoff individual ergodic theorem that there exists an
integer t, such that

' Yits 2o le@ (R*X) _ 121 D=0 LE@ (ReX)
151 Y=o Le@y (R*X) 121 Lk=0 Legy (REX)
Therefore p satisfies the property in the lemma. It follows from Remark 5.1

that #(t, x) converges to p for u,-a.e. x. This completes the proof of the
lemma.

<27l for t2t,.

For p in Lemma 5.2 we are going to prove the following proposition.

PRrOPOSITION 5.3.  F(S, t, x) converges to p for ug-a.e. x if k(b, i) < x(a, j)
<1 or k(b,i)=k(a,j) =1

In order to prove this, we show the following lemma.
LemMA 5.4. If x(b, i) <k(a,j) <1 or k(b,i)=k(a,j) =1, then
Pa(iZo UrZi{x; [F(S, 7, x) —pl > €}) =0 for any &> 0.
In order to prove Lemma 5.4 we prepare the following lemma.
Lemma 5.5. If k(a,j)=1,
H,(t, x) ~ a"t log n,,

where a" is the constant in Lemma 5.2 (I). A similar relation holds if b and
¢ replace a and d respectively.

Proor. Let t, =t-pu,([d, a;,]) and let R, be the first return map of R
on [d,a;,]. Then, by Remark 5.1 and the Birkhoff individual ergodic
theorem, we get

t ta
Hy(t, x) ~ 372, Yo L (REX).

It follows from Lemma 3.4 that
n, ne ” ne 1 "
1t=1 ;::0 lE(au)u{,(;x)~ t21=1 /"’A(E(al))Na tzl=17~a tlognt‘

This completes the proof.
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PrROOF OF LEMMA 5.4. Put

E, = E(n) = E(«,)UE(B,,).

Let R,, be the first return map on E,, of R and let ug,, be the m-equivalent
R, -invariant ergodic probability measure.

First we consider the case k(b, i) = k(a, j) = 1.

We remark that

=0 l{d,q)(skx) _ Hd(t’ x) + Hq(t’ x)

F(S, Tss X) = = .
t —0 1.0 (8"%)  H.(t, x) + Hy(t, X)

Roughly speaking, Lemma 5.2 (II) implies that #(t, x) converges to p as t — oo,
and hence it is sufficient to prove that H,(t, x) and H,(t, x) are much greater
than H,(t, x) and H,(t, x) for sufficiently large t.

Put
Co={xeA; Y. 154y (R'x) > (log, (log, t%))},
= {x€E,; RL,x€(E, +,)° for all 1 <] (log, (log, t%))*},
where M, = [M]
(log, (log, t*))?

El=E,, El =R " 'E,\(UrZ1E}) for h=2,

nes

D, =D, and D; =R""'D,\(U;Z, E;)  for hz2.

Then we have

(53) ta(Nizo Ui {xe A H,(t*, x) + H,(t*, x) 2 t*(log n)'/?})
—l‘A(nk OUr k Une l{xEEnn H (t* x)+ H (t*, x) 2 t*(IOgnz)I/Z})
:.‘.‘A(nk=0Uz=kUh=1(E \D ))+MA(ﬂk OUz POAR

Since R is an affine map on each (8;,, f,,-,) and on each («;,_,, «;,) and
R maps (o; 51, %3, and (B;,, Bs,,-1) onto (d, a;,) and (b; ,, c) respectively,
we have

ra(UsZ (B \ D)) = 0, pa(Ep\ DY)
=2y (el E") - (ua(ER\ DL/ 4 (EL)))
= Y0 ta(ER) - (a(En \ D)/ 1a(E,))
= py(E, N\ D..,)/ a(E,) = Upen,(D5).

“Hence
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(54) Halo Uz Usy (BEND2)) S limy oy ¥y, itng(DS),
where L, = {t = k; log, (log, t) is an integer}. Since Lemma 3.3 implies that
AN U2 C) = 0,
it follows from (5.3) and (5.4) that
Ba(Nizo Uz {xe A; H,(t*, x) + H,(t*, x) = t*(log n)'/?})
S iy, Yo, HEmo(D)-
Since t < t*, by the above inequality we have
1a(Nizo U2 {x e A; H,(t, x) + H,(t, x) 2 t*(log n,)'/?})
S limye s Yoer, HEo (DR
Now we estimate g, (E,, +y,). Since

t*v + (log, (log, t*)) ™' t*(log (1*v/log, (log, t*)))'/?
log, (log, t*)

n+ M, ~

holds for v = a"” + b”, we have

E, log, (log, t* vt* -2
U5 (En, oa) = W(E,, +m,) _ log, (log, t*) <log ( . )) )
u(E,,) v log, (log, t*)

Thus

qu(m)(DSt) =1- .UE(n,)(Dn) =1—-(1- ﬂE(m)(En,+Mt))1032“0g2")
- (log, (log, t*))*
v(log (t*v/log, (log, t*)))*/2

Therefore we obtain

limk—Vw ZteLk “E(m)(DS:) = 0

Hence

H,(t, x) + H,(t, x) _

0 for p,-a.e. x,
t* log n,

lim

t— 00

which implies the lemma in this case by Lemma 5.2 (II) and Lemma 5.5.
Next we consider the case x(b, i) < x(a, j) < 1.

