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AsstracT. We prove that each non-Hélder continuous potential has a Pianigiani-Yorke
measure for a Markovian factor of a given topological Markov chain under some
condition. We give a uniqueness condition of the Pianigiani-Yorke measure together
with a concrete example which shows the condition is essential. Moreover we give
absolutely continuous Pianigiani-Yorke measures for cookie-cutter Cantor sets generated
by #'-maps on [0,1].

1. Introduction

Pianigiani and Yorke [12] introduced a conditionally invariant probability
measure for a %>-map on a subset of a Euclidean space. The notion of con-
ditionally invariant measure can be set in the context of sub-Markov chains
with absorbing states. The probability measure is called a Pianigiani-Yorke
measure. Lopes and Markarian [9] pointed out that the map is not necessarily
in %2 but in ¥'*” for some y > 0. More recently Collet, Martinez and Schmitt
[6] proved that each Holder continuous potential has a Pianigiani-Yorke
measure for a Markovian factor of a topologically mixing Markov chain.

In this paper, we prove that each non-Hélder continuous potential has a
Pianigiani-Yorke measure for a Markovian factor of a topologically mixing
Markov chain under a weak condition (see Theorem 3.3 (i)). Proofs in this
paper are more elementary and clearer than theirs. We refer to the tools in
thermodynamic formalism introduced by Bowen [2], [4], Ruelle [13], [14],
Keane [7] and Walters [16]. Especially we use g-measure to prove the
convergence property (3.11) in Theorem 3.1. We show the uniqueness of the
Pianigiani-Yorke measure under a certain condition (see Theorem 3.3 (iii)).
We can see that the condition is essential by virtue of Example 2.

We can also construct a Pianigiani-Yorke measure for a Markovian factor
which is not necessarily mixing (see Theorem 5.1). Applying Theorem 5.1 to a
cookie-cutter map, we give its Pianigiani-Yorke measure, which is absolutely
continuous with respect to the Lebesgue measure on [0, 1]. Since potentials in

1991 Mathematics Subject Classification. 58F03, 58F11, 58F15.
Key words and phrases. Pianigiani-Yorke measure, cookie-cutter Cantor set, thermodynamic
formalism.



96 Toshio NAKATA

our framework are not necessarily Holder continuous, we can treat ¥'-map (see
Theorem 5.2). As to cookie-cutter maps and Cantor sets, readers are referred
to Bedford [1] and Nakata [11].

2. Preliminaries

Let S be a finite set whose cardinality is greater than two. Consider
X = SMU{O where the topology is given as the infinite product of discrete
topology. Let 6: X — X be the shift transformation which is clearly con-
tinuous with respect to the topology.

For a structure matrix L = (l; € {0,1} : i, j € S), put

Xp={x=(xox1---)eX :l x,, =1foranyne NU{0}}
and or: X;p — X the action of the left shift on X;. We call (X.,01) a
topological Markov chain with respect to L. Suppose that L is irreducible and
aperiodic, namely there exists a positive number g such that all the entries of
the matrix L7 are strictly positive. Then we have
o7'x #0 for any x € X. (2.1)

For a compact subset ¥ = X we denote by €(Y) the space of continuous
real functions, by | - ||y the supremum norm and by .#(Y) the space of
probability measures defined on Y.

For a continuous map ¢ : ¥ — R, we define

vary (¢) = sup{|¢(x) — #(»)| : x = (xox1---),y = (oy1-+) € ¥,
xi=yfori=0,...,k}.
Set
$y =D var] (4). 22)
k=1

A map ¢ is said to be Holder continuous on Y if there exist ¢y >0 and
0 € (0,1) such that
var) (#) < cof* for any k e N. (2.3)

Note that if ¢ is a Holder continuous potential on Y then we always have
Py < +o0.

Let %, be a Ruelle-Perron-Frobenius operator acting on ¥(X.) for a
continuous map ¢ € ¢(X.), namely

Lf@) =Y, *Vf(y), forxeXi,fe¥(Xy). (24)

yeXp,oLy=x

It is clear that % is a bounded operator.
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Bowen and Walters showed that each non-Hoélder continuous potential
¢ : X; — R which satisfies ¢}, < +co has a unique equilibrium state. Espe-
cially Walters [15] showed the following theorem with the idea of g-measure.

