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ABSTRACT. We study first order partial differential equations on the curvature of
principal fibre bundles. We show that such differential equations are essentially ex-
hausted by the one obtained from the Bianchi identity, and as one example, we
express the differential equations in the case of 3-dimensional Heisenberg bundles in
a geometric form. In the latter half of this paper, we study some algebraic properties
concerning the Bianchi identity for 3-dimensional Heisenberg bundles. Several types
of invariants and covariants naturally arise from studying this algebraic problem.

Introduction

“Prescribed curvature problem”, i.e., the problem of characterizing “actual”
curvature tensor fields (or forms) among the set of curvature like tensor fields
(or forms), is one of the fundamental problem in differential geometry, and
also in physics. In general, not all curvature like tensor fields are actually
curvature, and several results are known at present concerning this problem
for each geometric situation. For example, in a series of papers, Kazdan
and Warner characterized the curvature functions on 2-dimensional manifolds
from global viewpoints [8], [9], while local characterizations of curvatures
are studied deeply in [3], [5], [6], [7], [13], etc.

If Q is an actual curvature determined by a connection, the components
of Q2 must satisfy some partial differential equations. As a classically known
example, in the context of principal G-bundles, the characteristic form f(£2)
corresponding to a G-invariant polynomial f is closed, and we may consider
the equality df(2) =0 as a first order partial differential equation on Q. It
is also known that in the case of SU(2)-bundle over R* the curvature like
form Q which satisfies some second order partial differential equations is an
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actual curvature, under some genericity condition on the pointwise value of
Q (cf. [13]).

In the present paper, we study the “local” prescribed curvature problem
on principal fibre bundles, especially concerning the first order partial differen-
tial equations on curvatures. Let P - M be a principal bundle with a struc-
ture group G, and w be a connection 1-form on P, which takes value in the
Lie algebra g of G (cf. [10; vol. I]). Then w defines the curvature 2-form
Q on P by the structure equation

(S) Q =do + 12 [0, ®].

Since we consider only local characterization, we may pull back w and Q to
the base manifold M, by using a suitable local cross section of P. If the
Lie group G is abelian, then the above structure equation (S) is simply reduced
to Q =dw, and hence, by Poincaré’s lemma, a local g-valued 2-form @ is
an actual curvature if and only if it satisfies the first order partial differential
equation d@2 =0. But, for general non-abelian Lie groups G, the situation
is more complicated.

To obtain first order partial differential equations on general principal
G-bundles, we differentiate the above structure equation (S). Then the Bianchi
identity

(B) dQ = [Q, 0]

follows, which involves the first derivatives of Q. We cannot consider (B)
itself as a differential equation on Q because it also contains a connection
form w. But, we can obtain first order partial differential equations on
from (B) as follows. Let AP(M, g) be the set of g-valued p-forms on M, and
define a linear map

BQ: Al(M, g) i A3(M, g)

by Bg(a) =[£2,a]. We call B, the Bianchi map. Then, from the identity
(B), the form dQ2 must be contained in the image of the map B, if € is an
actual curvature. In general, the map B, is not surjective, and hence, some
algebraic conditions are imposed on df2, which may be considered as first
order partial differential equations on Q. Our first main purpose of this
paper is to show that the “essential” first order partial differential equations
on 2 are exhausted by the one obtained in this way. (For precise statements,
see Theorem 1.1.) To prove this fact, we calculate the rank of the map
determined by the 1-jet of the structure equation (S), under a pointwise gener-
icity condition on the curvature Q (cf. §1).

Our next problem is to find all first order partial differential equations
on Q in an explicit form. But, for general Lie groups G, this is quite a
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difficult algebraic problem, in contrast to the abelian case which we explained
above. In the present paper, as one example, we give a complete answer to
this question in the case where the structure group G is the 3-dimensional
Heisenberg group H,. The structure of H, is very simple among non-abelian
Lie groups, but in the standpoint of “prescribed curvature problem”, it con-
tains an interesting algebraic difficulty which is peculiar to this sort of problem.
In the paper [7], DeTurck and Talvacchia already studied this problem in
the case where the dimension of the base manifold is 3. For general dimen-
sions, we show that first order partial differential equations are essentially
exhausted by two types of equations: The first one is expressed as the closed-
ness of characteristic forms as explained above, and the second one is a new
type of non-linear equation on @, which appears only in the case dim M > 5
(Theorem 2.3). We express this new differential equations in a simple geomet-
ric form by introducing a family of S-dimensional subspaces of T.M (Proposi-
tion 3.1 and Theorem 3.3).

The critical dimension 5 appeared in this context is of special interest
for us, and some peculiar facts hold in several places of this paper if dim M =
5. For example, only in this case, the Bianchi map B, admits a one-
dimensional unexpected kernel, which enables us to write down the defining
equation of the image of B, in a relatively simple way, because it is invariant
under the action of the group GL(S, R). (cf. Lemma 2.2, Proposition 3.1. For
other phenomena, see §95.)

As stated above, in obtaining the first order partial differential equations,
the Bianchi identity (or the Bianchi map) plays a fundamental role. In the
latter half of this paper, we study some algebraic properties of the Bianchi
map associated with 3-dimensional Heisenberg bundles. For these bundles,
the essential part of By, is simply reduced to the linear map

Pp V¥ + V*o N3 V*

defined by ¢g(a;,,2,)=F, A0, —oa, A F,, where V=TM, F=(F,F,)e
N V*+ A2V* and a,, a, € V*. (We denote the pointwise values of 2 and
w by F and «;, respectively. For details, see §2.) If F is a generic element
of A\?V*+ A2V* this map is injective in the case n>6, and this fact
geometrically implies that two components of the connection 1-form « are
uniquely determined from the pointwise values of Q and dQ. In §4, we
explicitly write down this expression (the inverse formula of the map ¢f),
whose denominators and numerators are the polynomials of Q and dQ with
degree 6 (Proposition 4.1). In order to express this formula, we must intro-
duce a flag V! = V* < V6 < V" where V" = T,M, and the superscript indicates
dimension.

In the final section of this paper, we consider the problem of characteriz-
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ing “singular” curvatures from the standpoint of the Bianchi map in detail.
Throughout §1 ~ §3, in determining the number of first order partial differen-
tial equations, or in obtaining the defining equation of the image of the
Bianchi map, we consider only “generic” curvatures such that the Bianchi
map takes the maximum rank. Hence, as one natural and important problem,
it is desirable to characterize generic (or equivalently, singular) curvatures in
the set of all curvature like forms. Roughly speaking, we can completely
characterize such singular curvatures in terms of two concepts “reducibility”
and “decomposability” of F. (For the precise statements, see Theorem 5.1.)
On the other hand, by definition, singular curvatures constitute some algebraic
sets of A\2V* + /\?V*, and as another characterization, we give the defining
equations of these algebraic sets. Several new types of algebraic equations
appear, including the invariants and the covariants of the group GL(n, R) x
GL(2, R) acting on the space \>V* + \2V* ~ A? V* ® R? (Theorem 5.2 and
Proposition 5.11). We emphasize once again that the case dim M = 5 has a
special meaning in considering singular curvatures. In this case, generic pairs
of 2-forms can be reduced to some normal form (Lemma 5.8), and this normal
form plays one of the crucial roles in characterizing singular curvatures.

Finally, it should be remarked that first order partial differential equations
are not in general enough to characterize “actual” curvatures, and it is neces-
sary to study higher order partial differential equations on Q. We will treat
this problem in forthcoming papers.

1. First order partial differential equations on principal G-bundles

In this section, we show that first order partial differential equations on
the curvature of principal G-bundles are exhausted essentially by the ones
that are obtained from the Bianchi identity.

Let P> M be a principal G-bundle over an n-dimensional manifold M,
and let g be the Lie algebra of G. Let w and £ be g-valued connection
1-form on P and its curvature form, respectively. Then, they are related by
the structure equation:

(S) Q =do + 12 [0, o].

By applying the exterior differentiation d to (S), and using the formula
[[w, w], o] =0, we obtain the Bianchi identity

(B) aQ = [Q, w].

(For fundamental identities on g-valued forms, see for example [4].) Since
partial differential equations essentially express the “local” property of un-
known functions, we may restrict the problem to some open set of M where
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the bundle P is trivial, and we express this open set as M again. We fix a
cross section g: M — P and pull back the forms such as w, Q, dw, dQ on P
to M, and denote them by the same letters. Since the vertical value and
the right translation of these forms are uniquely determined, we may consider
the “prescribed curvature problem” on the base manifold M. In the following,
we denote by AP(M, g) the set of g-valued p-forms on M.

Now, using an element Q € A%(M, g), we define a linear map

BQ: Al(Ms g) g As(M, g)

by Bg(x) = [, o] for o € A'(M, g). Then, from the Bianchi identity (B), it is
clear that the 3-form df©2 must be contained in the image of the map B if
Q2 is an actual curvature. For this reason, we call B, the Bianchi map. It
is easy to see that the property “dQ2 € Im B,” does not depend on the choice
of a cross section of P> M. When B, is not surjective, we may say that
the condition dQ € Im By, (the Bianchi condition) is a first order partial differ-
ential equation on £ because the defining equation of Im B, in A3(M, g)
contains the first derivatives of Q. Actually, the map B, is determined by
a pointwise linear map

B V*®@g—- N V*Q®ag,

defined in the same way as above, where V=T, M, and F=Q,e A\’ V*®g.
(In the following, we express g-valued 2-forms as F instead of £ when the
pointwise values of Q are concerned.) The maximum rank of By, where F
runs all over the space /\?V*® g, depends only on the Lie algebra g and
n = dim M, and we denote this maximum rank by r,(g). Clearly, the equality
rank B = r,(g) holds for generic elements F e /\> V*®g. Hence, if the point-
wise value of Q is generic, then the map By takes the maximum rank for
any x€ M, and in particular, the number of first order partial differential
equations obtained from the Bianchi condition d2 € Im B, is equal to 1/6-
n(n — 1)(n — 2) x dim g — r,(g), which is the codimension of the map By.