Roughly speaking, Lemma 5.2 (IT) implies that #(t, x) converges to 0 as t — o,

and hence it is sufficient to prove that

H,(t, x)/(H,(t, x) + H,(t, x)) — 0 (t — 0).
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Put

G(a,) = {x€E,; R, (x)eE(a,) for some 1=1Z (log, (log, t*))*}.
If we show
(55) WMy oo D er, HEmy(G (%)) = O,

we obtain the lemma in this case in a way similar to the first case. So, we
are going to prove (5.5). By Lemma 5.2 (I) we have

log, (log, t*) )x(a,j)/x(b,i)

t*

H(E(a,)) ~ 6y (n) 7 D ~ 92(

where 6; and 6, are some positive constants. Thus we have
#G(a,) _ (log,(log, £*))* u(E(ay,)
H(E(n)) — H(E(n,))

~ (log, (log, *) u(E(a,))t*
~ 92 lng (10g2 t*)l +(x(a,)/x (b, i) (t*)l — (k@ /x@,i)

tuE(nt)(G(ant)) =

Since k(b, i) < k(a, j) < 1, we obtain (5.5).
Thus the proof of the lemma is complete.

PrOOF OF PROPOSITION 5.3. Let V be an arbitrary set with pu (V)= 0.
Since

“oST"A=B and uy(UZoS V) =0,
it is sufficient to show that
palezo Uiz {x€A; |F(S,t,x) — p| >¢})=0  for any &> 0.
Obviously, this is equivalent to

a0 Uy {(x€ 45 [F(S, 7, x) — p| > 6}) =0 for any &> 0.

Thus the proposition follows from Lemmas 5.2 and 5.4.

Proor oF THEOREM 1.2. If x(a, i;) > 1, Theorem 1.1 and Lemma 2.1
imply Theorem 1.2. So we assume that k(a, i;) < 1. Since T is a piecewise
affine Markov map, Lemmas 5.1 and 5.2 and Proposition 5.3 imply

k

Yr=o0 Labdpiy.aan(T*X) =0
k

Yr=0 Labaeptior. b, a0)(T*X)

The other cases are similarly proved.

for m-a.e. x.

lim,_,
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PrOOF OF COROLLARY 1.2.1. This is obvious from Theorem 1.2.

ProOF OF COROLLARY 1.2.2. Let feC([0, 1]). It is sufficient to show
that

Z oS (THx) = f(p,)  for m-a.e. x.

Set

f:(x) = f(p;,) if xenbd (p,,, €) and f,(x) = f(x) otherwise.

Then f, converges to f uniformly on [0, 1] as ¢ > 0. Since f is bounded, it
follows from Theorem 1.2 that

m,., Zk 0 g(Tk f(p,-o) for m-a.e. x.

Therefore, from the uniformity of convergence of f, it follows that

Z of(T*x) = f(piy) for m-a.e. x.

This completes the proof.

ProorF oF THEOREM 1.3. Since T is a piecewise affine Markov map,
Lemmas 5.1 and 5.2 and Proposition 5.3 imply

Z:=o lnbd(p(in,a,An(Tkx)
Y=o lnbd(p(io),b,Ao)(Tkx)
Lemma 5.2 (I) (2) means that p in the above equality is a positive finite
constant. “In particular” part follows from Lemma 5.2 (I) (3) and (4). The

existence of the positive finite constant p for the other combinations of w,
and w, is similarly proved.

lim

=p for m-a.e. x.

n— oo

ProOOF OF COROLLARY 1.3.1. This is obvious from Theorem 1.3.

ProOOF OF COROLLARY 1.3.2. Remarking Theorem 1.1 and Lemma 2.1,
we obtain this corollary in a way similar to Corollary 1.2.2.

6. Remarks

In this section we state some remarks related to our main results.
In a way similar to the proof of Corollaries 1.2.2 and 1.3.2, we have

REMARK 6.1.1. Under the same situation as Corollary 1.2.1, let f be a
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function belonging to L!(m) and satisfying the following conditions;

f is bounded on (Ux(a,i)§1 (p; — 4, pi))U(Ux(b,i)gl (pi’ pi + 4)).

- f is continuous on nbd (p;,, w,, 4) for a small 4 > 0.
Then

limn—mo 1Z:;(l)f(Tkx) = {hm""’P(io)—Of(x) if wo=4a
n

lim, . p+0f (%) if wo=b  for mae. x.