THEOREM 2.1 (RUELLE’S OPERATOR THEOREM [4] [13] [15, Theorem 3.3]).
Assume that L is irreducible and aperiodic, and ¢y < +oo. Then there exist
uniquely ap >0, hy € €(XL) and v, € #(XL) such that

thL = OtLhL, ,g’va =oaLvr, vL(hL) =1. (2.5)
Moreover h;y >0 on Xr and

lim 07" 20 f — hovi(f)lly, =0 foramyf e €(Xs).  (2.6)

&/ denotes the adjoint of the operator %, defined by % u(f) = u(ZLf).
Note that we identify u(f) with IXL f du, especially, identify u(1p) with u(D)
for any Borel set D = X}.

3. Pianigiani-Yorke measures for topological Markov chains

Pianigiani and Yorke [12] defined a conditionally invariant measure for a
map T on 4 in Euclidean space such that T is an expanding ¥>-map and T4
includes A strictly. If T satisfies some suitable conditions, then there exists
a probability measure 4 on A, which is called a Pianigiani-Yorke measure,
satisfying

poT ' =oau for a number « > 0.

The measure is conditionally invariant, i.e. « = u(7-'4) and
u(T'B|T~'4) = u(B) for any Borel set B = A.

Collet, Martinez and Schmitt [6] showed each Hoélder continuous potential has
a Pianigiani-Yorke measure for topological Markov chain. We construct such a
measure without the Holder continuity of the potential under a weak condition.

Now we prepare some terminologies. For a given irreducible and aperiodic
structure matrix L' = (I; € {0,1} : 4, je S), let L= ([ €{0,1}:i,j€S) be an
irreducible and aperiodic structure matrix such that L < L', i.e. l; < [; for any
i,jeS. L<L implies X; = Xp.

For ¢ € ¥(Xr/) and the left shift a1, : Xy — X/, we also define the Ruelle-
Perron-Frobenius operator %, acting on ¥(Xp) corresponding to (2.4). If
¢}L, < +o00, then we have a unique oy > 0, a unique sy € €(Xr),hry > 0 on
X, and a unique vy € #(X) satisfying (2.5) and (2.6) in Theorem 2.1. Put

XZ {)_CGXLI . lxoxx = 1}
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Then X; « X < Xy and X is open and closed in X;;. Let g: X — X/ be the
restriction of o7, to X. By definition, it is clear that

g=a0; On XL. (31)

Since L is irreducible, any columns of L are non-zero vectors. Therefore
o:X — X is onto, that is,

o '(x) #0 for any x € Xp. (3.2)
For x e X;;, we have
o' (x) ={y= () e Xp 100y =X, by, =1}
={y =YX : byx, = 1} =o' (x) N X. (33)
Similarly for x € X;r and n € N, we have
o "(x)={yeXr:opy=xly, =1,k=0,12,...,n-1}
={y=yo - yna1x:lyy, =1,k=0,....,n-2,L, , =1}
Therefore we obtain

0
XL = m g_"XL/. (34)

n=1

The operator % on ¥(Xr/) is defined by

Lfx)= Y, Pxx,f)y) forxeXy andfe¥(X), (3.5)

yealx

where the projection [Ty y:f is the restriction of f from Y’ to ¥ for Y < Y.
Clearly we have

gy(fll) =gf forfe(g(XL/) (36)
and
gL’HL,L’ = HL,L’-Z on (g(XLI), (37)

where II1 1 denotes Iy, x,,. Generally for f € (X)) and for any ne N, we
have

gi',(f lg"‘X,_/) = g"f and ggﬂL,Lr = IIL,LIg” on (g(XLI) (38)
Then we obtain the following theorem. It will be proved in the next section.

