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Local attractor for n-D Navier-Stokes system
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ABSTRACT. The n-Ό Navier-Stokes system (n > 3) is studied as an abstract equation

with sectorial operator in a relevant Banach space Xr consisting of divergence-free

functions. Existence of the local semiflow {T(t)} on a 'sufficiently smooth' fractional

power space Xf is then known in advance. This makes it possible to consider a subset

V c Xf for which an a priori estimate asymptotically independent of initial data for

originated in V solutions may be derived. The task of the present paper is to apply

authors' previous result [4] to the Navier-Stokes system proving existence of a global

attractor jtf^r for the semigroup {T(t)} restricted to V. Simultaneously sfΛ,r is shown

to be a local attractor in a neighborhood of zero.

1. Introduction

Since the publication in 1934 of Leray's famous paper, progress in
understanding the dynamics of the Navier-Stokes system has been steady but
slow. Difficulties encountered in dealing with this system became particularly
intensive when 3-D flows were studied. A new trend, permitting simpler
treatment of this problem, was the semigroup //-spaces approach appearing
e.g. in [2], [8], [9], [11], [12], [17], [21]. This approach has been followed in our
previous papers [4], [3], where the dynamics of semilinear parabolic equations
was studied within the dίssipative systems theory [11]. In the present paper the
authors' previous result [4] is applied to the Navier-Stokes system and the
existence of a global attractor j/α/ for the semigroup {T(t}} restricted to V is
proved. Simultaneously j/α/ is shown to be a local attractor in a neigh-
bourhood of zero.

1.1. Overview. In the following two subsections the Navier-Stokes system,
viewed as a sectorial equation in the relevant Banach space Xr, is discussed to
generate local semiflow {T(ή} on the fractional phase space Xf. Applying
introductory estimates concept of [4] (Sections 2.1, 2.2) we choose suitable
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metric space V <= Xf on which {T(t)} becomes a dissipative, compact semi-
group of global solutions. As a consequence the existence of a global attractor
30 for {T(t}} restricted to V (Section 2.3) will be shown to follow from the one
simple introductory estimate of solutions in [W^r(Ω)]n. Section 2.4 is devoted
to the construction of a local attractor for {T(t)} in a neighborhood of zero.

1.2. Formulation of the problem. Notation. We deal with the n-Ό Navier-
Stokes equation:

(1) ut = vΔu -Vp- («, V)u diυ u =

where n > 3 , v > 0 is a constant viscosity, u = (u\(t,x),... ,un(t,x)) denotes
velocity, p — p(t, x) pressure and / = (f\ (x), . . . , fn(x)) external force. Here Ω
is a bounded subdomain of Rn with the boundary dΩ of class C2, whereas ( , •)
stands for the standard inner product in Rn.

Equation (1) is studied with a boundary condition of Dirichlet type

(2) w = 0, f > 0 , xedΩ,

and subject to an initial condition

(3) w(0, x) = MO(JC), for x e Ω.

For simplicity of further notation let us introduce the following list of
function spaces:

τr2'r(Ω) := [W2''(Ω)]n,

Xr := dy(0){φ e [C0°°(Ω)]n; div φ = 0},

and define in Xr an unbounded operator Ar by the formula

A, = -vPr

• Δ

0

0

0

Δ

0

0

... o -

... 0

0 Δ

where Pr is the continuous projection from J&?r(Ω) to Xr which is given by the
decomposition of &r(Ω) (cf. [9, p. 268]) onto the spaces of divergence-free
vector fields and scalar-function gradients. Generically, Pr is thus an extension
of the orthogonal projection in &2(Ω) (cf. [13]). It is known (cf. [9, Lem. 1.1])
that:
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PROPOSITION 1. Operator — Ar considered on the domain

(4) D(Ar) := Xrn{φε ^r(Ω)-,φ\dΩ = 0},

generates an analytic semigroup {e~tAr} in Xr (1 < r < oo).

Considering the resolvent equation for AΊ in X^ it is easy to see that
Re(σ(A2)) > vλ\, where λ\ is the first positive eigenvalue of — A in L2(Ω) under
homogeneous Dirichlet boundary conditions. It follows from the elliptic
regularity theory that Re(σ(Ar)) > vλ\ for each r > 1 (cf. [20, Th. 5.5.1]) and
therefore, fractional powers A* (α e [0, 1]) of Ar may be defined on the domains
Xf :=D(A*r) (see [12, Chapt. I]) and for each re ( l ,oo),αe (0,1]:

(*\ \\A*P~tAr\\
\?) \\Λre \\

Moreover, since as a result of [9, Lem. 3.1] the resolvent of Ar is compact, the
embeddings Xf c Xf (0 < α < β, 1 < r < oo) are compact (see [12, Th. 1.4.8]).

