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ABSTRACT. We prove that each non-Holder continuous potential has a Pianigiani-Yorke

measure for a Markovian factor of a given topological Markov chain under some

condition. We give a uniqueness condition of the Pianigiani-Yorke measure together

with a concrete example which shows the condition is essential. Moreover we give

absolutely continuous Pianigiani-Yorke measures for cookie-cutter Cantor sets generated

by ^-maps on [0,1].

1. Introduction

Pianigiani and Yorke [12] introduced a conditionally invariant probability
measure for a #2-map on a subset of a Euclidean space. The notion of con-
ditionally invariant measure can be set in the context of sub-Markov chains
with absorbing states. The probability measure is called a Pianigiani-Yorke
measure. Lopes and Markarian [9] pointed out that the map is not necessarily
in # 2 but in # 1 + y for some γ > 0. More recently Collet, Martinez and Schmitt
[6] proved that each Holder continuous potential has a Pianigiani-Yorke
measure for a Markovian factor of a topologically mixing Markov chain.

In this paper, we prove that each non-Holder continuous potential has a
Pianigiani-Yorke measure for a Markovian factor of a topologically mixing
Markov chain under a weak condition (see Theorem 3.3 (i)). Proofs in this
paper are more elementary and clearer than theirs. We refer to the tools in
thermodynamic formalism introduced by Bowen [2], [4], Ruelle [13], [14],
Keane [7] and Walters [16]. Especially we use 0-measure to prove the
convergence property (3.11) in Theorem 3.1. We show the uniqueness of the
Pianigiani-Yorke measure under a certain condition (see Theorem 3.3 (iii)).
We can see that the condition is essential by virtue of Example 2.

We can also construct a Pianigiani-Yorke measure for a Markovian factor
which is not necessarily mixing (see Theorem 5.1). Applying Theorem 5.1 to a
cookie-cutter map, we give its Pianigiani-Yorke measure, which is absolutely
continuous with respect to the Lebesgue measure on [0,1]. Since potentials in
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our framework are not necessarily Holder continuous, we can treat ^-map (see
Theorem 5.2). As to cookie-cutter maps and Cantor sets, readers are referred
to Bedford [1] and Nakata [11].

2. Preliminaries

Let 5 be a finite set whose cardinality is greater than two. Consider
X = 5^u{°} where the topology is given as the infinite product of discrete
topology. Let σ : X —> X be the shift transformation which is clearly con-
tinuous with respect to the topology.

For a structure matrix L = (ly e {0, 1} : 1,7 e 5), put

XL = {x = (XQXl •) e X : lXn,Xn+l = 1 for any n e N U {0}}

and OL'.XL-^XL the action of the left shift on XL. We call (XL,°L) &
topological Markov chain with respect to L. Suppose that L is irreducible and
aperiodic, namely there exists a positive number q such that all the entries of
the matrix Lq are strictly positive. Then we have

σllx^Φ foranyxe^rL. (2.1)

For a compact subset Y c= X we denote by #( Y) the space of continuous
real functions, by || | | y the supremum norm and by Jί(Y] the space of
probability measures defined on Y.

For a continuous map φ : Y — » R, we define

(x) - φ(y)\ : x = (*0*ι ),y =

Set

k=\

A map φ is said to be Holder continuous on Y if there exist CQ > 0 and
θ e (0,1) such that

varj(^) < c0θ
k for any A: e N. (2.3)

Note that if φ is a Holder continuous potential on Y then we always have
φ*γ < +00.

Let 3?L be a Ruelle-Perron-Frobenίus operator acting on %>(XL) for a
continuous map φ e #(Aχ), namely

&Lf(x) = Σ eΦ(-f(y)ι f o r * e XL> f e V(XL). (2.4)
j;eΛrL,σι.^=ί

It is clear that &L is a bounded operator.
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Bowen and Walters showed that each non-Holder continuous potential
φ : XL — > R which satisfies </>*XL < -foo has a unique equilibrium state. Espe-
cially Walters [15] showed the following theorem with the idea of 0-measure.