THEOREM 3.1. Assume that a structure matrix L' is irreducible and
aperiodic. Let L be a structure matrix with L < L'. For ¢ € (Xr), suppose
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that ¢}L, < +oo. Let oy, hy and vy be given by Theorem 2.1. Then there exist
uniquely o >0, he €(Xr) and ve M(Xy) such that

Lh=ah, Lv=av, vh) =1 (3.9)
Furthermore we have
h>0 onXp, a=or, Hrph=hy, v(Xy)=1, vlIpp=vy (3.10)
and

lim [la7" 2" ~ h(f)lly, =0 for any f € €(Xz). (3.11)

As to the assumption of Theorem 3.1, the irreducibility of L is not
necessary. In §5, to deal with cookie-cutter Cantor sets, we extend the last
theorem so as to handle non-irreducible structure matrix L under some
condition.

We deduce the following corollary similarly to [6].

COROLLARY 3.2. Let ay, hy, vi, be given by Theorem 2.1 for L'. Then
we have oy < ap and the following properties for any Borel set D  Xp:

hvp(a™"D) = (agar!)"hvy(D) foranyneN, (3.12)
lim vy, (¢™"Dlg™"Xr) = vi(1ph) /v (h),
lim vy, (D|g™"X1) = (D).
Now we have the following theorem, whose proof will be given in the next
section.

THEOREM 3.3. Assume the conditions in Theorem 3.1.
(i) wupy =hve/vp (k) € #(XL) is a Pianigiani-Yorke measure on Xp.
(ii) Let me M (Xy) be

dm = FdVL’ for F € %(Xy). (313)

Then m is a Pianigiani-Yorke measure if and only if

ZLF = BF with some § > 0. (3.14)
(iii) Suppose that m is a Pianigiani-Yorke measure given by (3.13) and
v(F) > 0. (3.15)

Then m = upy, that is, h = F/v(F).

We can give an example with distinct Pianigiani-Yorke measures which are
absolutely continuous with respect to vy, if (3.15) in Theorem 3.3 is not
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required (see §5 Example 2). Therefore (3.15) is essential for the uniqueness.
Now we get the following proposition.

PrROPOSITION 3.4. Assume the conditions in Theorem 3.3. Then we have

’}im upy(D|la™"Xp) = v(hlp) for any Borel set D c X|. (3.16)

Proor. By (3.8) and (3.11), we get the following:

ny y_ be(DPNa"Xp)  vu((or" L") (kD))
werDIe " X) == ) T ()

_, vu(h-y(hlp)) _ v(hlp) _ ) .
ve(h-v(h) — v(h) =y(hlp) as w. B

We are very interested in the case where (3.15) is not satisfied. For any
Pianigiani-Yorke measures m which satisfies (3.13), we do not know the validity of

lim m(D|g™"Xy) = y(Flp) for any Borel set D < Xr, (3.17)

n—aoo

when y(F) =0. We can not apply the above proof for m. Even if vy(F) =0,
we can give an example for which (3.17) holds (see Example 2).

Using Theorem 3.1, Collet, Martinez and Schmitt gave a simple example
of =0 on Xpr. Now we give a simple example with a non-zero potential.

ExampLE 1. Let (po, p1) be a positive stochastic vector, that is, pop; > 0
and po+p1 =1. Put ¢(x) = $(xox; ---) = log px,,

1 1 1 1
l_ =
L—(1 1) and L (l 0).

Then oy = 1,hpy =1 on Xy and vy is the (po,p:1)-Bernoulli measure. We
have

2 — :
_ Pt /Pt dpom hL(x):{(“L+2P1) Mo +p1)(a/po) i X0 =0,

oy = _ .
2 (az + 2p1) 1(ocL +p1) if xo =1,

for xe X, and

(plo o ’Pi,._lain)(PO‘le) if in = 0)

\ 1 ...in = .
c(lio- - inlz,) {(pf(,---pi,_laz")(poplaf) it i, = 1,

where [l in]y ={y = (yoy1---)€ Y :y0 =1lo,...,yn = in}. Note that v is
the Markov measure whose initial distribution is (poaz', pop12z?) and transition
porr'  poproz’

] 0 The function A agrees with A, on X;,. There-

matrix is
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fore a Pianigiani-Yorke measure ppy = hvy /vp/(h) is the following:

ar(ar +P1)_1Pj1 --pj, if jo=0,

ﬂPY([fO"'jn]X,) = _ o
£ piler+p1) ' pjop, ifjo=1.