Next, we determine the essential number of all first order partial differen-
tial equations on the curvature 2. To state the precise results, we use the
following notation. First, we define the sets J?(w) and J?(R2) by

JP(w) = {p-jets of g-valued 1-forms w on M},
JP(Q) = {p-jets of g-valued 2-forms Q2 on M}

(the letters w and 2 on the left hand sides possess only a symbolic meaning),
and denote the elements of these spaces by jP(w) and jP(R2), respectively.
Clearly, J?(w) and J?(2) are differentiable manifolds, and it is easy to see
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that their dimensions are equal to n (n : p> x dim g and <;> (n _; P ) x dim g.

<Note that zo (" + z B 1) = <" : p).)

The structure equation (S) naturally induces a quadratic map
Strl: JH(w) » J°(Q)

because the pointwise value of € is uniquely determined by the 1-jet j'(w)
of w. And, by differentiating the equation (S), we naturally obtain the first
prolongation of Str°

Strt: J3(w) > JY(Q),

which is also quadratic. (For details, see the proof of Theorem 1.1) We
may say that the defining equations of the image of Str! in J'(Q) are the
first order partial differential equations on €, and the essential number of
these equations is equal to the codimension of the map Str!. We denote by
s,(g) the rank of Strl (the differential of Str') at a generic point of J%(w), ie.,
the maximum rank of the differential of the quadratic map Str'. Then, the
codimension of the map Str! is equal to

dim J1(2) — s,(g) = 1/2-n(n — 1)(n + 1) x dim g — s,(g),

which depends only on the Lie algebra g and the dimension of the manifold.
Clearly, we have the inequality

dim J}(Q) — s,(8) = 1/6-n(n — 1)(n — 2) x dim g — r,(g)

because the Bianchi condition dQ e Im By, is the first order partial differential
equation on Q as explained before. Now, under the notation as .above, our
first main theorem is stated as follows.

THEOREM 1.1. For any Lie algebra g, the equality
dim JY(Q) — s,(g) = 1/6-n(n — 1)(n — 2) x dim g — r,(g)

holds. In particular, essential first order partial differential equations on the
curvature €2 are exhausted by the Bianchi condition d2 € Im B, for any principal
G-bundle.

Proor. We prove this theorem by using a local coordinate system
(x5, x,) of M. Let {e;, ", e} be a basis of the Lie algebra g, and we
put [e,e,] =) cie,. Then, the components of a connection form  and its

S

curvature form Q =dw + 1/2-[w, @] are locally expressed as
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0
w<6—x,> = ; W€,

o 0

where
Qg = wg — 0g; + ; Cou®i Dyjs
and
o, = 20
W ox;

7

We may use the components {w,;, oy;} and {Q,} as local coordinates of the
manifolds J'(w) and J°(Q), respectively. Clearly, the map Str® is locally
expressed as

Str((wg;, Cl)s.'j)) = (Qsij)

through the above equality on ;. Next, we differentiate the structure equa-
tion Q =dw + 1/2-[w, w] with respect to x,. Then, by putting

2
Oos and Q 022
anaxk

_ sij
sijk — a ’

A@.; ik =
sij X,

we have

— S
Qijk = Ogjix — gy + Y Cou( @y ,; + Oy@y),
tu

and the map Str! is locally expressed as
Str! (@i, D55, Ogi)) = (i35 Lgijnc)s

which is quadratic if g is not abelian. (As above, we may consider {wy, wg;,
oyt and {2, 2.} as local coordinates of J*(w) and J'(2).

Now, we determine the kernel of the differential of Str! at a generic
point j(w) = (wy, Oy, Og;) € J*(w). By considering the above equalities, the
tangent vector

0 ) 5,
o= sti%ﬁ + 2 aﬁj_a_a:ij + Za,ijk%—

sijk

= (&g, Asijs asijk)
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of J*(w) at j*(w) is contained in the kernel of Str} if and only if

s —
Ogji — i + Y Ca(@yj0; + 0y, = 0,
tu

(*)

S —
Ogjir — Osijpe + Z Cou( @y + DpigOyj + Oy 0y + Dy0%3) = 0.
tu

In the following, we determine the degree of freedom of a satisfying (x) for
generic j2(w). From the first equations of (x), the component ag; (i>]) is
uniquely determined by the values of ay; (i <j) and ag. Similarly, since o
is symmetric with respect to j and k, the component oy is determined by
the values o (i <j < k), oy (i <j) and ag, but not uniquely in this case. By
putting

— S
Agijre = Ui — Olgie + Cou(@yj0yip + Dy Oly; + OOy + Oy 0),
tu

it is easy to see that this degree of freedom just comes from the equality
(%) Agje — Aggi + A = 0,

which imposes some additional conditions on the components (o, ag). We
rewrite this equality () in a simple form in the following way. First, we have

Agije — Ageji + Agij = Z Coul @y + Dyt + Wyl + OpiOlyix)
- Z Coul@y0; + DOy + Oy + OyeOlysi)
+ Z Coul(@yiOlyy; + DOl + Dy + Dpycyij)
= Z Coul @i — i) 0y + (i — i) @y + (A — %) Oy }
+ Z Coul (@ — )ty + (O — Oi) 0y + (@ — Dpij) s }
=0.
From the first equation in (x), we have
Ugij — Ogji = ; Coul@yj0ty; + @,;005),
and we substitute this equality into the above. Then, we have
Z Ctsu{(wtkj - wrjk)“ui + (W — wtki)“uj + (wtji - a’ﬁj)“uk}
+3, CouCor (@ Xy F+ 00 )y F (D410 F Dppely;) Oy

+ (0,0 + @yi0,;)0h} = 0.
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The coefficient of a,; in this expression is equal to

s w v
Y crl@pg — o) + Y CouCon @@y + Y CiCany @, Dy
t tow

tow

— s S W s W
= z cm(wtkj - wtjk) + Z ctwcvukawtj + Z cuwcuxkawtj
t tow tow

= Z Cou( @y — Oy) + Z CawCot Wy Wy
t

tow
—_— s t
= Z Ctu <wrkj - wtjk + z cwvwijuk)
t ow
_ s
- z cmgtjk-
t

(We used the Jacobi identity once in the above modification.) The coefficients
of «,; and a, can be calculated in the same way, and hence, the above
equality is simplified as

Z Cou(R ety — i 0tyj + Qpjoty) = 0,
t
which is equivalent to [, ay] = 0, where oy, = (,;). Therefore, the degree of
freedom of o = (aty;, &tyj, %i5%), Which is the dimension of Ker Str;, is equal to
{n+1/2-n(n+ 1)+ 1/6-n(n + 1)(n + 2)} x dim g — r,(g)
= 1/6-n(n* + 6n + 11) x dim g — r,(g),

because the equality [, a,] = 0 imposes r,(g) conditions on o for a generic
j*(w). (Note that the map Bg(xy) = [, ay] determined by Q = Str(j(w))
takes the maximum rank if j!(w) is a generic element in J!(w) because the
map Strl is surjective.) Therefore, we have

s,(g) = rank Strl at j*(w)

= dim J?(w) — {1/6-n(n* + 6n + 11) x dim g — r,(g)}

={1/2'n(n + 1)(n + 2) — 1/6-n(n* + 6n + 11)} x dim g + r,(g)
=1/6-n(n — 1)(2n + 5) x dim g + r,(g),

and hence the codimension of the map Str, is equal to
dim J}(Q) — s,(g) = 1/2-n(n — 1)(n + 1) x dim g — 1/6-n(n — 1)(2n + 5)
x dim g — r,(g)
=1/6-n(n — 1)(n — 2) x dim g — r,(g),

which proves the theorem. q.ed.
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REMARK. (1) Let f be an invariant polynomial of the Lie group G.
Then, as stated in Introduction, the characteristic form f(Q) on M is closed.
(See [10; Vol. II]) We may consider this equality df(2) =0 as a first order
partial differential equation on Q, and Theorem 1.1 implies that this equality
follows essentially from the Bianchi condition d2 € Im B,. (And, in fact, the
closedness of f(£2) is proved in [10] by using only the Bianchi identity.)

(2) As stated in this proof, the degree of freedom on the expression of
o comes from the equality (*x) on Ay, and it is easy to see that this fact
is equivalent to the exactness of the following natural complex (cf. [1]):

V"‘®S2V"‘—>/\2 V*® V*—»/\3 V*,

The codimension dim J!(Q) — s,(g) which is the essential number of first
order partial differential equations may be also expressed as 1/6-n(n+ 1)(n—4)
x dim g + k,(g), where k,(g) is the dimension of the kernel of B, for generic
Q. In the special case n =4, Mostow and Shnider [12] showed that the
map By, is the isomorphism if the Lie algebra g is semi-simple and £ is generic.
Therefore, combining these results, we have

COROLLARY 1.2. When dim M =4 and g is semi-simple, there exists no
first order partial differential equation on the curvature Q.

2. 3-dimensional Heisenberg bundles

Now, our next problem is to determine the rank r,(g) (or equivalently,
the rank s,(g)) for a given Lie algebra g, and to find the defining equations
of the image of the map Bj,. First, in this section, we determine the value
r,(g) when g is the 3-dimensional Heisenberg Lie algebra. As stated in Intro-
duction, prescribed curvature problem for this bundle is already studied in
[7] in the case dim M = 3. '

Let H, be the 3-dimensional Heisenberg group:

1 a ¢
H, = 01 b||abceR
0 01
Then, by putting
010 0 00 0 01
X, = 0 0], X, = 0 1], X, = 0 0f,
0 0 0

{X,, X, X3} forms a basis of the Lie algebra §; of H,, and the bracket
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operations of h, are given by
[X:, X5] = X, [X;, X531 =[X3, X3]1=0.

Let P> M be a principal bundle with structure group H,, and let @ (resp.
Q) be a connection (resp. curvature) form on P. As in §1, we pull back the
forms w and 2 to M by a cross section of P, and denote by w; (resp. £2;)
the X,-component of w (resp. 2). Then the structure equation (S) for the
3-dimensional Heisenberg bundle is locally expressed as

Q, =dw,,
() Q, =dw,,
Q3 =do; + 0, A 0y,
and the Bianchi identity is
aQ, =0,
(B) dQ, =0,
dQ;=Q, A 0w, — 0, A 2,.
Our first purpose in this section is to prove the following theorem.