THEOREM 2.1 (RUELLE'S OPERATOR THEOREM [4] [13] [15, Theorem 3.3]).

Assume that L is irreducible and aperiodic, and Φ*XL < H-oo. Then there exist

uniquely KL > 0, HL e ^(XL) and VL e ΛΪ(XL) such that

vL(hL) = l. (2.5)

Moreover HL > 0 on XL and

Jim ||α£" J2J/ - hLvL(f)\\XL = 0 for any f e V(XL). (2.6)

J2£ denotes the adjoint of the operator J^L defined by &Zμ(f) = μ(&Lf}
Note that we identify μ(f) with J^/rfμ, especially, identify μ(\n) with μ(D)
for any Borel set D c XL.

3. Pianigiani-Yorke measures for topological Markov chains

Pianigiani and Yorke [12] defined a conditionally invariant measure for a
map T on A in Euclidean space such that T is an expanding #2-map and TA
includes A strictly. If T satisfies some suitable conditions, then there exists
a probability measure μ on A, which is called a Pianigiani-Yorke measure,
satisfying

μ o T~l = αμ for a number α > 0.

The measure is conditionally invariant, i.e. α = μ(T~lA) and

μ(T~lB\T'lA) = μ(E) for any Borel set B c A.

Collet, Martinez and Schmitt [6] showed each Holder continuous potential has
a Pianigiani-Yorke measure for topological Markov chain. We construct such a
measure without the Holder continuity of the potential under a weak condition.

Now we prepare some terminologies. For a given irreducible and aperiodic
structure matrix L' = (/£ e {0, 1} : /, j ε S), let L = (ltj e {0, 1} : ι, j e S) be an
irreducible and aperiodic structure matrix such that L < L', i.e. /,y < /» for any
i, y e S. L < L' implies XL c A /̂.

For ^ e ^(Ax/) and the left shift συ : XL -+ XL', we also define the Ruelle-
Perron-Frobenius operator <PL, acting on V(X^) corresponding to (2.4). If
Φ*x i < ~*~°°' ^ e n w e ^ a v e a u n ique ^u > 0, a unique hn e ^(Xu\hL> > 0 on
XL and a unique VL/ eJ^(XL') satisfying (2.5) and (2.6) in Theorem 2.1. Put
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Then XL c X c Â / and X is open and closed in XL>. Let σ : X -> AX/ be the
restriction of σ// to A[. By definition, it is clear that

σ = σL onXL. (3.1)

Since L is irreducible, any columns of L are non-zero vectors. Therefore
σ : X_ — » Afc is onto, that is,

σ"1 (x) ^ 0 for any x e Xυ. (3.2)

For x e AX/, we have

OTl(x) = {y = O w ' ' ') e AX' : συy = x, Wi = 1}

= te = Λ ί : Wo = 1} = ^ f e ) n jr. (3.3)

Similarly for x e AX' and n e N, we have

<Γ"(x) = {>; e ^ : o*L,y = x,lyktyM = 1, fc - 0, 1,2, . . . , « - 1}

= {Z = ^o yn-ιx : W + 1 = 1,* = 0, . . . ,Λ - 2, /^_IΛ;O = 1}.

Therefore we obtain

XL = f ] 2 ~ Λ ^ ( 3 4 )
n=l

The operator ^ on #(Aχ/) is defined by

, (3.5)

where the projection Πγ^f is the restriction of / from Y' to y for Y
Clearly we have

for/ e «(AΓL0 (3.6)

and

, (3.7)

where 77^,^ denotes ΠχL,χL,. Generally for/ e ^(Xi1} and for any n € N, we
have

and ^ΠL^=ΠL^^n onV(XL>) (3.8)

Then we obtain the following theorem. It will be proved in the next section.