Note that the measure is the (po, p1)-Bernoulli measure whose initial distri-
bution is (az(az+p1) ", pr(or +p1)7").

4. Proofs of theorems

To prove Theorem 3.1, we prepare Lemma 4.1, Lemma 4.2 and Lemma
4.4,

Lemma 4.1. There exists ve #(Xp) such that £L*v=av, where
oa=ZLv(1)>0. Moreover we have y(X1) =1. LetV € #M(XL) be a measure
which satisfies

VIHL =Y. (41)
Then
LY=o (4.2)

Proor. For ue #(Xp), we have £*u(1) > 0 by (3.2). It is well-known
that .#(Xp) is compact and convex in the weak-x-topology. Put F(u) =
ﬁl—). Then F : #(X1) — #(Xy) is continuous in the topology. Using the
Schauder-Tychonoff fixed point theorem, there exists a fixed point v € 4 (X1/)
of F. Set o= %*v(1)>0. Then we obtain

Ly = av. (4.3)

Since 07'x < X and ¢"'x c "Xy for any xe X; and ne N, we get

L(xperxy) = Y. VT xx, 1x,\enx,)(») =0 foranyxe Xp.

yeg'x
Therefore we have
Q(IXL/\Q_"XLI) = Z*Y(IXU\Q_"XLI) = !(Z(IXL/\Q_"XLI)) =0 forneN.

Hence we obtain y(¢™"X1/) =1 for any ne N. That is, by (3.4),

o0
!(XL) = Y(m g_nXL') = ”11_1}.10 ‘_’(g_nXLl) -1.

n=1
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By (3.7), (4.1) and (4.3), we have
VI =V =VOL &L
=yl =FLv=av=w'lp on%(Xy).
Hence we deduce (4.2). H

LeMMA 4.2. Let a, v and V' be given by Lemma 4.1. Then there exists
h e ¥(Xr) such that

ZLh=ah, v(h) =1 (4.4)
Moreover if he €(Xy) satisfies (4.4), then
h>0 onXp, Hpph=hy, vV=v. and a=oy. 4.5)

Proor. This proof is an adaptation of that of Bowen [2, Theorem 1.7].
We prepare some terminologies. Put B, =exp [Zfzm 1 var,f” (¢)] and
for x = (xox1x2---), X = (xgx}x5---) € X,

A={fe€Xr): f=20,y(f)=1,f(x) <Bnf(X)if x;, =x{fori=0,...,m}.

Obviously we have 1 € 4, so that 4 # . Now we prove that there exists s € 4
which satisfies (3.9). By (3.2), we can use the Bowen’s method with respect to
B,, and A4, so that we get

'L A4 (4.6)

and that A is uniformly bounded and equicontinuous. Hence by the Ascoli-
Arzela theorem, A is compact. By definition, 4 is convex. Since the operator
o 1% in (4.6) is clearly continuous on A, there exists a fixed point 4 € A thanks
to the Schauder-Tychonoff fixed point theorem. Therefore

Zh = ah (4.7)

By a similar argument to Bowen’s proof, we deduce inf{h(x):xe X} > 0.
By (3.7) and (4.7), we have

Fr(Ipph) =11 (Lh) = a(llLph). (4.8)
By (4.1), we obtain
V(I ph) =v(h) = 1. (4.9)

Hence by (4.2), (4.8) and (4.9), the uniqueness of h;, v, and oy in Theorem 2.1
implies HL,L’E = hL, E’ =vL and o= ar. |
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To prove (3.11), we prepare the theory of g-measure studied by Keane
[7]. Set

G={ge‘€(XLI):g(;c)>0, Z g(y) =1 forany;ceXL:}.

yealx

For ge G, let &)y, ,: €(Xr) — €(Xr) be an operator such that

g.iloggf(lc) = Z g(Z)f(,Z) forfe‘g(XL/).