THEOREM 2.1. For 3-dimensional Heisenberg bundles, the rank r,(h;) and
the essential number of first order partial differential equations dim J'(Q)—
s,(b3) (=1/2-n(n — 1)(n — 2) —r,(b3)) on the curvature Q are given in the
following table, according as the dimension of the base manifold M.

| m(bs) dim J*() — s,(s)

n=3 1 2
n=4 4 8
n=>5 9 21
n>6 2n 1/2-n(n*> —3n—-2)

Since dQ, = dQ, = 0 for H;-bundles, the X,- and X,-components of the
image of the Bianchi map B, defined in §1 is zero. Hence, to prove this
theorem, we have only to show the following lemma.

LEMMA 2.2. Let V be an n-dimensional vector space, and F = (Fy, F,) be
a pair of 2-forms on V. Then the maximum rank of the map

P VX + VES NSV
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defined by
ep(ag, a) =Fy Aoy —oy A Fy, ay, oy € V*
is given by
rank @p

n=3 1

n=4 4

n=>5 9

n>6 2n

ReMARK. For 3-dimensional Heisenberg bundles, we may call ¢ the
Bianchi map since ¢y is the essential part of By as explained above. (As
before, in considering the pointwise problem, we express 2-forms as F instead
of Q) It is clear that the Bianchi map ¢ takes the maximum rank for a
generic F, and rank ¢ is not maximum if and only if F belongs to some
algebraic set in /\> V* + /\? V'*, consisting of singular elements. To determine
the explicit defining equations of this algebraic set is another interesting alge-
braic problem, and we study this problem in §5 in detail. (See Theorem 5.2
and Proposition 5.11.)

Proor. For the case n=3, 4 and n> 6, we have only to find F =
(Fy, F,) such that the rank of ¢ takes the values in the table because rank ¢
cannot exceed these values. For each case, by using a basis {ef, -, e¥} of
V*, we put

n=23:F =ef A e}, F, =0,
n=4:F =ef AeX +e% A el F, =0,
n>6:F =ef nel+ el Ael, F,=ef A et +e% A e

Then, we can easily verify that the map ¢ is surjective in the case n =3,
4, and injective in the case n > 6. Next, for the case n =5, we put

F,=ef Anel+ednel, F,=ce}f nef+ef A et.

Then, by direct calculations, we can show that rank ¢r =9 with Ker ¢ =
{(e%, —e¥)). Hence, to complete the proof, we have only to show that the
inequality dim Ker ¢ > 1 holds for any F in the case n =5. For this pur-
pose, we construct a canonical 1-dimensional kernel of ¢y in terms of F for
generic F. First, using the volume form & =ef A -+ A e¥, we define ay;,
ay€R (1<i<5) by
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;@ =F AF A(e]F),
4@ = —F, A F, A (e;]1Fy),

and put o =Y ay;e¥, a, =) a,ef. Then, we have ¢@g(a;,a,)=0. In fact,
the ef A ef A ef component of a; A F, is equal to ay;Fop — oy;Fy + g Fyy,
and we have

(“qujk - aljF2ik + alkFZij)¢
=F A Fy A (Fypce; | Fy — Fyejl F, + Fy ¢, 1 F,)
= —1/2-F, A F; A {eiJejJ e |(Fy A F,)}.

On the other hand, as for the ef A e} A ef component of a, A F;, we can
show the equality

(aZiFljk — opiFyy + "‘21¢Fuj)ds =1/2-F, AF, A {ei_l e e ] (Fy A Fl)}

completely in the same way. Since any 6-forms automatically vanish on R>,
we have

(Fy A Fy) A {ejle](F, A Fy)} =0,
{e.](Fy A F)} A {e](F, A Fy)} =0,
{ejlei) (Fy A Fy)} A (F, A Fp) =0,
and using these equalities, we have
Fy A Fyafelelel(Fo A F)} = —{e;|(Fy A Fy)} A {ejle](F, A F,)}
= —{ele, | (Fy A F)} A {e1(Fy A Fy)}
={e.lejJe;](Fy AF))} AF, AF,
=—F, AF, A{e;]lele | (Fy A Fy)},

which shows that a, A F, =a, A F,. Clearly (a,, ,) # 0 for generic F, and
hence we have dim Ker ¢y > 1 for any F. q.ed.

ReMArk. The last inequality rank ¢F <9 in the case n = 5 follows imme-
diately from Proposition 3.1, where the existence of a non-trivial defining
equation of Im ¢ is proved. This inequality can be also proved by using
the results in §5. For details, see Remark after Lemma 5.8.

It is easy to see that the ring of invariant polynomials of the Lie group
H, is generated by two elements with degree 1, and the corresponding charac-
teristic forms are Q; and Q,. Of course, we already know the closedness
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of the forms Q, and Q, by the Bianchi identity (B). These equations d2; =
n
3
differential equations on the components of 2. And by subtracting this from
the value in Theorem 2.1, we know that the number of the remaining first
order partial differential equations is given by

dQ, =0 contain 2 = 1/3-n(n — 1)(n — 2) independent first order partial

dim J1 (@) — s,(B;) — 2('3’)

=3 0
=4 0
=5 1
6 1/6-n(n + 2)(n — 5)

But, these numbers just coincide with the codimension of the image of the
map ¢F in Lemma 2.2 because <g) —2n=1/6-n(n + 2)(n — 5). Therefore,

we have the following theorem, which may be considered as a refinement of
Theorem 1.1 for 3-dimensional Heisenberg bundles.

THEOREM 2.3. The essential first order partial differential equations on
the curvature  of 3-dimensional Heisenberg bundles are exhausted by

d.Ql:sz:O for n=3, 4,
and
dgl = dgz = 0, dQ3 € Im (p(gl’nz) for n Z 5.

This result for the case n = 3 is also an immediate consequence of Propo-
sition 2.4 in [7], where it is proved that a generic triple of 2-forms (2,, 2,, 23)
with dQ2; = dQ, = 0 is always a curvature of H;-bundle over a 3-dimensional
manifold. (Here, the term “generic” implies that the pointwise value of Q is
generic in a sense. For details, see [7; p. 34])

Thus, our remaining problem for first order partial differential equations
on £ is to find the explicit defining equations of the map ¢, o,) in Lemma
2.2, which belongs to the problem of “Linear Algebra”.

3. The Bianchi condition in the case n > 5§

In this section, we give the explicit defining equations of the image of
the map ¢ defined in Lemma 2.2 in a geometric form for n > 5. We first
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treat the case n = 5, which also plays a fundamental role for the general case
n>6. To state the results, we first prepare some notations.

Let V be a 5-dimensional real vector space, and we fix a volume form
® e /\’V* throughout. Then, for any 4-form ye /\*V*, the vector y* e V
is uniquely determined by the rule

yEld=ye \*V*

In this section, in the case n = 5, we say that the pair of 2-forms F = (F,, F,) e
/N V*+ N2V* is “generic” if

(1) three vectors (F; A F;)*, (F; A F,)*, (F, A F,)* .are linearly indepen-
dent in V,

(2) the rank of the Bianchi map @p: V* + V* > A*V* is 9 (ie, ¢f is
of maximum rank. cf. Lemma 2.2).

We remark that such forms actually exist. For example, using a basis
{et, -+, e%} of V* we put

F,=¢ef AeX+e¥ A e,
F, =¢f A ef + e% A et

Then, with respect to the volume form @ = e} A --- A e, we can easily check
that

(Fy A F1)* = 2es, (Fy A Fp)* = —e,, (F; A F))* = 2e,,

and rank ¢y =9. (See the proof of Lemma 2.2.) Therefore, “generic” forms
constitute an open dense subset of A2 V* + A*V*. (Actually, it is a comple-
ment of an algebraic set of \?V* + /\? V*, and explicit defining equations
of this algebraic set can be obtained immediately by using the results in
Theorem 5.2) Note that the genericity for the curvature (2,, £2,) depends
only on the pointwise O-th jet of £, not on their derivatives, nor on the
choice of the volume form of V. Now, the next propositon combined with
Theorem 2.3 gives the complete answer to first order partial differential equa-
tions of Q in the case n=15. (In the following, we express the pointwise
value of dQ; as G.)

PROPOSITION 3.1. Let F =(F;,F,) be a generic element of N*V* +
/N> V*, where V =R®. Then, a 3-form Ge /\’ V* is contained in the image
of the Bianchi map @g: V* + V* > \>V* defined in Lemma 2.2 if and only
if the following equality holds:

G((F, A F)*, (F; A Fy)*, (F, A F)*)=0.
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Note that the above equality is a non-trivial condition on G, and it does
not depend on the choice of the volume form &. In particular, by this
proposition, it follows that rank ¢r <9 for generic (and hence, any) F in the
case n =35 because dim /\’V*=10. (cf. Lemma 22) Geometrically, this
proposition implies that the 3-form d2; vanishes on the 3-dimensional sub-
space spanned by (2; A 2,)%, (2, A 2,)*, (2, A 2,)* at each point of M,
and hence this condition may be considered as a first order partial differential
equation on ;.

To prove this proposition, we have only to show that the above equality
holds in the case G € Im ¢y. In fact, since the above condition is a single
equation on G and we already proved rank ¢r =9 for generic F (Lemma
2.2), the converse part follows immediately. In order to prove the above
equality on G, we first prepare the following lemma.

LEMMA 3.2. Let F =(F,,F,) be a generic element of N>V* + \*V*,
where V = R>. If two vectors vy, v, € V satisfy

v J(Fy A F) =0, ](F, A ) =0,
then two 1-forms v, | F, and v, | F, are parallel in V*

Proor. Since the pair is generic and dim V =5, we may put

F, =Y Fjef A ef,

i<j
F,=eY nel+ednef,

in terms of a suitable basis {e}} of V*. Then, from the condition v, |
(F, A F,) =0, we have v, = kes. Next, since F; A F, is equal to

* * * * *
(Fi; + F34)etass + Fyselras + Fuselous + Fiselsys + Frselays (#0)
where efy; = ef A ef A ef A ef, we have

vy = l{Fyse; — Fy5e; + Fyse3 — Fyseq + (Fy; + Fy)es).

Hence,
k(vy, | F,) = kl(F,sef + Fyse% + Fyse% + F,se¥)
= —kl(es | F;)
= —lv; | F),
which proves the lemma. q.ed.