THEOREM 3.1. Assume that a structure matrix L' is irreducible and
aperiodic. Let L be a structure matrix with L <L' . For φ e ^(A//), suppose
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that φ*x t < -foo. Let α/,, HL and VL be given by Theorem 2.1. Then there exist
uniquely α > 0, h e ^(Xu] and v e Jf(Xιi) such that

&h = ah, ¥*Y = w, v(A) = l. (3.9)

Furthermore we have

h > 0 on XL,, α = α L , 77L,L/A = AL, vpf L ) = 1, v77L)Z/ = VL (3.10)

Jim U α Z ^ y - M / ) l k , - 0 for any f e V(XL,). (3.11)

As to the assumption of Theorem 3.1, the irreducibility of L is not
necessary. In §5, to deal with cookie-cutter Cantor sets, we extend the last
theorem so as to handle non-irreducible structure matrix L under some
condition.

We deduce the following corollary similarly to [6].

COROLLARY 3.2. Let α//, λ//, VL> be given by Theorem 2.1 for L' . Then
we have XL < UΊJ and the following properties for any Borel set D c XL,\

hvL.(σ-nD] = (*Laq}}nhvL,(D} for any n e N, (3.12)

lim vLf(σ-"D\σrnXL,) = vL,(lDh)/vL,(h),
—n

lim vL'(D\σ-nXL') =
n— >oo

Now we have the following theorem, whose proof will be given in the next
section.

THEOREM 3.3. Assume the conditions in Theorem 3.1.
( i ) μpγ = hvLf/VL'(h) e Jf(Xιi) is a Pianigiani-Yorke measure on XL .
(ii) Let mtJt(Xi>} be

dm = FdvL, forFe<#(XL,). (3.13)

Then m is a Pianigianί- Yorke measure if and only if

&_F = βF with some β > 0. (3.14)

(iii) Suppose that m is a Pianigiani-Yorke measure given by (3.13) and

γ(F) > 0 . (3.15)

Then m = μpγ, that is, h = F/v(F).

We can give an example with distinct Pianigiani-Yorke measures which are
absolutely continuous with respect to v//, if (3.15) in Theorem 3.3 is not
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required (see §5 Example 2). Therefore (3.15) is essential for the uniqueness.
Now we get the following proposition.

PROPOSITION 3.4. Assume the conditions in Theorem 3.3. Then we have

lim μPY(D\cΓnXu) = Y(hlD) for any Borel set D c XL,. (3.16)
n—tao

PROOF. By (3.8) and (3.11), we get the following:

„ (n\a-*γ ϊ hVμPY(D\a XL,} =

We are very interested in the case where (3.15) is not satisfied. For any
Pianigiani-Yorke measures m which satisfies (3.13), we do not know the validity of

lim m(D\σΓnXL,) = γ(FlD) for any Borel set D c XL,, (3.17)
n—χχ>

when v(F) = 0. We can not apply the above proof for m. Even if v(F) = 0,
we can give an example for which (3.17) holds (see Example 2).

Using Theorem 3.1, Collet, Martinez and Schmitt gave a simple example
of φ = 0 on Xι>. Now we give a simple example with a non-zero potential.

EXAMPLE 1. Let (po,p\) be a positive stochastic vector, that is, pop\ > 0
and PQ +pι = 1. Put φ(x) = φ(x^x\ •) =

Then ΛU — \,hι< = 1 on XL* and VL is the (/>o;/Ί)-Bernoulli measure. We
have

+pι)(«L/Po) if *o - 0,
' L(~>

for x e XL, and

if in = 0,

iffe = l,

where [k •• in]γ = {y= (joji •) e ^ : >Ό = *o» >}Ίι = *«}• Note that VL is
the Markov measure whose initial distribution is (pnα?1, A)Pια72) and transitionthe Markov measure whose initial distribution is (/tyαZ^o/^αZ) a n ( ^ transition

matrix is ί L L 1. The function h agrees with hi on Xu. There-
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fore a Pianigiani-Yorke measure μpγ = AV///VL/(/I) is the following:

j<*L(*L+PιΓlPj\ -Pjn if 70 = 0,
- ! .

Pj,'-Pjn if 70 = 1-

Note that the measure is the (/?o5jpι)-Bernoulli measure whose initial distri-
bution is (αL(αL-h/?ι)~1,/7ι(αL-h/7ι)~1).