yeglx

Then a probability measure u e .#(X;) which satisfies _Zifog gt =p is called
g-measure. Using g-measure, we claim the following lemma to prove Lemma
4.4,

LemMma 4.3. For g € G, suppose that the sum of the variation of log g is
finite, that is, (log g)}u < +oo. Then £, ,f converges uniformly to a constant
u(f) for each f e €(Xy). Moreover u is a g-measure, i.e.,

zrog gt = U (410)

Proor. Firstly, we mention that for any f € €(Xp), we have mp(f) <
mp(Liogqef) by (3.2), where mp(f)=min{f(x):xe Xp}. Moreover if
{ZLlog g Ineo has a limit point f,, then

mp(f) < mp(Liog,f) <mu(f,) foranyneN. (4.11)

Similarly to the argument of [15, Theorem 3.1], we can prove that { £}, ,/},20
is uniformly bounded and is an equicontinuous subset of ¥(X;) for a fixed
fe¥(Xr). By the Ascoli-Arzela theorem, there exists f, € (X)) and sub-
sequence {n;},_;, . such that n; — +oo as i — co and

lim | £, f —filly, =0 forf e €(Xy). (4.12)

Now we show that f, is a constant. We may assume that the sequence of
(4.12) satisfies n; > 2n;_; for any ie N. Then

1L56gq fe = fellx, = I(Liogg o = Ling o) + (Lig of — I,
< N ZLisgy  (Licg o —Fllx, + 1 L%g o = Fillx,
< ”g;l(x)glgf ];‘”XL/ + Hgloggf _f;‘“XL/ - 0 as l_) 0.

Since lim; o #; — 1) = +o0, we deduce that f, is a limit point of
{Llog g fs}nio- Hence by (4.11), we have mp(f.) =mp (L5, /) for any
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neN. Now put x" € X;; which satisfies
Lloggf+(x") =mp(f.) foranyneN. (4.13)
Then by the definition of &,,,,, we have for any neN,
L) =mu(fs) foryea™x" (4.14)

For fe¥(Xy), we put mp(f) = min{f(x) : xe X }. Using the analogous
argument of my/(f), there exists xJ' € X; such that fi(z) =my(f,) for ze
g "x7' for any me N. By (3.1), ¢ is topologically mixing on X7, so that any
cylinder set contains a point where f, attains its minimum on X;. Therefore

fi(x) =mp(f.) for any xe X}. (4.15)

Since g;'j,g g f uniformly converges on Xy, f, is continuous in Xy;;. By
(4.15) and f, € ¥(Xy), for x e X; and for any & > 0 there exists N € N such
that if X’ € Xy and x; = x] for 0 <i <N then

1f(x) = £X)] = Im(f) = A(X)] <e. (4.16)
Clearly we have my(f.) > mp/(f,). Now we assume
mr(fi) > mp(fi). (4.17)

y (4.14), there exists x¥*9 e X1\ X, such that
£ () =mp(f,) foryea ¥ ixNt1 ¢ x;. (4.18)

In fact, if x¥*9e X, then ¢ V-9x"+9 < X;, so that we have mp(f,) =
mr(fi) by (4.15). It contradicts (4.17). Therefore xN* e Xp\X.. For x=
(xox1 -+ ) € XL, if we choose y = (yoy1---) € g N-9xN+t9 ¢ X; such that y; = x;
for 0<i<N, then |£i(x) — £.(p)| = Ime(fe) — o(p)] = Ime(fe) = mu(fo)] <&
by (4.16). It contradicts (4.17). Hence mp(fi.) = mr(fi). Using the same
argument, we deduce max{f.(x):xe X } = max{fi(x):xe€ Xr}. Therefore
by (4.15), we claim that f, is constant on X,. Since we can get Ly, ,fi(x) =
S, we have limy_.o||Liog ./ — fillx,, =0 for f € €(XL).