ReMARK. If we drop the genericity condition on F; and F,, this lemma
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does not hold as the following example shows:
F, =F, =e} A €%, v, =e and v, = e,.
PRrROOF OF PROPOSITION 3.1. We put
(Fy A F)* = v,, (Fy A F)* =y, (Fy A F,)* =,,
and show the equality
G(vg, v4,0,) =0

in the case G is expressed as F;, A a, — a, A F, for some a,, a, e V*. For
this purpose, we have only to prove the equality

(Fy A a3)(vg, v4,0,) =0,

since the remaining second term also vanishes, as can be proved in the same
way. First, from the definition, we have easily

vo | (Fy A F1) =0,

which is equivalent to v, |F; =0. (Note that dim V=95 and F, A F; #0.)
Thus, we have only to show the equality F,(v,,v,)=0. We evaluate the
both sides of the following equality at the vector v,.

O=v |(FLAFR)=0,1]F)AF,+F A (@ ]F,).
Then, we have
0= Fi(vy,0,) F, — (v, | F;) A (03] F3) + (v2 ] Fy) A (v, ] F,) + Fy(vy, v)" Fy.

From Lemma 3.2, we have (v, ] F;) A (v, ]F,) =0, and since v, | F, =0, the
above equality implies the desired equality F(v,,v,)=0. g.ed.

ReMARK. For n =25, the general linear group GL(S, R) acts canonically
on the space A\2V*+ A\?V* + A\?V*. The expression

G((Fy A Fy)*, (F; A F)*, (Fy A Fz)#)

may be considered as a polynomial on this space with total degree 7, and
it is easy to see that this polynomial is the invariant of GL(S, R), corresponding
to the Schur function S;3333. This invariant is also expressed in the form

> 580(0P) Fioye) Fromio Freyu Fasaya F 20102 203104 Oa(5)c(5)0(5)2

ag,t,pe S

up to the scalar multiplication by non-zero constants, where F,; and F,; are
the components of F; and F,. (For the definition of the Schur function and
the meaning of the above summation, see [11], [2].) Since the map ¢y has
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some GL(S, R)-invariant property and the codimension of Im ¢y is 1, the
defining equation of Im ¢ is an invariant of GL(S, R), as expected.

Next, under these preliminaries, we consider the general case n > 6. In
this case, we can express the differential equations on 2 in a geometric form
as in Proposition 3.1 by introducing a family of S-dimensional subspaces of
tangent spaces. We first fix a 5-dimensional subspace W of ¥V = R" and the
volume form of W. And next, we restrict the forms F;, F,, G to this subspace
W, which we denote by F}¥, FJ¥, G¥, respectively. Then, from Proposition
3.1, it is clear that the equality

GY((FY ~ FI)*,(FY A )%, (F) A F)*) =0

holds if Ge /\’V* is contained in the image of ¢;. (Note that the above
equality does not depend on the choice of the volume form of W, as before.)
If W runs all over the 5-dimensional subspaces of V, the 3-vectors

(F" A F')* A (' A F)* A (F) A F)?

span a subspace of /\>V which is determined by F, and F, independently
on the choice of the volume form. In the following, in the case n > 6, we
say that the pair of 2-forms F = (F,, F,) is “generic” if

(1) the dimension of the above subspace of /\? V takes a maximum value,
(2) the Bianchi map ¢y is injective.

(Note that these conditions are natural generalizations of the corresponding
genericity conditions in the case n = 5 defined before.) Clearly, generic pairs
F constitute an open dense subset of A\?V* + A\?V*. Now, our main result
for general n (= 5) is the following.

THEOREM 3.3. Let F =(F,,F,)e /\*V*+ /\’V* be a generic element.
Then, Ge /\} V* is contained in the image of the Bianchi map @p: V* + V* —
/N V* if and only if

G((F{" A FI')*, (FY" A F)*,(F A F)*)=0
for any 5-dimensional subspace W of V.

Proor. The case n=35 is already proved in Proposition 3.1. In the
following, we consider the case n > 6. In this case, since the codimension

of Im ¢ is equal to <;l> —2n=1/6-n(n + 2)(n — 5) (cf. Lemma 2.2), we have
only to show that the 3-vectors

(*) (FY' A F)* A (FY A B A (B A FY)*
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span a 1/6-n(n + 2)(n — S)-dimensional subspace of /\3 V when W runs all
over S-dimensional subspaces of V. And for this purpose, we have only to
find one pair F satisfying this property because the dimension of this subspace
spanned by (%) cannot exceed the value 1/6-n(n + 2)(n — 5).

In the following, we divide the proof into two cases n=6 and n>7.
First, we treat the case n =6. Using a basis {e}, -, et} of V*, we put

Fi=et ne¥+etnel,
Fy=ef ne¥+eXnef.

Then, it is easy to see that ¢ is injective. In the case n = 6, the value
1/6-n(n + 2)(n — S5) is equal to 8, and we will show that 3-vectors (x) span
an 8-dimensional subspace of /\*V. We restrict the forms F,, F, to the
subspace W spanned by the following five vectors

v, =e; +ae,
v5 = es + ase5,

where a, ~ as are real parameters that may be considered as a local coordinate
system of the Grassmann manifold, consisting of all 5-dimensional subspaces
of V. Let {a;, ", a5} be a basis of W*, which is the dual of {v,, -, vs}.
Then, in terms of {«;}, the forms F}', F} are expressed as

FV = oy Aoy — (810 + + a404) A as,
FY =a, Aaz+a, Aoy,
and hence, we have
FYV A FY = —2(a30y235 + G404245),
F' A Fy = 0501535 — Q101245 — Q403345 + Q305345,
F A FY = —20,34,

where a;,35 =a; A ay A a3 A as etc. Then, by using the volume form @ =
o, A A og, We have

(F' A FY')* = —2(a40; — a3v,),
(F' A FY)* = a3, + a40;, — ay03 — ay0,,

(F ~ F)*

—205.
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We express the 3-vector (x) in terms of the basis {e¢;}. Then, after straightfor-
ward calculations, we have

1/4-(FF A FI)* A (FF A FY)* A (FY A FY)*
= —0a10305€346 — A103€345 — A20405€346 — A204€345
2 2
+ a3ase; 46 + a3€145 + A3a4a5(€246 — €136)
+ aza4(es45 — €135) — A2ase,36 — aze
304(€245 — €135 4056236 — G4€33s,

where e;46 = €3 A €4 A eg etc. Hence, if the space W varies according as the
value of a; ~ a5, the 3-vectors () span the 8-dimensional subspace

3
€135 — €245, €136 — €246 €1455 €146 €235> €236 €345> €346) /\ v,

and hence, this completes the proof of the theorem in the case n = 6.

Next, we consider the general case n>7. In this case, we prove the
theorem completely in the same way as above, but a tremendous amount of
calculations is required. First, we put

Fy=¢e} A eX + et A e,
F,=e¥ neX+ef Ae¥,
and consider the 5-dimensional subspace W of V spanned by
Ul = el + a16e6 + tet + al,,e,,,
05 = e5 + a5666 + -+ as,,e,,,

where {a;} may be considered as a local coordinate system of the Grassmann
manifold consisting of all 5-dimensional subspaces of V. We take the same
procedure as in the case of n=6. Then, by using the volume form @ =
o A **° A ds, we finally have

(F A F')* = 2(—a46v3 + a3604),
(FY A FY')* = (a26a37 — @37836)01 + (217036 — 16837 + G460,
+ (a16a27 — 17036 + A57)V3 — A6V4 — A370s,
(F) A FJ)* = 2(—asqv; + ay705).
By expressing the vectors v; in terms of e; ~ e,, the above equalities become
(F" A FY')* = 2{—a,6e3 + ases + (a36a47 — G37046)e7 +

+ (a3604n — A3,046)€4},
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(FF A F)* = (a36837 — 037036)€; + (@17036 — G16037 + G46)€s
+ (316927 — A17a26 + as7)e3 — Ay6€4 — A37€5
+ (336457 — A37as6)€s + (a27046 — G26047)€7
+ {(a26037 — 27a36)a15 + (31736 — 016837 + A46)a2s
+ (316027 — 17026 + A57)a35 — G26045 — A37asg}€5 +
+ {(a26037 — 027a36)a1, + (a17036 — 816437 + A46)24
+(a16827 — 817056 + A57)a3, — O2684n — G3705,}€n,
(F A FJ)* = 2{—as,e;, + ay75 + (a37a56 — G56057)es
+ (27055 — G35a57)€g + - + (33705, — A2,57)€,}-

Now, in this situation, we show that the 3-vectors (x) span the 1/6-
n(n + 2)(n — 5)-dimensional subspace of A\*V generated by the following
vectors:

€123 t €247 — €3565 ey3; (=4~ n), ey (6<i<j<n),
€12i —€se; (i =47 ~n), €24 (i=35,6,8~n), e4si(i=8~n),

€13i— €47, (i=5,6,8 ~n), ey5;(i=7~n), e46: (i =8 ~ n),
€14:(i=35,6,8~n), e (6<i<j<n), e @<i<j<n),
e1s5i(i=7~n), e3q (i=35,6,8~n), es; (T<i<j<n),
e; (6<i<j<n), e35; (i=7~n), e (6<i<j<k<n).

But actually, it is difficult to write down all 3-vectors () explicitly. And we
calculate only several parts of them. First, we calculate 3-vectors in (x) whose
coefficients are equal to a,6a3,a46as,. By considering each term of (F¥ A
Fj"')#, it is easy to see that the desired vectors are contained in the part

4(—asce3 — A37046€7) A (az6a37€1 + ag6€; + asg€3 — az6€4 — A37€5)
A (—asse; — ay6as57€6).

