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Asymptotic expansion of the joint distribution of sample
mean vector and sample covariance matrix from an
elliptical population
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ABSTRACT. We consider the joint distribution of the sample mean vector and the
sample covariance matrix based on the iid. sample of size n. We give a basic lemma
which can be used for deriving asymptotic expansions up to terms of O(n~!) for the
joint distribution of the sample mean vector and the sample covariance matrix. Using
the lemma, we derive an asymptotic expansion for an elliptical population.

1. Introduction

Let X and S be the sample mean vector and the sample covariance
matrix based on the ii.d. sample of size n from a p dimensional probability
distribution with mean vector u and covariance matrix £2. Let

(Ll)  Z=n"Q S —Q)Q " and Y=n2Q 12X — )

Then the limiting distribution of Z and Y is mutually independent normal.
Wakaki [7] derived an asymptotic expansion for the joint distribution of Z
and Y up to the order of n™"2 when the underlying distribution is an elliptical
distribution. Unfortunately, the result included some miscalculations. The
purposes of this paper are to correct them and to extend the result to an

asymptotic expansion up to the order n™'.

2. A basic lemma

In this section, we do not need the assumption that the underlying
distribution is elliptical. For the validity of the following formal asymptotic
expansion, we assume that the underlying distribution has a density function
with respect to Lebesgue measure on R? (see theorem 2 in Bhattacharya and
Ghosh [1]).
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Let X,, X,, ..., X, be the iid. sample, and let
2.1) U=Q"X;—p, j=12..n
Then
(22 Y=n2Y" U, and Z=nn-1)""{W-n2(YY -1},
where I, is the identity matrix of order p and
(2.3) W=n"2Y"_ (UU — L,).

First we consider the joint distribution of W and Y.
For a p x p symmetric matrix 4 = (a;) and a p x 1 vector B = (b;), we
use the following notation.

(24) Vec (A|B) = (alla A225 .5 app’ A12,0A135 -+, ap—l,p’ bla b2, [RRE] by),'

Let
2.5 V;=Vec(UUj - L|U), j=1,2,...,n
Then
(2.6) E=Vec(W|Y)=nT23"_ V.

Therefore our problem can be reduced to deriving an asymptotic expansion
for the distribution of the sample mean vector of V;, V,, ..., V,.

Let ¢(t) be the characteristic function of £, If E[||V,]|°] < oo, where | *|
is the Euclidean norm, then ¢(tf) can be expanded as

27  ¢(t) = E[exp (in P V{1)]"

= {1 —(1/29n ' E[(V{1)*] — (/6)n"**E[(V{1)*]
+ (124)n 2 E[(V{1)*] + O(n~%*)}"

= exp [nlog {1 — (1/2)n'E[(V{1)*] — (i/6)n>*E[(V]1)*]
+(1/24)n *EL(V{1)*] + O(n™*)}]

= exp {—(1/2)t'Cjt} [1 — (i/6)n ' E[(V{1)*]
+ (124)n  {E[(V{1)*] — 3(t'C,1)*}
— (/12nE[(V{1)°]* + O(m™>?)],

where C, is the g x g covariance matrix of V; with g = p(p + 3)/2. For any
nonrandom vector a, Prob(a’V; =0) =0 since X; has a density function.
This shows that C, is nonsingular. Inverting ¢(t), the density function of ¢
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can be expressed as

28) w(&) = @2m)~C,I71? JCXP {—i&t— /9t Ct}
{1 +n72g,(t) + n7'g,()} (dt) + O(n™>?),

where

29) g9.1(t) = E[—(i/6)(V{1)*]

and

(210)  g,(8) = E[(124)(ViD)* — (1/8)(t' C,t)* — (1/72)(V{1)*(V;1)*].
Since
@11) —i&'t — (1/2t'Cyt = —(1/2)(¢ + iC; Y C,(t + iC;E) — (1/2)€ C U,
fw(€) can be expressed as follows.
(212)  fyl&) = @n)""2|C, |7 exp {~(1/2)¢'C; ¢}
{1+ n7?Er[g,(T)] + n7 Ex[g2(T)]} + O(n™2),

where E; means the expectation with respect to T when T is distributed as
q dimensional normal distribution with mean vector —iC;'¢ and covariance
matrix C;'. Calculating the expectation E;, we obtain the following lemma.