Set u(f) =f.. Then by the Riez representation theorem u is a probability
measure on Xp. Clearly we claim Zj, pu=pu. So the measure is only
one. In fact, if a probability measure /' € #(Xy) satisfies £}, 4/ = 4/, then

H() = lim f(Lrogof) = # (lim Liog,f) =1 = u(f) foranyf e €(Xp),

by the Lebesgue convergence theorem. MW
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LeMMA 4.4. Suppose that « >0, he €(X:) and ve M (X)) satisfy (3.9).
Then

lim a2 —hv(f)llx, =0  for any f € 6(Xr). (4.19)
Proor. Here we give g € G as follows:

e?Dp(x)
g9(x) = wh(a(x) © ¢(Xr).
Then we claim g(x) >0 and 3 .,1,9(y) =1 for xe Xp. We also have
h(x)Log ,(f/B)(x) = a"Z"f(x) for any ne N. By a similar argument to [15,
P. 384], the function g satisfies the condition (log g)}” < +00. By Lemma 4.3,
we have

lim [l 2" — hu(f/B)]lx,, =0, (4.20)

where 4 is a unique g-measure for f € ¥(X;;). However the measure hv, say 4,
is a g-measure, because it is a probability measure and

Z x)) =v| h(x E%)l =q! 2
W Liog o/ (X)) = 2| B(x) Y e > fDh()f(p)

yeolx = yeolx

<

=o' L'v(hf) = v(hf) = p(f) for anyf e €(Xp).

Therefore by the uniqueness of g-measure, we get u(f/h)=pu(f/h)=
v(hf/h) = v(f) for f € ¢(Xr). Hence by (4.20), we obtain (4.19). W

PrOOF OF THEOREM 3.1. By Lemma 4.2 and Lemma 4.4, we have (3.9)
and (3.11) respectively. Since £*v =av, we have ¢ =a; by Lemma 4.2.
Suppose that & € R, h € €(Xy/) and ¥ € #(Xp) satisfy (3.9). Then we have & =
oz, too. Applying (3.11) to both (Q,é, ¥) and (a,h,v), we have lim,, £"1 =
h=h. Again by (3.11), lim,_o £f = hv(f) = hv(f) = hv(f). Therefore we
have v=19. The rest of Theorem 3.1 follows from Lemma 4.2. W

ProoF OF THEOREM 3.3. (i) Put upy(D)= % = %’&‘)’) and a=
azaz! > 0. Then ppy is a probability measure on Xz and by (3.12) of n =1,
97
we have

(Blgp)  ar vi(hlp)
a,—lD=vL(_D:_LL_D
tuPY(— ) vL’(h) a vL'(h)

= oppy(D)

for any Borel set D < X/.
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ProoF OF THEOREM 3.3. (ii) It is clear that
vi(f-(goor)) =ve((e) % f)-g) foranyf,ge%(Xr). (4.21)
If m is a Pianigiani-Yorke measure, then
m(a'D) = fm(D) for some f/ >0 and any Borel set D = X/ (4.22)

and vp/(F)=1. By (3.13), and (4.22), we have vp/(Fl,-p) = fvp(Flp) for
any Borel set D < X;». By (3.3), (3.6) and (4.21), we deduce

vL,((ﬂ'F)ID) = VL/(Flqu) = vL:(FIXID oop) = VLI(azllng(le)ID)
= vu (o' £F)1p). (4.23)

Set f = apf. Then we have (3.14). It is clear that if (3.14) holds then m is a
Pianigiani-Yorke measure.

ProOF OF THEOREM 3.3. (iil) Since m is a Pianigiani-Yorke measure, we
have o £F = B'F by (4.23). Recalling (3.15), we set F= F/y(F). Then we
get y(F) =1 and £F = (apf')F. By the uniqueness of i and v in (3.9), we
deduce f' = azo! and F =h. This completes the proof of Theorem 3.3. M

5. Pianigiani-Yorke measures for cookie-cutter Cantor sets

We wish to investigate Pianigiani-Yorke measures for cookie-cutter Cantor
sets. Especially we are interested in the absolutely continuous Pianigiani-
Yorke measures with respect to the Lebesgue measure for the set generating by
#'-maps on [0,1]. Since we can not directly apply Theorem 3.1 to cookie-
cutter sets, we prepare a useful theorem.