4. Proofs of theorems

To prove Theorem 3.1, we prepare Lemma 4.1, Lemma 4.2 and Lemma
4.4.

LEMMA 4.1. There exists VE^(XL') such that &*v = cw, where
α = ^*v(l) > 0. Moreover we have v(Aχ) = 1. Let V e JΪ(XL) be a measure
which satisfies

, = γ. (4.1)

Then

&lί = «£ ( 4 2 )

PROOF. For μ e Jί(XL }, we have &*μ(l) > 0 by (3.2). It is well-known
that Jt(Xu} is compact and convex in the weak-*-topology. Put F(μ) =
Jrμ(i\ Then F : Jί(Xij] -» Jt(Xjj) is continuous in the topology. Using the
Schauder-Tychonoff fixed point theorem, there exists a fixed point v e Jt(Xu}
of F. Set α = ^*v(l) > 0. Then we obtain

^*v = αv. (4.3)

Since σ~lx c X_ and σ~lx c σ~nX.L' for any x e ^L' and « e N, we get

Therefore we have

«v( l^\r-^) = ^ M l ^ v r ^ ) = v(^(l^\sr«^)) = ° for « e N.

Hence we obtain γ(σ~nXL') = 1 for any n e N. That is, by (3.4),

= v Π f

=
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By (3.7), (4.1) and (4.3), we have

XiίΠLjj = Y'2>LΠL,L, = γfΠL,L,&

= γ^ = g*γ = αv = W/ΠLJJ on

Hence we deduce (4.2).

LEMMA 4.2. Let α, v and V be given by Lemma 4.1. Then there exists

h e V(XL') such that

&h = uh, γ(h) = \. (4.4)

Moreover if he ^(Xjj) satisfies (4.4), then

Λ > 0 onXij, ΠL±>h = hL, v' = VL and α = α/,. (4.5)

PROOF. This proof is an adaptation of that of Bowen [2, Theorem 1.7].

We prepare some terminologies. Put Bm = exp Σ £ L m + 1 varfL/ (ψ)\ and

for x = (xQX\X2 •-), x* = (XQX^X^ - - -) e XL>,

: f > 0, v(/) - \J(x) < Bmf(x') if Xi = x't for / = 0, . . . ,nι}.

Obviously we have 1 e A, so that A ^ 0. Now we prove that there exists h e A
which satisfies (3.9). By (3.2), we can use the Bowen's method with respect to
Bm and Λ, so that we get

fl&:Λ->Λ (4.6)

and that A is uniformly bounded and equicontinuous. Hence by the Ascoli-
Arzela theorem, A is compact. By definition, A is convex. Since the operator
α " 1 ^ in (4.6) is clearly continuous on Λ, there exists a fixed point h e A thanks
to the Schauder-Tychonoff fixed point theorem. Therefore

&h = ah. (4.7)

By a similar argument to Bowen's proof, we deduce mf{h(x) : xeX^} > 0.
By (3.7) and (4.7), we have

(4.8)

By (4.1), we obtain

,L'λ) = v(A) = 1. (4.9)

Hence by (4.2), (4.8) and (4.9), the uniqueness of AL, VL and OL in Theorem 2.1
implies Π^uh = Λ/,, v' = VL and α = <XL
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To prove (3.11), we prepare the theory of 0-measure studied by Keane
[7]. Set

G=\ge<ίf(XLI):g(x)>0,Σ g(y) = \ for any * e Jfc i .
I yeσ~lx )

For g e G, let !έL\0ίg : ^(Xu) -»• ^(Xυ} be an operator such that

Then a probability measure μeJί(XLι) which satisfies &lOBgμ = μ is called
g-measure. Using ^-measure, we claim the following lemma to prove Lemma
4.4.