Hence, they are equal to 4a,6a3,a46a57(€123 + €347 — €356). Thus, the 3-
vector e;,3 + e,47 — €356 is contained in the subspace spanned by (x). We
continue this procedure for remaining 3-vectors listed up above. We omit the
detailed calculations, and in the following, we only list up the monomials of
a; by which we can extract the above 3-vectors:
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. . 2
€124 — €456 : 426036037357, €12i — €56 A2703604;457,
. )
€135 + €457 : 036027037046, €136 t €467: 026337046057,
C 2 .
€13; — €47 A270360464s5), €145: 0260327036437,
€146 0260350370 €141 a2,a%ca
146 - 326336337057, 14j - 27036045,
C 2 2 L2 2
€15i: 043703604, €16i- 427036344565
c a2 a2 .
€1 Q2703604055 €234: 016327036457,
. 2 . 2
€235 : 427046, €236 - 26046057,
. 2 . 2
€237: 036047057, €33j: A270460s5),
. L2 2
€245 4270360465 €346 - 436457,
. 2 . 2
€34 A36043;a57, €35i: 337033046,
L2 2 . 2
€26i- 43604057, €37j:02703;446057,
. 2 .
€2jk - A2703, 046455 €345 - A26027046,
) . 2
€346 - 426346957, €345 03jA36057,
L2 2 . 2
€357 . 437046 €355 437045446,
L2 2 )
€367 - 4270460565 €36j - 02604634457,
L2 2 .
€37j . A370460sj, €3k - A26027046%4ks5)5
. 2 2 . 2 2
€455 A1jA37036, €46j - A2jA36057,
. 2 2 .2 2
€4j - A1,02703605)5 €s57j: 027033446,
. 2 2 2
€sjk - A2702j43,0465 €g7j- 4270370460565
. 2 2 . 2 .2
€ejk - A1j427036341%565 €ijk - A1j42703604i05k-

In this list, the range of the indices is understood to be
7<i<n 8<j<n 7T7<i<j<n 8<j<k<n 7T<i<j<k<n,

if the subscript of 3-vectors e,,, contains “i”, “j”, “ij”, “jk”, or “ijk”, respec-
tively. q.ed.

REMARK. (1) We must divide the above proof into two cases n = 6 and
n > 7 because the pair of 2-forms

Fy=ef nel+ et net,

Fy=ef ne}+ef nef,
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which we used in the former part of the proof generates only 20-dimensional
subspace of /\*V in the case n = 7, though the codimension of Im ¢ is equal
to 1/6-n(n + 2)(n — 5) = 21.

(2 In the case n>6, if we fix a 5-dimensional subspace V° of T.M,
then the curvature 2 naturally determines a flag

VicVSc .M,

under a pointwise genericity condition on £, and the above theorem implies
that all first order partial differential equations on £ can be described by
considering all such flags. This situation has some resemblance to the curva-
tures of Riemannian manifolds where the curvatures are completely determined
by their sectional curvatures that are decided by 2-dimensional subspaces of
T.M.

4. The inverse formula of the Bianchi map ¢g: V* + V* > \?V*

In the rest of this paper, we state several algebraic properties concerning
the Bianchi map ¢z: V* + V* - /A3 V* associated with 3-dimensional Heisen-
berg bundles, which is defined in §2. In Lemma 2.2, we proved that the
map @y is one-to-one in the case n > 6, and admits a 1-dimensional non-trivial
kernel in the case n =5 for generic F = (F,, F,)e A\*V* + /\? V*. Hence, if
n > 6, the pair of 1-forms (a;, ®,) is uniquely determined from F and the
image G = @g(a;, a,) € /\? V*, which renders geometrically that the <X, X,)-
components of the connection 1-form on principal H;-bundles are uniquely
determined from the curvature 2-forms Q,, Q, and the exterior derivative
dQ,. In this section, we give the inverse formula of the map ¢ explicitly
for both cases n > 6 and n=5. But the expressions of the inverse formulas
are not so simple as in the case of standard inverse matrices of linear iso-
morphisms. First, in the case n > 6, we prove the following proposition.

PrROPOSITION 4.1. (The inverse formula of @p.) Assume n>6, and let
{es, ", e,} be a basis of V. Then, the following equalities hold if Ge /\}V*
is expressed as G =F, A a, —a; A F,.

ay(ey) {(es JF)) A Fy A Fy}1234 A {(e1 1 F3) A Fy A Fy} 334
= —2{(ey1F}) A(e11G) A Fa}1534 A {(e1 1 F2) A Fy A Fi}ia3a€ N2V,
ay(ey) {(ey JF)) A Fy A Fy}1p34 A {(e1 1 F2) A Fy A Fi}y334
=2{(e; | F}) A F, A Fy}1534 A {(e11F;) A (€, 1G) A Fy}yp34€ N2 V™

(In these expressions, the form {---},,;, means the interior product

eqleslesfe  1{-})
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Proor. We substitute G = F; A a, — a; A F, into the expression (e, | F;)
A (e; | G) A F,. Then, it is equal to

(e 1F) A(er JF)) Ao, AFy +ay(e)(e  JF)) A Fy AF,
—ay(e)e JF)AF, AF,+(e;IF)) Aoy A(ey]F,) A F,
=a,(e;)(e, JFy) A Fy A F, —ay(ey)(es 1 Fy) A F, A F,
+ (e 1 Fy) A ay A (e, ]F,) A F,.
The following two equalities are easy to check:
2e, | {(e1 1F) Aay Ale ] Fy) A Fy} =aq(ey) e ] {(e; 1 F) A F, A F,},
2e, |{(e; JF)) AFy AF,} +e;1{(e;1F,) A F; A F;} =0,
and from these equalities, we have
2{(es1Fy) A ay A (11 F) A Fy}y534 = ay(e1){(ey | F1) A F A Fy}1234
and
{(es 1F)) A Fy A F3}1234 A {(e11Fy) A Fy A Fi}1334=0.
Hence, we have the equality
—2{(e1 1 F1) A (e11G) A Fy}1234 A {(e11F2) A Fy A Fi}ia3a
= —20,(e1){(es 1 Fy) A Fy A Fy}1234 A {(es 1 F;) A Fy A Fi}yp3a
+ 20, (ey){(e; 1 F1) A F3 A F3}1534 A {(e1 1 F;) A Fy A Fi}1234
—2{(e; 1F) Aa; A(e;1F) A Fy} 1234 A {(€1 1 F) A Fy A Fi}ia3a
=o,(e;){(ey 1 F1) A F3 A F3}1534 A {(e1 1 F3) A Fy A Fi}1334.

The second equality in this proposition can be proved completely in the same
way. q.ed.

REMARK. (1) We consider the pair of 2-forms
Fi=¢ef Ane}+ef nel,
F,=e¥ nef+ef A e,
where {ef,---,e}} is the dual basis. Then, the form
(*) {ex ] F1) A Fy A Fy}1234 A {(e1 1 F2) A Fy A Fi}ipss

is equal to 4e* A e} # 0, which implies that the 2-form () is non-zero for
generic pairs F =(F,, F;)e \?V* + A\?V* Hence, from the equalities in
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Proposition 4.1, the values a;(e;) and «,(e,) are uniquely determined from
F,, F, and G = ¢g(a,,a,). By changing the order of {e;} suitably, we can
replace the first vector e; by an arbitrary e;, and thus we obtain the desired
inverse formula of ¢y, having the above (*) as a typical denominator. Note
that this inverse formula essentially depends only on the flag V! c V4 c
V6 < V, determined by V' =<{e,), V*=<e,, ", e,> and V¢ = {e,, ", e,
but not on the basis {¢;} itself. In addition, there exist many ways to express
ai(e;) in terms of F and G by considering different flags. This implies im-
plicitly that there is an algebraic relation between F and G, which is nothing
but the equality stated in Theorem 3.3.

(2) In this inverse formula, the coefficient of e¥ A ef in the denominator
(*) is a polynomial on the space A?V* + A?V* with total degree 6, which
is the generator of the GL(V)-invariant subspace of S®(/\? V* + A\? V*)* corre-
sponding to the Schur function S,,,,,;. We can write down it by using the
method in [2] with the aid of computers, and as a result, it is expressed as
a sum of 240 monomials of the components of F;, and F,. The corresponding
Young diagram

indicates that the above flag V! « V* c V% < V naturally appears in the
expression of this inverse formula.

(3) If we use the flag V! c V2c V6 c V where V2 = {e,,e,) instead
of the above, then we can formally prove the equality

ay(e;) {(es 1 F)) A F, A F3}15 A {(e11F;) A Fy A Fi}y,
= —2{(e; 1 F1) A (e11G) A F3}15 A {(e1 1 F2) A Fy A Fi}y, e/\6 v,

completely in the same way as Proposition 4.1. But, in this case, it is easy
to see that the 6-form

{(e1JF1) A Fy A F2}12 A {(91JF2) A Fy A F1}12

reduces identically to zero, and hence, this equality does not serve as the
inverse formula. We also note that the 2-form (x) is always equal to zero
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in the case n <5, and hence the above inverse formula is useful only in the
range n > 6.

By this proposition, we can express the {(X;, X,)-components of the
connection 1-form o in terms of Q,, Q, and d2,, which may be considered
as a sort of algebraic rigidity on the connection. (Compare the result of
Tsarev [13] for the case of SU(2)-bundles over R*, where the connection is
completely determined by the curvature. See also [12].) By substituting this
inverse formula into the structure equations 2, = dw, and Q, = dw,, we can
theoretically obtain the second order partial differential equations on the
curvature Q. But, unfortunately, it is almost impossible to write down them
explicitly. Note that in the case of n > 6, actual curvatures are completely
characterized in terms of first and second order partial differential equations
under a genericity condition on the pointwise value of 2 on account of the
following lemma, which is essentially stated in [7].

LEMMA 4.2. Let Q ={Q,,Q,,Q,} be a b;-valued 2-form on an n-dimen-
sional manifold M (n > 3). Assume that there exist 1-forms w, and w, such that

Q, =do,,
2, =dw,,
dQ; =02, A 0w, — 0, A 2,.
Then, Q is an actual curvature determined by a connection.

This lemma is easy to prove by applying Poincaré’s lemma on the form
Q;, — w; A w,. By this lemma, if 1-forms ®,, w, determined uniquely by
Q,, Q, and dQ, satisfy the first two equalities 2, = dw,, 2, = dw,, then Q
is an actual curvature. This implies that first and second order partial differ-
ential equations are sufficient to characterize actual curvatures for generic
cases if n > 6.

Next, we give the inverse formula of ¢y in the case n=5. In this case
(24, @;) is not uniquely determined from F;, F, and G because ¢y always
admits a non-trivial 1-dimensional kernel. The result is expressed in the
following slightly complicated form.