We deal with a special type of a non-irreducible matrix. For 1 <k <

'S' - 2) put
I - Ok | Oksi-k (5.1)
O\S|—kk l L ’ '

where O,, is the p x q zero matrix, L is an (|S| —k) x (|S| — k) structure
matrix and Q|sj_kx is an (|S| — k) x k matrix whose components are 0 or 1 and
whose columns are non-zero vectors. It is clear that L is not irreducible.
Now we suppose that L is irreducible and aperiodic. Obviously (X;,0;,%;)
is identified with (X.,01, %1). For a given potential, we apply Theorem 2.1 to
(X;,07). Therefore there exist az,h; > 0 and vy which satisfy (2.5). Under
the situation, we claim the following theorem.

THEOREM 5.1. Let L' be an irreducible and aperiodic structure matrix.
Suppose that L of (5.1) with an irreducible and aperiodic matrix L satisfies
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L<L'. For¢e¥(Xy), assume ¢y, < +oo. Then we obtain the same results
as Theorem 3.1.

The proof of this theorem is similar to the proof of Theorem 3.1.
However in Lemma 4.2, we must deal with 4 = {£Lf : f € A} instead of 4.
Note that the irreducibility of L is not necessary. To prove Theorem 5.1, we
have to prepare oy, hr and vy which satisfy (2.5). We also need (3.2). Since
any columns of L are non-zero vectors, we have (3.2). Theorem 5.1 implies
the same claims as Corollary 3.2 and Corollary 3.3. Using Theorem 5.1, we
prepare an effective example for constructing Pianigiani-Yorke measures for
cookie-cutter sets.

ExaMPLE 2. Set N =|S|—1. Let (po,...,pn) be a positive stochastic
vector, that is Zfio pi=1 and p;>0 for i=0,...,N. Put ¢(x)=
@(xox1---) = log px, for xe Xy and

1 1
L'=|: " |, L= (5.2)
1 1
Then
op =1, hp=1onXp, vy isthe (po,...,py)-Bernoulli measure,

o =1—pg, hr=1on Xy, vgisthe (O, T{lﬁ’ ... ,—I{’VE)-Bernoulli measure,

and =1 on Xp. Therefore ppy = hvy/vi(h) = vy is a Pianigiani-Yorke
measure.

We claim that Pianigiani-Yorke measure is not unique in the class of
continuous densities with respect to v;; (see Theorem 3.3). For any Pianigiani-
Yorke measure m € #(X1) with continuous density F € €(Xy'), i.e., m(a~'D)
= pm(D) for any Borel set D < X/, we can give another Pianigiani-Yorke
measure. For 0 < y < 1, define

ymin{iZO:x,:O} if xe XL’\XL,
— X0X1 - - —
P& = pylGaom ) = {7 oy
Set F, = p,F/vy(p,F) and dm, = F,dvp,. Obviously we have p,, F, € ¢(Xr').
Note that £F, = (yB)F,. By Theorem 3.3 (ii), m, is another Pianigiani-Yorke
measure.
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Since vy is a Pianigiani-Yorke measure in this case, m, = p,vr;/vi/(p,) is
also a Pianigiani-Yorke measure. By elementary calculus, we have

’}irg m,(D|g™" X)) = vy(D) for any Borel set D < X, (5.3)

nevertheless we can not use the proof of Proposition 3.4 because of y(F) = 0.

Using the argument of Example 2, we construct Pianigiani-Yorke measures
of cookie-cutter sets on I = [0,1] for #'-maps.

Divide [ into 0 =xg<x; <---<Xp=1 for m>3. Put I = [x;, xi41)
for i=0,....m—2 and L, = [Xm—1,%Xm| = [Xm-1,1]. We treat T:I—1T
which satisfies the following properties: For i =0,...,m— 1,

(i) Tligyy, : intZ; — (0,1) is one-to-one and onto,
(ii) Tl €% (F),

(i) 1<A<inf{{T'(x)|: xe L},

(iv)

iv) |T'(x) — T'(y)| < Const(log|x — y|)~% for Const >0, x,yel, x #y.

ReMark 1. For the left endpoint x of I, T’'(x) denotes the right
derivative at x for i =0,...,m—2 and T'(1) denotes the left derivative of T
at 1.