LEMMA 4.3. For g E G, suppose that the sum of the variation of log g is
finite, that is, (log g)*x t < +00. Then &%oggf converges uniformly to a constant
μ(f) for each f e ̂ (Xu). Moreover μ is a g-measure, i.e.,

= /*. (4.10)

PROOF. Firstly, we mention that for any / e #(^z/)> w e have mrj(f) <

L'(&\0ggf) by (3.2), where mL>(f) = min{/(x) : x ε XL>}. Moreover if

£u>g,/}£o h a s a l i m i t Point/*, then

mL>(f) < mL>(¥_ΐ0f,gf) ^ r»L>(f*) for any n e N. (4.11)

Similarly to the argument of [15, Theorem 3.1], we can prove that {^\o

is uniformly bounded and is an equicontinuous subset of %>(XL'} for a fixed
/e^(Aχ ' ) . By the Ascoli-Arzela theorem, there exists /* e %>(XL') and sub-
sequence {ΛI}/=I 2,... s u c h that Λ, — > -hoo as / — > oo and

/ ™ l l ^ t o β ί / - / * b l , = 0 for/ e * ^ ) . (4.12)

Now we show that /* is a constant. We may assume that the sequence of
(4.12) satisfies n, > 2w/_i for any zeN. Then

^ g 1 / -ΛH^ + \\2Z*,f -M\xL, - o as / co.

Since lim,_oo "/ — «ί-ι = +°o, we deduce that /» is a limit point of

}£o H e n c e b y (4-11). w e have mL,(f.) = mL,(^osβft) for any
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n e N. Now put x" e XL' which satisfies

£ * * , / . ( * " ) =»fc'(/*) for any « e N. (4.13)

Then by the definition of ^.\oggί we have for any « e N ,

For / e #(Aχ/), we put WL(/) = min{/(x) : x e ^ L } Using the analogous
argument of WL/(/), there exists x™ e XL such that /*(z) = wι,(/i) for z e
σ~mx*L for any m e N. By (3.1), σ is topologically mixing on XL, so that any
cylinder set contains a point where /* attains its minimum on XL. Therefore

/* (x) = WL(/*) for any x e ^ L (4. 1 5)

Since ^oggf uniformly converges on XL 9 /* is continuous in XL . By
(4.15) and /* e V(XL'), for X^XL and for any ε > 0 there exists TV e N such
that if x7 e JT// and jt, = x,' for 0 < i < ΛΓ then

ε. (4.16)

Clearly we have m^(/*) > #*!/(/*)• Now we assume

By (4.14), there exists xN+q e XL\XL such that

My) = ™L>(f*} for j ; e σ_-N~qxN+q Φ XL. (4.18)

In fact, if xN+«εXL then arN-«x"+« c XL) so that we have mυ(f*} =
rnL(f*) by (4.15). It contradicts (4.17). Therefore XN+<* e XL\XL. For x =
(XQX\ - - -) e ^ L , if we choose y = (y$y\ •) e σ~N~qxN+q Φ XL such that #• = x/
for 0 < / < TV, then \f.(χ) -f*(y)\ = \mL(f.) -f*(y)\ = \mL(f.) - mL,(f*)\ < ε
by (4.16). It contradicts (4.17). Hence mL(f*) = mL'(f*)- Using the same
argument, we deduce max{/*(x) : x e XL} = max{/*(x) : x e XL>}. Therefore
by (4.15), we claim that/* is constant on XL>. Since we can get ^io g i 7/*(x) =
/*, we have \imn^\\¥ΐOBgf ~fλ\xL, = 0 for f eV(XL ) .

Set μ(f) =f*. Then by the Riez representation theorem μ is a probability
measure on XL>. Clearly we claim &loggμ = μ. So the measure is only
one. In fact, if a probability measure μf e Jt(Xu) satisfies 3?\0%gμ' = μ1, then

μ'(f) = Urn μf(^ίoggf) = / / h m S£^gf =f* = μ(f) for any/ 6

by the Lebesgue convergence theorem.