Using the volume form @ =ef A - A e¥, we define sy;, s5;, m;€ R by

5@ =1/2-F; A Fi A (e;1 F3),
$@ = —1/2-F, A F, A (;] F),
m;® = 1/2-{(e;1 F;) A (¢;1F,) + (¢;1 F;) A (e;1F,)} A G.

(Note that m;; = m;;.) Then, the inverse formula in the case n = 5 is expressed
in the following form.
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PropoSITION 4.3. (The inverse formula of @p) Assume n=35 and G =
@p(ay, ay) for some oy =Y aje¥, a, =) ayefeV*. Then, ay; and oy are
expressed as

m.:
ay; = —5—+ ks,
2S2i

mg;
Oy = + kisyi
S1i

where {k;}, ;s are real numbers satisfying

ki — k. = (511825 + 51j52:) (5182 + S1:S2:my;) — 451;51;52:55;My;
i — Kj= .
251i31j52i52j(51i52j - SUSZi)

Proor. We first show the following equality

S1j S2i
Oz

S1i Sz

Gy %

(**) =2m

ije

To prove this, we substitute the vector e; to the equality
o, AFy AFy A(e;]F,)=0.
Then, we have
0=¢ {0, AF, AFy, A(e;]F,)}
=0y Fy A Fy A(e;]1F,) — 20, A(ej| Fy) A Fy A (e Fy) — Fy505 A Fy A Fy,
and from this equality, we have
1/2-0y;Fy A Fy A (e;]F;) =0y A (g1 Fy) A Fy A (e ] F)
+1/2-Fy; 0, A Fy A Fy.
In the same way, we can prove
1/2-0yFy A Fy A (ej 1 F2) =a; A(e; ] F) A Fy A (] F)
+1/2-Fp5-0, A F; A Fy.
Adding these two equalities, we have
(S1:02; + S1j0t2)P = 1/2-{as;" F; A F; A (;1F,) + a3 Fy A Fy A (1 F,)}
=0y A(ejlF1) A Fy A(e]F,)+ oy A(e;] Fy) A Fy A (e ] Fp)
={(e; ] Fy) A (g1 F,) + (¢;1F;) A (e;1F2)} A Fy A a,.
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Similarly, we have
(52j0t1; + 52:01))@ = {(e; | Fy) A (¢;1 F,) + (¢;1 Fy) A (e:] F,)}
Aa; AF,,

which combined with the above proves the desired equality (#x).
Now, we put i =j in (*x). Then, after a slight modification, we have

®y; m; %y m;

- ’
S1i 25183 Sy 2518y

and we express this value as k;. As a result, we have

m..
Uy = —a— + kiSqy,
2s,;
m;
Otz,- = 2'—“‘ + k,'S2i.
S1i

In addition, we substitute these equalities into (x*). Then the desired equality
on k; — k; follows immediately. q.ed.

REMARK. (1) Clearly, the above inverse formula contains one free pa-
rameter, as we already know from Lemma 2.2. In addition, if G =0, then
we have m; = 0 and k; = k;. Hence, this inverse formula also gives the expres-
sion of the canonical 1-dimensional kernel of the map ¢, which we showed
during the proof of Lemma 2.2.

(2) We put

Sl =Zs1ie?‘ and 82 =ZS2,-6?‘.
Then the equality
4s; A s; A G = —G((Fy A Fy)*,(Fy A F)*, (F, A F))Y)®e /\’ V*

holds, where the vectors (F; A F;)* are defined in terms of the volume form
&. By this equality, we get another expression for the defining equation of
Im @p.

5. Characterization of singular elements of A\?V* + A2 V*

In this final section, we prove the theorems which characterize “singular”
(and consequently, “generic”) elements F = (F,, F,)e \?V* + /\? V* from the
standpoint of Lemma 2.2. In this section, we say that F is “singular” if the
Bianchi map @g: V* + V* - A>V* is not of maximum rank. To state the
precise results, we first prepare two notions on F.
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We say that F = (F,, F,) satisfies condition (R,) (k =3, 4, 5, ---) if there
exists a k-dimensional subspace W* of V* such that F,, F,e \?W*, and F
satisfies condition (D) if there exists a pair of real numbers (k, I) # (0, 0) such
that the 2-form kF, + IF, is decomposable. These two conditions are enough
to characterize singular elements. Under these preliminaries, we have the
following theorem.

THEOREM 5.1. Let F = (F;, F,) be an element of N\*V* + \?*V*. Then,
F is singular if and only if the following conditions are satisfied.

The case n=3:F, =F,=0.

The case n = 4:F satisfies condition (R;).

The case n=5:F satisfies condition (R,) or (D).
The case n > 6:F satisfies condition (Rs) or (D).

By definition, singular elements are characterized in terms of some poly-
nomial relations on the components of F; and F, that are the minor determi-
nants of the matrix corresponding to ¢r. But these relations may be ex-
pressed in a simpler geometric form (i.e., polynomials with lower degree), and
to find these polynomials is in general a hard algebraic problem. The follow-
ing theorem answers to this problem in the case of n =4 and 5.

THEOREM 5.2. An element F = (Fy, F,)e \?V* + \? V* is singular if and
only if

n=4: FiAnF,=F, AF,=F, AF,=0.
n=2>5: FEAFLAW]F)=F,AF, A(v]F,)=0 for any veV,
or

{fin A fazsa A B> 2{f11 A fizsa A B _
2{fi2 A fazsa A B> {fi1 A fazs 0 A B

for any o, peV*, where f;=(F, A F;)* €V, and { , ) is the natural pairing
of N}V and N\*V*. (We fix a volume form of V = R® throughout.)

0

Note that the above conditions are equivalent to three polynomial rela-
tions of the components of F; and F, with degree 2, 3 and 8 respectively, if
we rewrite them by using a basis of V.

To prove these theorems, we must prepare several lemmas. We first
give three lemmas concerning conditions (R;) ~ (Rs). In contrast to the case
of a single 2-form, it is slightly difficult to characterize the reducibility of
(Fy, F,) to a low dimensional subspace of V* in terms of polynomial relations.
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LEMMA 5.3. A pair of 2-forms F = (F,, F,) satisfies condition (R;) if and
only if

FIAF1=F1AF2=F2/\F2=0.

Proor. Clearly, we have only to show the “if” part. The case F; =
F, =0 is trivial, and we assume F; # 0. Then, from the condition F; A F; =
0, the form F, is expressed as F;, = a; A a, for some linearly independent
1-forms «, and «,. Then, from the condition F; A F, =0, we can express
F, as F, =a,; A B; + a, A B,, and from the condition F, A F, =0, it follows
that oy, a,, B,, B, are linearly dependent, which proves the lemma. q.ed.

LEMMA 5.4. A pair of 2-forms F = (F,, F,) satisfies condition (R,) if and
only if

Fl/\Fl/\F1=Fl/\Fl/\F2=F1/\F2/\F2=F2/\F2AF2=O
and
FEFAFiAWw]F)=F, AF, A(v]F)=0 for any veV.

Proor. Considering the degree of the above forms, we know that the
“only if” part of this lemma holds trivially. We prove the “if” part. Assume
Fi AF,=F, AF,=0. Then F,, F, are expressed as F; =oa; A a, and F, =
a3 A o, for some a; e V*, and hence the existence of the 4-dimensional sub-
space W* follows immediately. Hence, by the symmetry of F; and F,, we
may assume F; A F{ #0. Then, from the condition F; A F; A F; =0, the
form F, is expressed as F; = o, A a, + a3 A o, for some linearly independent
1-forms a;. Then, using the condition F, A F; A (v] F;) =0 for any ve V, we
can easily show that F, € {a; A %;); <;<j<4, and the lemma follows. q.ed.

REMARK. (1) We may drop the conditions “F; A F; A F, =F, A F, A
F, =0” in this lemma. In fact, as the above proof shows, these conditions
follow from the remaining conditions automatically. We add these one in
order to express the conditions on F in a form which is invariant under the
natural group action of GL(2, R) on the space A\ V* + A\?V* = /\? V*® R>.

(2) Two types of conditions in this lemma are actually necessary as the
following two examples show:

Fi=ef net+eX el F, =ef A et,
and
Fi=ef neX+ed ek +etne, F,=0.

It is easy to see that the former satisfies only the first condition, the latter
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satisfies only the second condition, and both pairs cannot be reduced to a
4-dimensional subspace of V*.

LEMMA 5.5. A pair of 2-forms F = (F,, F,) satisfies condition (Rs) if and
only if
FFAFRAFF=FFAFFAFRR=F,AF,AF,=F, \F;, ANF,=0
and
{vIw](Fy AF)} A{v]w](F, AF,)} =0  for any v, we V.

Proor. We first prove the “only if” part. The first equality follows
immediately from the fact dim W* =5. To prove the second equality, we
may assume v =e,; and w=e,, where {e,, ", es} is a basis of W. Then,
for distinct indices i ~ I, the value

{el.lez_l(Fl A Fl)} A {el.]ezJ(Fz A FZ)}(ei, €js €, e)

is equal to zero because at least one of i~ is 1 or 2.

Now, we prove the “if” part. If F; A F, = F, A F, =0, then as in the
proof of Lemma 5.4, there exists a 4-dimensional subspace W* of V* such
that F,, F, e /\? W*. Next, assume F; A F; #0. Then, from the condition
F, A Fi A F, =0, we have F, = a; A a, + a3 A a, for some linearly indepen-
dent 1-forms o;. Then, from the condition F; A Fy A F, =20, A - Ady A
F, =0, the 2-form F, is expressed as F, = o, A B, + -+ + a4 A B, for some f;.
In this situation, using the condition F, A F, A F, =0, we can easily show
that dimd{a,, ", a4, By, ", Bsy < 6. If the dimension of this space is equal
to 6, we may assume that the six forms a,, -**, ay, By, B, or ay, -, as, B,
p; are independent on account of the symmetry of f;. In the first case, we
put v =e, and w = e,, where {e;, ", e,} is a basis of V satisfying a;(e;) = ;.
Then, we have

v]w](Fy A Fy) = —203 A ay,
v]wl(F, A F)=2B, A B, (mod a3, ay),

and hence {v|w](F; A F))} A {vJw](F, A F,)} #0, which contradicts the
assumption. In the second case, by putting v = e; and w = e;, we have the
contradiction completely in the same way, and hence, 2-forms F, and F,
belong to the exterior product of the space <a;, -, a4, B, ", Bs» With dimen-
sion <5. q.ed.