LEMMA. Let ¢ be given by (2.6). Assume that E[|X,]|'°] < oo and that
X, has a density function with respect to Lebesgue measure on RP then the
density function of & can be expanded as

(2.13) fwl&) = 2m)~ 72| C,|7 exp {—(1/2)¢' C;'¢}
{1+ n72q,(8) + n71q,(8)} + O(™2),
where
(2.14) 4:() = (I/OEV[(V{ C;'&)* — 3(Vi C O (V€' V)]
and
215) (8 = (1/2{a:(©)}* — (1/8){a(a + 2) — 2(q + 2)(E C;*¢) + (€' C]*¢)?)
+ (1/29B [ =3V C; 0P (V CH Vo) (V3G 6
+ 6V GV C V) (VG V)
= 3(ViC V)VIC VL) (V5 CYy)
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—2VIC'V,)’ + 6(V{C )X (VI G o) (V36 )
+ (NGO — 6(V{CIOXVIC W) + 3(V G V).

Here V; and V, are given by (2.5) and E, means the expectation with respect
to the distribution of V, and V,.

The above lemma may be useful for deriving asymptotic expansions of
the distributions or the moments of some functions of the sample mean vector
and the sample covariance matrix. Here we note that some works have been
done for these distribution problems. Fujikoshi [3] derived asymptotic expan-
sions of the distribution of a multivariate Student’s t statistic defined by
u=n'"SV2(X — y) as well as Hotelling’s T2-statistic under nonnormality.
Kano [4] also derived an asymptotic expansion for the distribution of Ho-
telling’s T2-statistic under a general distribution, independently with Fujikoshi.
He derived a formula of Edgeworth expansion of the distribution of a multi-
variate statistic corresponding to £, with using multivariate Hermite polyno-
mials (cf. Appendix of Takemura and Takeuchi [6]).

3. Asymptotic expansion for the distribution of Z and Y in elliptical case

If the underlying distributon is elliptical we can evaluate the expectations
involved in the lemma in Section 2. Suppose that the underlying distribution
is elliptical with characteristic function exp (iu't)y(¢'I't), then the covariance
matrix is —2y'(0)I. Hence the characteristic function of U; = Q71(X,; — p) is

(3.1) c®) = y[—-t't/{2¢'(0)}].
Let U = (uy, uy,...,u,) and t = (t;,t,,...,t,), then
(3.2) E[u;y;...w] = (6/0t;)(9/0t;). . .(0/0t,)c(t)],=o-

Calculating the derivatives to the 8-th order, we obtain
E[uiuj] = <l]>a
E[uiujukul] = K, ijkl),

(33)
E[uujuuu,u,] = k3 ijkimn),
E[uuuuyu,u,u,u,] = x4 ijklmnop),
where
(G4 K =y20/{yO}, Jj=12 ..

and the notation {*) means
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Kij) = 6 (the Kroneker’s delta),
<kly = Gy <kl + ik G + G <Gk,
Cijkimn) = Cijy<klmn + (k) (jlmny + -+ + Ciny{ jkim),
(ijklmnop) = (ij Y <klmnop) + {ik){jlmnop) + -+ + (ip) { jklmno).
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Let C, be partitioned to 3 x 3 blocks as [Cy;] where the size of C;;, C,,
and C;; are p x p, p(p — 1)/2 and p x p, respectively. Then, using the for-

mulas (3.3) we obtain C;, =0, C;3=0, C;3=0,
(3.6) Cy; =2K,1, + (x; — 1)Gp, Coz =Kol pp-1)2 and Cyy =1,