Pianigiani-Yorke measures for non-Holder continuous potentials 105

LEMMA 4.4. Suppose that α > 0, h e ^(A^) 0«rf v e Jf(XL>} satisfy (3.9).

lim | |αfπ£y-Av(/)lljr, = ° foranyfε^(XL,}. (4.19)
Λ— »00 L

PROOF. Here we give 0 e (7 as follows:

Then we claim 0(x) > 0 and Z^^-i^Ov) = 1 for xeXv. We also have
h(x)¥.\ogg(f/b)(x) = a~n&nf(x) for any n~e N. By a similar argument to [15,
P. 384], the function g satisfies the condition (log g)*x < +00. By Lemma 4.3,
we have

Mm ||α- »£"/ - hμ(f/h}\\XL, = 0, (4.20)

where μ is a unique ^-measure for/ ε <€(Xu'). However the measure Λv, say μ,
is a 0-measure, because it is a probability measure and

- flX*v(hf) = v(hf) = μ(f) for any/ e <t(Xu).

Therefore by the uniqueness of 0-measure, we get μ(f/h) = μ(f/h) =
γ(hf/h) = γ(f) (orfe^(XLf). Hence by (4.20), we obtain (4.19). ~

PROOF OF THEOREM 3.1. By Lemma 4.2 and Lemma 4.4, we have (3.9)
and (3.11) respectively. Since <̂ ?*v = αv, we have α = «L by Lemma 4.2.
Suppose that α 6 R, h e <e(XL>) and v ε Jt(XL} satisfy (3.9). Then we have α =
a/,, too. Applying (3.11) to both (α,A, v) and (α,A,v), we have l i m ^ o o ^ l =
h = h. Again by (3.11), l i m , ^ XJ = hγ(f) = hγ(f) = hγ(f). Therefore we
have v = v. The rest of Theorem 3.1 follows from Lemma 4.2.

PROOF OF THEOREM 3.3. (i) Put μPY(D) = ξ ^ = v-^^ and α =
~Ϊ} > 0. Then μpγ is a probability measure on XL* and by (3.12) of n = 1,
we have

/ -1
μpγ(σ~

for any Borel set D c
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PROOF OF THEOREM 3.3. (ii) It is clear that

VL tf- (9 o σL,)) = vL,((aΓ*#L,f) g) for any/,0 e «(AΓL/). (4.21)

If m is a Pianigiani-Yorke measure, then

m(σ~lD) = β'm(D) for some jff' > 0 and any Borel set D c AX/ (4.22)

and vι/(F) = 1. By (3.13), and (4.22), we have vL,(F\σ_-ιD} = β'vL,(F\D] for
any Borel set D<=.XL,. By (3.3), (3.6) and (4.21), we deduce

vL,((β'F}\D} = vL (F\t-ιD) = vL>(FlχlD o σL ) = vL (*JΪ&L.(Flχ)lD)

= vL,((*-L}&F)\D}. (4.23)

Set β = uL'β'. Then we have (3.14). It is clear that if (3.14) holds then m is a

Pianigiani-Yorke measure.

PROOF OF THEOREM 3.3. (iii) Since m is a Pianigiani-Yorke measure, we

have atf&F = β'F by (4.23). Recalling (3.15), we set F = F/γ(F). Then we

get γ(F) = 1 and &_F = (<*L>β)F. By the uniqueness of h and v in (3.9), we

deduce β1 = VLLUJ} and F = h. This completes the proof of Theorem 3.3.

5. Pianigiani-Yorke measures for cookie-cutter Cantor sets

We wish to investigate Pianigiani-Yorke measures for cookie-cutter Cantor

sets. Especially we are interested in the absolutely continuous Pianigiani-

Yorke measures with respect to the Lebesgue measure for the set generating by

^-maps on [0,1]. Since we can not directly apply Theorem 3.1 to cookie-

cutter sets, we prepare a useful theorem.

We deal with a special type of a non-irreducible matrix. For 1 < k <

| S | - 2 , put

^ Q\S\-kJc

where OPΛ is the p x q zero matrix, L is an (\S\ — k) x (\S\ — k) structure
matrix and Q\s\-k,k is an (\S\ — k) x k matrix whose components are 0 or 1 and
whose columns are non-zero vectors. It is clear that L is not irreducible.
Now we suppose that L is irreducible and aperiodic. Obviously (X~L,σ~L,l£~^)

is identified with (Aχ,σ/,, JSf̂ ). For a given potential, we apply Theorem 2.1 to
(Xl,σι). Therefore there exist α/,,/^ > 0 and VL which satisfy (2.5). Under
the situation, we claim the following theorem.