REMARK. As in the case of Lemma 5.4, two types of conditions in this
lemma are indispensable. In fact, the pair of forms

Fy=ef neX +e% A ek, Fy,=ef net +ef net
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satisfy only the first condition, and the pair
Fi=ef nel+el nel+etnel, F,=0

satisfy only the second condition. Clearly, these pairs cannot be reduced to
a S-dimensional subspace of V*.

Next, we prepare two lemmas concerning the kernel of the Bianchi map
@p, which play an important role in characterizing singular elements. To
state the result, we define a new condition on F. We say that F satisfies
condition (N) if there exist 1-forms a,, a,, B;, B,, B3 such that

Fi=0; A By +a; A By,
Fo=0; A By—ay A By
Clearly, condition (N) implies condition (Rj).

LEMMA 5.6. Let F =(F, F,) be an element of /\*V*+ \*V* Then
the map @p: V* + V* - \*V* admits a non-trivial kernel if and only if F
satisfies condition (N) or (D).

Proor. First, assume that F; and F, are expressed as
Fi=ayABi+taynBy, Fo=o0,AB3—0;AB.

Then the pair (a,, a,) belongs to the kernel of ¢ because
Finay—a, AF,=a, ABi Ao, +a; Ady AP =0.

If (a;,a,) =0, then F, = F, =0, and the map ¢f also admits a non-trivial
kernel. Next, assume that kF, + IF, is decomposable. Then, it is expressed
as a A B with o #0, and it is easily checked that the map ¢ admits a
non-trivial kernel (lo, —ka). (Actually, in this case, we have dim Ker ¢p > 2
as we shall prove later.)

Now, we show the converse part. Assume that ¢ admits a non-trivial
kernel (ay, a,), i€, Fy Aa, —a; A F, =0.

(i) The case a,, a, are linearly independent. In this case, from the
above assumption, we have a; A ay A F; =a; A a, A F, =0, and hence F,
and F, are expressed as

Fi=a; A By +ay A B, Fy=ay A B3+ 0y AP,
Then, we have
Finay—ay AF,=—a; nay A (B + Bs) =0,

and hence B, + B, = pa; + qu, for some p, ge R. Then, by putting B, =
B, — pa, (= qa, — B,), we obtain the desired expressions. (These expressions
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can be directly obtained by using a generalization of Cartan’s lemma stated
in [1; p. 473])

(ii) The case «,, a, are linearly dependent. In this case, ka; + la, =0
for some (k,I) #(0,0). By the symmetry, we may assume [ # 0. Then, we
have

O0=F, Aday—a, AF,=—k/l-Fy Aoy —a; AF,
= —1/l-(kFy + IF,) A a4,
and hence kF; + IF, = a; A B for some . q.ed.

REMARK. In the case of n=4, the map @p: V* + V*—> A3 V* clearly
admits a non-trivial kernel. Hence, any F satisfies condition (N) or (D). The
pair of 2-forms

Fi=ef nel+eXnel, Fo=efnef—eX neX
satisfies (N), but not (D) because
(kFy + IF,) A (kFy + IFy) = —2(k* + 1?)e¥ A" A ef #0
for (k, 1) #(0,0). Conversely, the pair of 2-forms
Fi=F,=efrnel+elnef
satisfies only (D). In fact, if F, and F, are expressed as
Fi=ayApi+a;ABy, Fo=oABs—0oy Ay

for some «;, f;, then the map ¢ admits a non-trivial kernel (a,, «,). But,
in this case, the kernel of ¢r must be in the form (y, y) (y € V*), and hence,
we have a; = a«,. Therefore, F; is decomposable, which is a contradiction.

LeEMMA 57. Let F =(F,,F,) be an element of \>V*+ /\?V*. Then
the map @g: V* + V* > A} V* admits a kernel with dimension >2 if and only
if F satisfies condition (R,) or (D).

Proor. We first prove the “if” part. Assume that there exists a 4-
dimensional subspace W* of V* such that F,, F, e /\>? W*. Then, by Lemma
2.2, the rank of the restricted map ¢@p: W* + W* —» A3 W* is at most 4, and
since dim(V* + V*) — dim(W* + W*) = 2n — 8, the rank of the original map
@p: V*+ V*> A*V* is at most 2n — 8) + 4 < 2n — 2. Next, assume kF; +
IF, is expressed as o, A a, #0. Then, it is easy to see that the pairs of
forms (loy, —ke;), (loe,, —ko,) are in the kernel of ¢ and hence dim Ker ¢y >
2. If kF, +IF, =0, then the pair of 1-forms (f;,B,) with kB, +16,=0
belongs to the kernel of ¢p, and hence we also have dim Ker ¢ > 2.
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Now, conversely, assume that ¢ admits a kernel with dimension >2.
First, if ¢r admits a non-trivial kernel of type (pa, qo), then as we showed
in the proof of Lemma 5.6, the 2-form gF, — pF, is decomposable. Next,
we divide the remaining situation into three cases according as the type of
the kernel. In the following, we assume that the 1-forms a,, ---, a, are
linearly independent.

(i) When («,, «,) and (a3, ,) belong to the kernel of ¢p. In this case,
from the proof of Lemma 5.6, we have

Fi=o; ABi+o; ABy=0a3 Ay + 0, A7,
Fy=0; ABs—ay ABr=0a3 Ays—ag A7y,

for some f;, ;. Then, by Cartan’s lemma, we have f;, y;,€ {a;, ", a,) and
hence the space W* =<a,, -, a,) satisfies the desired property.

(i) When («;,®,) and (a3, p,a; + p,&, + p3o3) belong to the kernel of
¢p. As above, the forms F; and F, are expressed as

Fi =0y A By + 0z A By,
(%)

Fy=a; A By —ay APy

We multiply the 1-forms «; and a, to the equality F; A (p,o; + pya, + p3as) —
a3 A F, =0. Then, we have

(By + p3B) Aoy Aoy Ay =(Bs —p3fi) Ay Ay Aay=0,

and hence B, = —p3p,, By = —p3B, (mod «,, a,, ;). In particular, we have
Fy, F,e /\2 oy, &z, o3, B2).

(iii) When («,, a;) and (p o, + p,&,, P32, + p4&,) belong to the kernel
of ¢r. By using the above equality (x), we have

0=F; A (P30 + patiz) — (P10y + Proi) A F,
= {(py — P4)By + P32 + P2B3} A o A .

Hence, we have (p; — ps)B; + p3B, + p2Bs€<ay,2,). Since (ay,0,) and
(P12, + P20y, P30y + Pad,) are not parallel, it follows that one of p, — p,, P2,
p; is not zero. Hence, we have dim{a,, a5, B, B,, B3> < 4. q.ed.

REMARK. We consider the pair of forms
F, =ef A e + ef A ef, F, = ef A €X.

Then, it is easy to see that Ker ¢r = {(e}, 0), (¢%, 0)>, and hence the case
“dim Ker ¢z = 2” actually occurs if n>5. On the contrary, if F satisfies
condition (R,), we have dim Ker ¢ > 4 as we showed in the above proof.
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In the special case n =5, we have the following lemma, which may be
considered as one of the normal forms of pairs of 2-forms on RS.

LEMMA 58. Assume n=S5. Then, any pair of 2-forms F =(F,, F,)e
/N V* + N\ V* satisfies condition (N) or (D).

Proor. In a different situation, we already proved in [2; p. 38] that
for any F, and F,, there exist linearly independent 1-forms «, and «, such
that o, A o, A F; =a; A a, A F, =0. Hence, we have

Fi=o0; A B +a, APBy,
Fy=0a; A By +ay A By,

for some B;. Since dim V =5, we may assume S, € {a,, %,, B, B2, B3> by the
symmetry, and we express f, = a,a, + a,0, + b, f; + b, B, + b3f;. We divide
the proof into two cases.

(i) The case b, # 0. By putting &, = a;, + bya,, p; = B, + a,/b, a, and
B, = B, — byB;, 2-forms F; and F, are expressed as

F1=&1/\Bl+“2/\/§2,
F, =0, A B3+ oy A (pBy + 4B,),

where p=b, + b,b; and q=b,. If p=0, then the form gF, — F, is equal
to @, A (gB; — B;), which is decomposable. If p # 0, the above expressions
are deformed into

F, = 1/p-&, A (pBy + 4B2) + (a/p- & — #3) A (—Ba),
F,=1/p-a; A (pfs + qul + qzﬁz) — (/P& — ;) A (PBl + ‘132):

and thus F satisfies condition (N).
(i) The case b, =0. In this case, by putting B; = ;3 — a,a,, we have

Fi=a; ABi+a, AP,
Fy =0y A By + oy A (byB; + by Bs).

If b, =0, then the form F, = (a; + b;a,) A B, is decomposable, and if by = 0,
then the form b,F;, — F, = a, A (b,B, — B;) is decomposable. If b, # 0 and
by # 0, then the above expressions are deformed into

Fy = (ot; + b3a;) A 1/b3* B, + byay A (1/by* By — 1/bybs- B,),
Fy = (2 + byay) A (by/by* By + B3) — byay A 1/b3- B,

that are the desired expressions. q.ed.
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REMARK. It is easy to see that the pair of 2-forms
Fi=ef ne%+ef net,
does not satisfy condition (N), and the pair of 2-forms
Fio=ef ne¥+efnef,
Fo=efnet—elne}
does not satisfy condition (D). Hence both cases actually occur. But, the
above proof shows that generic pairs of 2-forms F = (F,, F,) satisfy condition
(N), which may be considered as a normal form of F. On the other hand,
pairs satisfying condition (D) are contained in some algebraic set of /\? V* +
/\*V*, as the next lemma shows. We also remark that in the case n=35,

the inequality rank ¢ <9 in Lemma 2.2 follows directly from Lemma 5.6
and Lemma 5.8.

LEMMA 5.9. Assume n=5, and let F = (F,, F,) be an element of /\>V* +
/N2 V*. If F satisfies condition (D), then with respect to any volume form of
V, the following equality holds for any a, fe V*.

fir A e ABY  2{fi1 A fizsa A B —
2Zfia A frsa A B> {fi1 A fa2s 0 A B

(fy=F AF)*eV, and {, ) is the natural pairing of N\*V and \*V*)

0.