where G, is a p x p matrix whose all elements are equal to 1. Let J,=

I,— p~'G,, then J, and p”‘Gp are idempotent, J,G, = O and

(3.7 Ci1 = 2K,J, + (px, + 2k, — PG,
Therefore

(3.8 Cii=ul,+vp'G, and C3; =2ul,,,p,
where

(3.9 u=Q2x,)! and v=(px,+2x,—p) L
Since

(3.10) Vec (4|BYC;* Vec (C|D) = u tr (AC) + p~*(v — u) tr (4) tr (C) + B'D,
B.11) VGV, = u(UiU,)* + p~ (v — w)(U;U,) (U3 U,)
— (U U, + U3U,) + UL U, + pv = a(U,, U,) (say).
From (2.2),
(3.12) W=(1-n"Z+n"2(YY —1,),
(3.13) ECH=utr(WH) +po—uwtr*(W)+ Y'Y
=1o(Z, Y) + n"2b,(Z, Y) + n"by(Z, Y) + O(n~ ),

and
(3.14) VIC'E = c(Uy, Z, Y) + n"2d(U,, Y) + O(n™Y),
where

10(Z, Y)=utr (Z) +p (v —uwtr’(2) + Y'Y,
(3.15) bi(Z,Y)=2{u(Y'ZY)—vtr(Z)+ p (v —u) tr (Z)(Y'Y)},
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by(Z,Y)= —2utr(Z*) — 2p~ (v — u) tr*(2)
+{u+p—w}(Y'Y)? -20Y'Y)+ py,
and
516 c(Uy, Z, Y) =u(UiZU;) + p~ (v — u) tr (Z)(U1U,) — v tr (Z) + UL Y,
d(Uy, Y) =u(U;Y)* — o(UiUy) + p~' (0 — w)(Y'Y) (U U))
—u(Y'Y) + pv.

The Jacobian of a transformation (W, Y)—(Z, Y) is (1 — n™1)P®*V2_ There-
fore, from lemma, the joint density function of Z and Y can be expanded as

(317 fZ,Y) = (@2r) 2|C,|7 exp [—(1/2)r0(Z, Y)]
‘[L+n2r(Z,Y)+n'r(Z, Y) + O(n~3?)],

where

(3.18) r(Z,Y)=E[(1/6)c(U,, Z, Y)* — (1/2)c(U,, Z, Y)a(U,, U,)]
—(1/2)by(Z, Y),

(3:19) (2, Y) =1/ (Z, Y)* — p(p + 1)/2 — (1/2)b,(Z, Y)
—(1/8){q(q + 2) — 2(q + 2ro(Z, Y) + 10(Z, Y)*}
+ E[(1/2)c(U,, Z, Y)?d(U,, Y) — (1/2)d(U,, Y)a(U,, U,)
—(1/8){c(Uy, Z, Y)* — a(Uy, U,)}a(U, U,){c(U,, Z, Y)?
—a(U,, U,)} — (1/12)a(Uy, U,)?
+ (1/4)a(U,, U,)*c(Uy, Z, Y)c(U,, Z, Y) + (1/24)c(U,, Z, Y)*
— (1/4)c(Uy, Z, Y)*a(Uy, Uy) + (1/8)a(U;, U,)*]

Taking these expectations, the joint density function of Z and Y can be
expanded as the following theorem.

THEOREM. Let Z and Y be given by (1.1). When the underlying distribu-
tion is elliptical with characteristic function exp (it’wy(t'I't) and finite 10-th
moments, the joint density function of Z and Y can be expanded as

(3.20) f(Z, Y)= (zn)-p(p+3)/42p(p—1)/4u(p+2)(p—1)/4v1/2 exp {—ro(Z, Y)/2}
‘(1 +n"2r(Z,Y)+n"'ry(2Z, Y)] + O(n3?),