THEOREM 5.1. Let L1 be an irreducible and aperiodic structure matrix.

Suppose that L of (5.1) with an irreducible and aperiodic matrix L satisfies
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L < Lf. For φ e <K(XLI), assume
as Theorem 3.1.

< +00. Then we obtain the same results

The proof of this theorem is similar to the proof of Theorem 3.1.
However in Lemma 4.2, we must deal with &_Λ = {&_f :feΛ} instead of A.
Note that the irreducibility of L is not necessary. To prove Theorem 5.1, we
have to prepare α/,, hi and VL which satisfy (2.5). We also need (3.2). Since
any columns of L are non-zero vectors, we have (3.2). Theorem 5.1 implies
the same claims as Corollary 3.2 and Corollary 3.3. Using Theorem 5.1, we
prepare an effective example for constructing Pianigiani-Yorke measures for
cookie-cutter sets.

EXAMPLE 2. Set N = \S\ - 1. Let (PQ,...,PN) be a positive stochastic
vector, that is Σ/lo Pi = ! a n d Pi > ° f o r ι = 0, . . . , JV. Put
Φ(XQX\ -•)= logpxo for x e XL> and

(x) =

L'=\ \ . i , L=\ . (5.2)

Then

αz/ = l, hi* = 1 on Xu, VL is the (/?o5 , /^-Bernoulli measure,

= 1 -/>o» hL = 1 on XL, VL is the (o,^~, . . . , f^\ -Bernoulli measure,

and h = 1 on XL . Therefore μpγ = hyL>/vL'(h) = VL> is a Pianigiani-Yorke
measure.

We claim that Pianigiani-Yorke measure is not unique in the class of
continuous densities with respect to VL> (see Theorem 3.3). For any Pianigiani-
Yorke measure m e M(Xu} with continuous density F e ^(XL'}, i.e., m(σ~lD)
= βm(D) for any Borel set D c XLt, we can give another Pianigiani-Yorke
measure. For 0 < γ < 1, define

if \XL,

Set Fγ = pγF/vL'(pγF) and dmy = FydvL>. Obviously we have py,Fye
Note that J&Fγ = (γβ)Fγ. By Theorem 3.3 (ii), my is another Pianigiani-Yorke
measure.
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Since VL> is a Pianigiani-Yorke measure in this case, my = pγVL>/VL'(pγ) is
also a Pianigiani-Yorke measure. By elementary calculus, we have

lim my(D\σ~nXL'} = v(D) for any Borel set D c XL,, (5.3)
n— >oo

nevertheless we can not use the proof of Proposition 3.4 because of v(F) = 0.
Using the argument of Example 2, we construct Pianigiani-Yorke measures

of cookie-cutter sets on 7 = [0, 1] for ^-maps.
Divide 7 into 0 = XQ < x\ < - < xm — 1 for m > 3. Put 7Z = [xz, xi+\)

for ι = 0 , . . . , m - 2 and 7w_ι = [xm-ι,xm] = [xw_ι, 1]. We treat T : I -> 7
which satisfies the following properties: For i = 0, . . . ,ra — 1,
( i ) 7Ί i n t /. : int7z — > (0, 1) is one-to-one and onto,
(ii) T\ItEVl(It),
(iii) 1 <λ<inf{|r(x)|:jce/,},
(iv) \r (x) - r 001 < Const(\og\x - y\)~2 for Const > 0, x, 3; e 7Z, Λ: ̂  J.

REMARK 1. For the left endpoint c of 7,, Γ'(x) denotes the right
derivative at x for i = 0, . . . , m - 2 and Γ'(l) denotes the left derivative of T
at 1.

Set φ(x) = - l o g | r ( * ) I,

- φ(y)\ : x,y e 7 .̂..̂ }

and

Iχ* ~* = {xeI' xeIo,TxeIXλ,...,T
nxe IXn}.