Set §(x) = —log|T"(x)],

Var,(§) = sup{|$(x) — §()| : x,» € Liyox,}
and
Lyx,={x€el:xel,Txel,,...,T"xel,}.

We wish to treat maps which are not in ¢'*” for any y > 0; that is, in the class:

(NH) ¢(x) is non-Holder continuous, that is, for any ¢; > 0 and
n € (0,1), there exists nyp € N such that Var, (¢) > c;7™.

REMARK 2. If T satisfies (i)—(iv) and (NH) then T ¢ ¥'*” for any y > 0.

For a strict subset U of S whose cardinality is greater than one, we define
T:1—1 as T|;=T, where I=1\{J,.y L. Let C(T) be a generalized
cookie-cutter set of T, that is, C(T) = {xeI: T"(x) e I for any n € N}.

Let ¢, : I; — I be a continuous extension of each T7!|, fori=0,...,m— 1.
Then by (iii), each ¢, satisfies

il <A '<1 fori=0,...,m—1, (5.4)

so that ﬂ:lo $x, © Oy, © - -0, (I) is a singleton in I. We call it n(x). It is
clear that = : Xy — I is continuous and onto. If [; =1 for any i, j €S, then
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we get the following diagram:

XL/ —-—L—-) XLI

) P §

By (iii) and (iv), we have 32, Var,(§) < +o. Put ¢(x) =gon(x). Then
vary? () = Var,($) for any ne N. Therefore we have ¢y, < +oo. Using the
above preparation, we get the following theorem.

THEOREM 5.2. Suppose that T satisfies (i)—(iv) and T is defined as above.
Then there exists a Pianigiani-Yorke measure for T on I, which is absolutely
continuous with respect to the Lebesgue measure.

Proor. Let L be the same type of matrix as in (5.1), which satisfies /; = 0
for any ie U and jeS. Then the following diagram is commuting:

XL _r XL
C(T) —— (7).
Clearly we have
Ton=mnog onlX. (5.5)

Using Theorem 5.1, there exists a Pianigiani-Yorke measure upy on Xp, that
is, upy is a probability measure and there exists « > 0 such that

Upyoo ' =aupy on Xp. (5.6)

1

In this case, fipy = ppyn~" is a Pianigiani-Yorke measure on I. In fact, by

(5.5) and (5.6), we have

fipy(T™'B) = upy(n'T™'B) = upy(a™'n"'B)
= aupy(n'B) = ajfipy(B) for any Borel set B = I.

On the other hand, the equilibrium state y; is Ay vy, (see Bowen [2, P. 21],
Walters [16]). It is clear that upy = hvy//vp(h) is mutually absolutely con-
tinuous with respect to the equilibrium state u;. Moreover we have y; o nlis
absolutely continuous with respect to 1-dimensional Hausdorff measure, i.e. the
Lebesgue measure on / by Nakamura [10]. Bedford [1, Theorem 3.1] showed
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the case that T is in ¥'*” for y > 0. Nakamura [10] showed the case that
S, Var,(¢) < +00. Therefore we have fpy = upy on~! is absolutely con-
tinuous with respect to the Lebesgue measure. W

REMARK 3. We can also prove Theorem 5.2 under the condition
Yon2, Var,(¢) < +oo instead of (iv).

ExampLE 3. If we give T : I — I as follows,

0 if x=0,
X .
T(x): m{"‘lx 1f0<x<oz,
£ (x—a)(modl) fa<x<]l,

1
1 if x=1,

where 4> l,a= min{x >0: (l—og’ﬁ;—)f-}-lx = 1}, B = (log «)™2 — 2(log a) > + A
and k= [(1 —a)f]+ 1. Then T satisfies (i)—(iv) and (NH). Because of

C .

—21 < Var,(¢) < —C—;Z for some C;,C, >0 andneN,
n n

T satisfies the condition (NH). Since Y .-, Var,(¢) < 40, we have (iv). It

is clear that all of other conditions are satisfied. The research was supported

in part by Research Aid of Inoue Foundation for Science.
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