where u and v are given by (3.9), ro(Z, Y) is given by (3.14) and
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(3.21) r(Z,Y)=a, tr (Z) + a, tr3(Z) + a5 tr (Z3) + a, tr (Z) tr (Z3)
+as(Y'Y)tr (2) + 0 Y'ZY,
(322) r(Z,Y)=(1/2r(Z, Y)* + B, + B, tr*(Z) + B; tr*(Z) + B, tr (Z?)
+ Bs tr?(Z) tr (Z%) + Bg tr?(Z?) + B, tr (Z) tr (Z3)
+ Bs tr (Z*) + Bo(Y'Y) + Bio(Y'Y) tr2(Z) + B, (Y'Y) tr (Z2)
4 BL(Y'Y? + BY'ZY tr(Z2) + BaY' Z2Y.
Coefficients o;’s and B/s are as follows:
(323) a, = /42 + 3p + p? — 4pv) + (,/2) 2 + p)o(—1 + 3v)
— (k3/2)v(2u + S5pu + p*u + 2v + pv + 8uv),
oy = (V¥/12)(3 — 6u — 20) + (x3/6)uv*(1 — 10u + 16u* — 2v + 8uv),
oy = (4x3/3)ud,
o, = —uv/2 + kyu*(—1 + 4w,
as = (v/2)(1 — 2u),
o = (1 — 2u)/2,
B, = {p(—84 — 87p — 18p* — 3p> — 12v — 36pv — 39p2v — 18p>v
— 3p*v + 12pv* + 72p*v? + 24p*v? — 80p?v?)}/96
+ {2+ p)(2 —p + 2pv + 3p*v + p*v — 13p*v? — 3p3?
+ 20p%v®)k, }/8
+ {2 + p)*v(—2 — p + 6pv — 15pv*)Kk3}/8
+ {(2 + p)@ + p)(—6u + 6pu + 12v — 3pv — 3p*v — 6uv — 3puv
+ 6p2uv + 3p3uv — 24v? + 18pv? + 12p*v? + 12puv?
— 12p%uv? — 20pv*)k, }/24
+ {2 + p)*(4 + p)v*(—1 + Sv)x,Kk4}/4
+ {(192u> + 128pu® — 48p*u® — 16p3u® — 32u’v — 36pu*v
— 120p*u?v — 99p3u?v — 30p*u?v — 3p°uv + 256uv
+ 160uv? — 264puv* — 240p?uv® — 66p3uv? — 6p*uv? + 64u’v?
— 3200 — 260pv® — 60p*v® — 5p3v® — 320uv®)k3}/24
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+ {(—52u® — 28pu* + 21p%u® + 10p*u* + p*u® + 32uv + 64puv
+ 22p%uv + 2p3uv — 48u?v + 20v% + 12pv? + p2v?
+ 48uv?)K, }/8,

B, = {—3u — pu + v + 2pv + 8uv — 3puv — p*uv — 6v*

— 3pv? + dpuv? + 2pv® — 6p*v — 2p3v® + 16p*v*}/8

+ {v(—2 + 4v — 120% + 20pv? + 19p%v?
+ 3pv? — 96pv® — 48p*v¥)k, }/8

+ {2 + p)v*(1 — 6v — 3pv + 360> + 18pv?)k3}/4

+ {(2u® — 2uv — puv + 12u%v + 12puv + 2p*uv — 6v* — pv?
+ 32uv? + dpuv® — 32uv? — 4pu*v? + 440° — 28pv3 — 15p%0?
— 2p3v® — 64uv® + 4puv® + 10p?uv® + 2p3uv® — 32v*
+ 48pv* + 8p%v*)K,}/4

+ {2 + p)(6 + p)(1 — 120)vk,Kx;}/4

+ {(—16u* — 68u>v — 18puv — 2p*uv + 32u*v + 8u’v?
+ 16puv? + 2p%u?v? — 32uv? + 128u*v? + 12uv® + 40puv®
+ 11p%uv® + puv® — 32u?03 + 192uv? + 40v* + 24pv*
+ 2p%v* + 64uv* + 128uv*)K2}/4

+ {(18u® + 2pu® + 16u*v — 28u®v — 20uv? — 11puv* — p*uv®
— 48u3v? — 20 — pv® + 4uv® — 48u?v)K,}/4,

Bs = {v*(—1 + 2u + 14v — 20uv — 32v* — 16pv3)}/32

+ {3v*(3 + 2v + 4pv)K,}/8 — {92 + p)v°«k3}/8

+ {v®(3u? — 6u® + Tuv — T0u*v + 88uv — 9?
— 26uv? + 80u*v* + 6v° — 6pv> + 24uv®)x;}/12

+ {32 + p)v K,k }/4

+ {v2(—2u® + 4u* + 2uv — 44uPv + 224utv — 256u5v + 2uv?
— 4u?v? + 96ucv? — 192u*v? — 203 — pv® — 4u?