We wish to treat maps which are not in %>l+γ for any γ > 0; that is, in the class:

(NH) φ(x) is non-Holder continuous, that is, for any c\ > 0 and
η e (0, 1), there exists «0 e N such that VarΠo(^) > c\ηn°.

REMARK 2. If T satisfies (i)-(iv) and (NH) then T φ %l+γ for any γ > 0.

For a strict subset U of S whose cardinality is greater than one, we define
f : I -» 7 as Γ|/ = f, where 7 = 7\U/6 ^ 7Z. Let C(f) be a generalized

cookie-cutter set of f, that is, C(f) = {x e 7 : /""(jc) e 7 for any n e N}.
Let φi : Ίl ^^ I be a continuous extension of each Γ" 1 17. for i = 0, . . . , m — 1.

Then by (iii), each φ{ satisfies

Iφίl < r 1 < 1 for i = 0, . . . ,/tι - 1, (5.4)

so that P l ^ φxo°φxι° - ° φXn(I] is a singleton in 7. We call it π(^). It is
clear that π : XL< — > 7 is continuous and onto. If /̂  = 1 for any i, 7 6 5, then
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we get the following diagram:
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By (iii) and (iv), we have Σ™=1 Varw(^) < 4-00. Put φ(x) = φoπ(x). Then
varjfL' (φ) = Varw(^) for any n e N. Therefore we have φ*x < +00. Using the
above preparation, we get the following theorem.

THEOREM 5.2. Suppose that T satisfies (i)-(iv) and f is defined as above.
Then there exists a Pίanigiani- Yorke measure for f on 7, which is absolutely
continuous with respect to the Lebesgue measure.

PROOF. Let L be the same type of matrix as in (5.1), which satisfies /# = 0

for any / e U and j e S. Then the following diagram is commuting:

Y °L
 Y

Clearly we have

C(f)

T o π =

c(t).

π o σ on (5.5)

Using Theorem 5.1, there exists a Pianigiani-Yorke measure μpγ on XL>, that
is, μpγ is a probability measure and there exists α > 0 such that

t*pγ ° <L l = xμpY on XL> (5.6)

In this case, μpγ = μpγπ
 l is a Pianigiani-Yorke measure on /. In fact, by

(5.5) and (5.6), we have

μPY(f-lB)=μPY(π-lf-lB)=μPY(σ-lπ-lB)

= aμPY(π~lB) = aμPY(B) for any Borel set B I.

On the other hand, the equilibrium state μ^ is AZ/VZ/ (see Bowen [2, P. 21],
Walters [16]). It is clear that μpγ = hvL'/VL'(h) is mutually absolutely con-
tinuous with respect to the equilibrium state μ^. Moreover we have μφoπ'1 is
absolutely continuous with respect to 1-dimensional Hausdorff measure, i.e. the
Lebesgue measure on 7 by Nakamura [10]. Bedford [1, Theorem 3.1] showed
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the case that T is in ^l+γ for γ > 0. Nakamura [10] showed the case that
Σ^Li Vaτn(Φ) < +°o. Therefore we have μPY = μPYoπ~l is absolutely con-
tinuous with respect to the Lebesgue measure.

REMARK 3. We can also prove Theorem 5.2 under the condition
< +0° instead of (iv).

EXAMPLE 3. If we give T : I -+ I as follows,

0 if Λ: = 0,

„ * Λ + λx if 0 < x < α,
T(x) = { ( l o g x )

if α < * < l ,

if jc=l ,

where λ > l,α = minjx > 0 : -^-^ + λx = i j , β = (log α)~2 - 2(log α)~3 + λ

and £ = [ ( ! - α)$ + 1. Then T satisfies (i)-(iv) and (NH). Because of

f~* (~*
-y < Varw(^) < - | for some Ci, C2 > 0 and n e N,

Γ satisfies the condition (NH). Since Σ^li Varw(^) < +00, we have (iv). It
is clear that all of other conditions are satisfied. The research was supported
in part by Research Aid of Inoue Foundation for Science.
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