Proor. First, we consider the natural group action of GL(2, R) on the
space \2V* + \?V*= A\’V*@ R>. We put

F, = pF, + gF,,
F, = rF, + sF,,
with 4 = ps — gr #0, and f; = (F; A F)*. Then we have
fir = P’fi1 + 2p4f12 + @2z,
fi2 = prfus + (s + qn)fis + 452
faz = 1?11 + 2rsf1, + 5%y,
And hence
fii A a2 = AQ2ptfiy A fiz + (DS + 4011 A faz + 20515 A S22},
Sii A2 = A{D°f11 A fia + Pafis A faz + @fiz2 A faa)s
fiz A far = A{r i1 A fia + 1511 A Sz + %12 A fra)-
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Using these expressions, we can prove the equality

<1711 A fzz’“ A B> 2<f11 Aflb“ A B>
2{fia A fazs e A B> fi1 A 220 A B

{Sir A fazsa A By 2{f11 A fras0 A B
2{fia A fazsa ABY  {fi1 A fr2s 0 A B

for any «, B e V* after simple calculations. Hence, to prove the lemma, we
may replace F, and F, by F, and F,. In particular, we may assume that
F, is decomposable. Then, in this case, we have f;; =0, and the above
determinant is clearly equal to zero, which proves the lemma. q.ed.

(#)

=A4

RemMArRk. The above equality (#) shows that the determinant

Sfir A fazsa A B 2{f11 A fizsa A B)
2{fia A fas a A BY  {fi1 A fazs A B

is the GL(2, R)-invariant of the space A?V*+ A?V*= A?V*Q® R*> with
degree 8. As we show later, this expression is a non-trivial condition on F.
It should be remarked that in the case of n > 6, the similar results in this
lemma hold if we fix a S-dimensional subspace W, its volume form, and
restrict several forms and vectors to W. (See Proposition 5.11.)

We prove one more lemma concerning condition (D).

LEMMA 5.10. Let F =(F,, F,) be an element of N\?V*+ \>V* If F
satisfies condition (D), then the following equality holds for any v, ~ v, € V.

{01 1F1) A Fy A Fo}ia3a A {(011Fy) A Fy A Fi}iaaa = 0‘5/\2 V.
(The form {-+-},,34 implies the interior product v, vy |vy]v,|{"*})

Proor. We prove this lemma in a similar method as in Lemma 5.9. As
above, we put

F; = pF, + gF,,
F, = rF, + sF,,
with 4 = ps — qr # 0. Then, we have
Fy AF,=p*F, AF, +2pqF, A F, + ¢*°F, A F,,
F, AF,=1?F, A F; +2rsF, A F, + s*F, A F,,

and hence
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(v, 1F,) A Fy A F = pr*(v, | F,) A F; A Fy + 2prs(vy | F,) A F; A Fy
+ ps?(v, | F;) A F, A Fy + qr?(v, | F;) A F; A Fy
+ 2grs(v, | F;) A Fy A Fy + qs*(v; | F,) A F A Fy,
and
(v, 1F) A Fy A Fy = p*r(v; ] F;) A F; A F; + 2pqr(v, | F;) A F, A F,
+ q?*r(v, | F1) A F; AF, + p*s(v; 1 F,) A F; A F;
+ 2pgs(v, | F;) A F; A F, + ¢*s(v; | F,) A F, A F,.
Using the equalities
{y1F)) AFy A Fi}23a ={(011F) A F, A F3}153,=0,
{(y 1F)) A Fy A Fy} 1538 = —1/2{(v; 1 F,) A F; A Fy}1334,

and
{(  1Fy) A Fy A F3}1234 = —1/2{(v; ] F}) A F5 A F3}12345
we have
{(0,1F1) A Fy A F3}1234 = sA4{(01 1 F)) A F A Fy} 1234
—rd{(vy | F;) A Fy A Fy}1534
and

{01 1F;) A Fy A Fi}i3s = —q4{(0; | F}) A F, A F3}1534
+ pA{(vy 1 F;) A F; A Fi}1334.
Thus, we obtain the equality
{0, ]F)) AFy A F 31234 A {(0 1 F5) A Fy A Fi}123a
=A3{(v; JF})) A F, A F3}1534 A {(011F) A Fy A Fi}q334.

Hence, as in the proof of Lemma 5.9, we may assume that F, is decomposable,
ie, F;, A F, =0 in order to prove the lemma. And, in this case, the equality
clearly holds. q.ed.

ReMArRK. The expression appeared in this lemma is nothing but the one
appeared in Proposition 4.1, which corresponds to the denominator of the
inverse formula. It is the GL(2, R)-invariant of the space A*V* + \?V* =
/N> V*® R* with degree 6. We also remark that this expression identically
vanishes in the case n < 5, as we explained in Remark (3) after Proposition 4.1.
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Now, under these preliminaries, we prove Theorem 5.1 and Theorem 5.2,
simultaneously. In Theorem 5.1, the case n =3 is almost trivial, and the
case n> 6 follows immediately from Lemma 5.6 and Lemma 5.8 because F
is singular if and only if ¢r admits a non-trivial kernel. (Note that, as stated
before, condition (N) implies condition (Rs).)

In the case n =4, we prove that the following three conditions are equiva-
lent:

(i) FI/\F1=F1/\F2=F2/\F2=0.
(ii) F satisfies condition (R,).
(i) F is singular.

The equivalence of (i) and (ii) follows from Lemma 5.3. Next, assume that
F satisfies the condition (ii). We take a basis {ef, %, e%, e} of V* such that
W* = (e}, e%,e%>. Then, it is easy to see that the image of the map ¢f is
contained in the space {e¥ A e A e%,eX A F;,e¥ A F,), and hence we have
rank ¢ < 3, which implies that F is singular. Conversely, assuming that F
is singular, we show the equalities F;, AF, =F, AF,=F, AF,=0. If F, A
F, # 0, then the form F, is expressed as F, = e} A ef + e¥ A ef with respect
to some basis {e}}, and it is easy to check that ¢p is onto in this situation.
Hence, we have F; A F; =0, and in the same way, we have F, A F, =0. If
F, A F, #0, we may express F; = e} A ef and F, = ke} A e} (mod e}, e%) with
k #0. In this situation, we can also easily show that ¢y is surjective, which
is a contradiction. Therefore, we have F; A F; =F, AF,=F, A F, =0.

Finally, we show the theorems in the case n = 5. In this case, we consider
the following five conditions on F:

(i) dim Ker ¢ > 2 (ie., F is singular).
(ii) F satisfies condition (R,).
(iii) F satisfies condition (D).
iv) F,AF,A@W]F,)=F, AF, A(v]F,;)=0 for any veV.
(v) i A fazsa A B> 2{fi1 A fiz,a A B
2{fia A fazs e A B {11 A fazsa A B

for some (and hence, any) volume form of V.

=0 for any a, f € V* and

We already proved that F satisfies the condition (i) if and only if it satisfies
(ii) or (iii) by Lemma 5.7, and the condition (ii) is equivalent to (iv) by Lemma
5.4. (Note that the first equalities in Lemma 5.4 is automatically satisfied in
the case n =5 In addition, from Lemma 5.9, the condition (iii) implies (v).
Hence, to complete the proof, we have only to show that the condition (v)
implies (iii) in the case where (iv) does not hold. In this situation, under
the condition (v), we assume that there exists a vector v, € V such that

FiAFL A F)#0 or F, A F, A (vy] Fy) #0.
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If the form kF, + IF, is not decomposable for any (k, I) # (0, 0), then we have
by Lemma 5.8

F1=0(1/\0t3+0t2/\0£4,
Fy=0y Aoas—o, Aoy

for some a;. If the forms a, ~ a5 are linearly dependent, then the forms F,;
and F, can be reduced to a 4-dimensional subspace W*, which contradicts
our assumption that the above vector v, exists. (cf. Lemma 5.4.) Hence,
the above five 1-forms o; form a basis of V*. We denote by {e;, -, es}
the dual basis. Then, with respect to the volume form a; A --- A a5, we have
fi1 = —2es, fi, = es, f,, = 2e,. Hence, by putting a A f = a, A a5, we have

{fir A fazsa A B 2{f11 A frzs 0 A B
2 fi2 A fasa A B> {fi1 A S22 A B

which contradicts the condition (v). Therefore, there exists a pair (k, I) # (0, 0)
such that kF; + IF, is decomposable, which completes the proof in the case
n=>,. q.e.d.

=16 #0,

In the general case n > 6, it is hard to characterize singular elements F
only in terms of polynomial relations of F; and F,. The following proposition
gives the partial answer to this problem.

PROPOSITION 5.11. Assume n>6, and let F = (F,F,)e \*V*+ \*V*
be a singular element. Then one of the following two cases (a) or (b) occurs.

(@ FAiAFAFi,=F,AF{AFL=FAF,AF,=F, AF, AF,=0, and
{viw](Fy A F)} A{v]w]|(F, A F,)} =0 for any v, we V.
(6) {(11F) A Fy A Fo}iaaq A {03 1F)) A Fy A Fi}ipaa = OG/\2 V¥,
where v ~v,€V and {-**} 1334 = V403 )0y ]0, 1 { "}, and
i A e e A B 2{fi1 A fizs 2 A B —
2{fiz A fazsa A B> {fin A oz A B

where W is any 5-dimensional subspace of V and f;=(F¥ A F")* e W.

0 for any a, fe W*,

Conversely, if F satisfies the conditions in (a), then F is singular.

This proposition follows immediately from Theorem 5.1 (the case n > 6),
Lemma 5.5, Lemma 5.9 (and its Remark), Lemma 5.10, and we omit the
details. It is easy to see that the pair

Fy=ef nek +e% ek,

F,=ef Anet—eX ned
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belongs to the case (a), but not to (b), and conversely, the pair

Fi=etneX+eXnel+efnel

F,=e% Aef+eX A e,

which is also singular, belongs to the case (b), not to (a). Hence, both cases
in this proposition actually occur. At present, we do not know whether the
conditions in (b) are sufficient to say that F is singular.
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