— 64u’v®)k3}/8
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+ {uv®(Gu — 12u% + 12u3 — 20 + 32uv — 128u%v
+ 144uv + 40 — 28uv? + 48uv?)k, }/24,
Bs = {2 + 12u + 3pu + p?>u — 2pv — p?v + 4puv + 3p?uv + p>uv + 6pv?
+ 3p*v® — 4p*uv?}/8
+ {(4 + p)u(—2u + 2v + pv — 4uv — 4puv
— 2p*uv — 8v* — 4pv? + dpuv?)k;}/4
+ {u?(16u* + 8pu® + 26puv + 9p*uv + puv
+ 64u’v + 160 + 10pv* + p?v? + 32uv®)k3}/2
+ {u*(—14u — Ypu — p*u + 2v — pv — 24uv)k, }/2,
Bs = {v(u — 2uv — 6v> — 3pv? + dpuv?)}/8
+ uv(—u? — Suv + 12u%v + 2v% + pv? + duv? — puv?)x,
+ {w?v(2u?® — duv + 64uv — 128u3v — 20® — pv* — 32u?v?)k3}/2
+ {w?o(—u + 2u* + 2v — 14uv + 24u”v)K,}/2,
Bs = —{u*(1 + pv)}/8 + {(4 + p)uivi,;}/2
— {u*(p + 16w)v3}/2 + {u*K,}/2,
By = {8uvk;}/3 + 8(1 — duwutvr3 + {8uP(—1 + 3u)vx, }/3,
Bs = —8u’K3 + 2utk,,
Bo = {4 + 3p + p* + 4v + 10pv + 5p%v + p*v — 8pv? — 4p*v?}/8
+ {(2p — 12v — 20pv — Tp*v — p3v + 24v* + 32pv? + 10p*v?)k,}/8
+ {2 + p)v(4 + p — 6v — 3pv)K}}/4
+ {(—4u — 10pu — 2p*u — 8v + 10pv + Tp*v + p>v — 8uv — 24puv
— 14p?uv — 2p3uv — 8v? — 16pv* — 2pv? — 32uv?)K;}/8
+ {2 + p)(6 + pPv’r,x3}/4,
Bro = {v*(5 — 6u — 2v + 2pv)}/4 — {v*(3 + 4v + Spv)x, }/4
+ {32 + p)v*k3}/4 + {v*(1 + 2u — 20u? + 32u> + pv — 4uv
+ 16u*v)K;}/4
— {2 + pv’ryx3}/4,
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Bi1={—2u+ 2v + pv — 4uv — 2puv}/8
+ {u(2u — 2v — pv — 4uv + 2puv + 16u*v)x;}/4,
B =(3—4u+2v—pv—4uv)/8 + {(—1+ 2v + 2pv)x,}/8
— {2 + pox3}/8,
Biz = —(uv) + 2u*(—1 + du)vk,,
Bia= —1/2 + 4u’k;.

The coefficients o’s are corresponding with g;s in the theorem 2.1 of
Wakaki [7]. If we substitute k =k, — 1 and 3 = x; — 1 and make some
reduction using (v — u)/p = uv — v/2 and uk, = 1/2, then we obtain g; = a,
for j=2,3,..., 6. But a; #a,. The coefficient a, should be corrected as

(3.29) a; = —y3{uv(p> + 5p+ 2 — 8p71)/2 + v*(p + 6 + 8p71)/2}
+ k{uv(p®* + p — 2)/2 + v*(3p + 6)/2 — v(p + 1)/2}
—2uv(p+1—2p7') —4v?p71.

If the underlying distribution is normal, k, = k3 =k, =1and u =v = 1/2.
r(Z,Y) and r,(Z, Y) are reduced to

(3.25) r(Z, Y) = —(1 + p)2 tr (Z) + (1/6) tr (Z°),
(3.26) r(Z, Y) = (1/2){r,(Z, Y)}* — p(5 + 9p + 2p?)/24
+ Q2 + p)Atr (Z2) — (1/8) tr (Z%).

If we make a transformation Z to {(n — 1)/n}*?Z, we obtain the same result
given by Fujikoshi [2] (see also Siotani, Hayakawa and Fujikoshi [5]).
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