REMARK 6.1.2. Under the same situation as Corollary 1.3.1, let f be a
function belonging to L'(m) such that f is bounded and continuous on

(Ux(a,i)= 1 (pi — 4, p))U (Ux(b,i)= 1 (i, pi + 4)).
Then

. 1 <pe .
hmn—'oo ; Zk=é (Tkx) = Zx(a,i)=1 Sa,i llmx—*pi—of(x)

+ Zx(b,i)= 15b,i 1imx—~p.»+of(x)

for m-a.e. x, where s, ;s and s, ;’s are constants, which are independent of f
and satisfy

Zx(a,i)=1sa,i + Doy=15%:= 1,
Sa; > 0 for i with k(a, i) =1 and s, ;> 0 for i with x(b, i) = 1.
By an idea similar to the proof of Theorem 1.2, we can prove

REMARK 6.2. Assume that a map T: [0, 1] — [0, 1] satisfies the following
conditions:

(1) There exists a partition 0 =cy<c¢; <--<c,=1 such that the
restriction of T to (c;_,, ¢;) is a C? function and can be extended to [c;_;, ¢;]
as a C? function; let T, be such an extension for i =1,---,r.

(2) Tilc;i—y,c)=(0,1) for i=1,---,r.

(3) T(x)>1 for x with T(x) # x.

4 Let w=a or b, and let i =1,---,r. There exist at least two pairs
of (w, i) such that

T:(p) = pi» T/ (p) = 1,

ITx) = x| = @, D@, i)|x = pA@D*T 1 of|x — pd/x@D 1),

where 0 < k(w, i) =1 and v(w, i) > 0 are constants.
If (wy, ig) and (w4, i;) satisfy the above condition (4) with k(w,, ip) <
K(wy, iy), then
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Zk 0 nbd(p(u) o1, Al)(T x) -0
n— oo -
Zk 0 nbd(p(lo) wo, Ao)(T x)

where nbd (p;, w, 4) is the same one defined in §1.

lim

for m-a.e. x,

We can give the corollaries of this remark which correspond to Corollaries
1.2.1 and 1.2.2.

The condition (1) in Remark 6.2 implies that the right and the left
derivatives of T at ¢;’s are finite, which is important since, without the finiteness
of the derivatives, there are some cases such tht u((0, 4)) < oo for 4 > 0 even
if x(b, 1) £ 1, where u is an m-equivalent T-invariant ergodic o-finite measure

(cf. [4], [5D).

References

[1] P.Berge, Y. Pomeau, C. Vidal. Order within Chaos: Towards a deterministic approach
to turbulence, Wiley, New York, 1984.

[2] E.Hopf. Ergodentheorie, Ergebnisse d. Math. u. Grenzgeb., 5, Chelsea, New York, 1948.

[3] T.Inoue. Asymptotic stability of densities for piecewise convex maps, Ann. Polon. Math.,
LVII (1992), 83-90.

[4] T.Inoue. Weakly attracting repellors for piecewise convex maps, Japan J. Indust. Appl
Math., 9 (1992), 413-430.

[5] T.Inoue. A classification of cusp-type maps, in Advanced Series in Dynamical Systems,
11, Proceedings of the RIMS Conference Structure and Bifurcations of Dynamical Systems,
ed. S. Ushiki, Wold Scientific, Singapore, 1992.

[6] T.Inoue and H. Ishitani. Asymptotic periodicity of densities and ergodic properties for
nonsingular systems, Hiroshima Math. J., 21 (1991), 597-620.

[7] Sh.Ito and S. Yasutomi. On continued fractions, substitutions and characteristic sequences
[nx + y] — [(n — 1)x + y], preprint.

[8] U.Krengel. Ergodic Theorems, de Gruyter studies in Math., 6, Walter de Gruyter,
Berlin, New York, 1985.

[9] A.Lasota and M. C. Mackey. Probabilistic Properties of Deterministic Systems, Cam-
bridge Univ. Press, 1984.

[10] P. Manneville. Intermittency, self-similarity and 1/f spectrum in dissipative dynamical
systems, J. Physique, 41 (1980), 1235-1243.

[11] G. Pianigiani. First return map and invariant measures, Israel J. Math., 35 (1980), 32-48.

[12] A. N. Shiryayev. Probability, GTM 95, Springer, New York, Berlin, Heidelberg, Tokyo,
1984.

[13] Y. Takahashi. Power spectrum and Fredholm determinant related to intermittent chaos,
in Stochastic Processes in Physics and Engineering, 357-379, D. Reidel Publishing Company,
1988.

[14] M. Thaler. Estimates of the invariant densities of endomorphisms with indifferent fixed
points, Israel J. Math., 37 (1980), 303-314.

[15] M. Thaler. Transformations on [0, 1] with infinite invariant measures, Israel J. Math., 46
(1983), 67-96.

[16] P. Walters. An Introduction to Ergodic Theory, GTM 79, Springer, New York,
Heidelberg, Berlin, 1982.



Ergodic theorems for maps with indifferent fixed points 471

Department of Mathematics
Faculty of Science
Hiroshima University
Higashi-Hiroshima 724, Japan

Section of Applied Mathematics
Department of Computer Science
Faculty of Engineering
Ehime University
Matsuyama 790, Japan