1.3. Local semiflow of fractional solutions. For / e &r(Ω] the system (l)-(3)
may be thus studied as an abstract Cauchy problem in Xr:

(6) ut + Aru = Fru + Pr/, t > 0, u(0) = MO,

where ^4r considered with the domain (4) is sectorial in Xr and Fru =
—Pr(u,V)u. Moreover, for α e [^ l),r > n and / e J&?r(ί2) the nonlinear term
Fr, acting from Xf into AV, is Lipschitz continuous on bounded sets. Indeed,
the estimate [9, Lem. 3.3, (iϋ)] reads:

(7) ||Λ(w,F)ι?|| ̂ (0) < CrllwIl^i.r^HuH^i.riO), w,» e ̂ '''(β), r > n,

hence, when φ,ψ etft where ^ c= A^ is bounded, we have:

\\Frφ ~ Frψ\\Xr < Crllφll^rHψ - lAII^Vβ + Cλ\Φ ~ Ψ\\<

whereas X*<^Xγ for αe[^ , l ) and also x}' 2 is continuously embedded in
Xr Π τT1'r(ί2) (cf. [9, Prop. 1.4]). Following [11, p. 72], [12, Chapt. 3] we recall
the notion of the fractional solution of (6).

DEFINITION 1. By a fractional solution of (6) we understand a continuous
function u : [0, τ^,) — > Xf satisfying (6), such that ut : (0, τ,^) — > Xr and
Fr(u( )) : (0,1-^) — >Xr are continuous and u(t) belongs to D(Ar] for each
'e(0,τ,J.

Since we have shown the appropriate Lipschitz continuity of Fr, it follows
immediately from the general results of [11, Sec. 2.2] (cf. also [12, Chapt. 3])
that:
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PROPOSITION 2. For r e («, oo), α e [5,1) αwrf / e J&?r(ί2) a local semiflow
{T(t}} (where T(t)uQ = u(t,uo) for t e [0^τmax(uQ))) of maximal fractional
solutions of (6) is defined on X*.

In the following section a subset Fr

α c Λ7 (r 6 (n, oo),α 6 [5,1)) will be
distinguished such that fractional solutions Γ(ί)w0 of (6) with w0 e Kr

α are
defined globally in time. In addition, the existence of a restricted global
attractor for {T(t)}9 see Definition 2 below, will be shown.

DEFINITION 2. Let r e (w, oo),α e [5,1) and (Γ(ί)} be a local semiflow on
Jϊf" defined in Proposition 2. We say that S c ^Γr

α is a restricted global
attractor for {T(t)} in A^ if for some closed, nonempty subset V of
X^T(t) : V—> V (t > 0) is a global semiflow on K such that S is a global
attractor for {T(ή} restricted to V as stated in [11, Sec. 3.4] (that is (i)
T(t)S — S for t > 0, (ii) S is compact, (iii) S attracts trajectories of bounded
subsets of V).

2. Global solutions of the problem (6)

2.1. Background. As shown in our previous papers [4] and [3], to obtain the
relevant results concerning global existence of solutions of a sectorial equation
sufficiently smooth global a priori estimate of solutions is needed. In addition,
the nonlinear term taken on solutions of this equation should also be sub-
ordinated to some 0-power (0e[0,1)) of the 'main part operator'. In par-
ticular these properties may not be known to hold for all solutions but only for
those originating in some proper subset of the phase space on which the
equation is studied. Hence in further considerations the concept of [3, Th. 5]
(cf. also earlier results of [4, Th. 1.2]) will generally be followed as described in
Corollary 1 below.

COROLLARY 1. Let r e (Λ, oo),α e [3,1) and {T(t)} denotes, generated by
(6), local semiflow on Xf defined in Proposition 2. Let us also recall that the
resolvent of Ar is known to be compact. Then in order to prove the existence of
a restricted global attractor for {T(t)} in X* it suffices to show that there is a
Banach space Y => D(Ar) and a nondecreasing function g : [0, oo) —> [0, oo) for
which the conjunction of conditions (8) and (9) stated below holds with some
closed and positively invariant nonempty subset V of Xf', where

(8)

and
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OBSERVATION 1. Fixing r e (w, oo), α e [̂  , 1) and using (7) we can estimate
the right side of (6) as follows:

(10)

Since

then the condition (10) leads to the inequality:

(11)

For Y := x}'2 the estimate (11) becomes the required counterpart of (9). It is
thus seen from Corollary 1 that x}'2-a priori estimate of solutions is all we
need to obtain a restricted global attractor for {T(ή} in Xf.

REMARK 1. It should be noted here that up to now the global existence of
regular solutions of the n-Ό Navier-Stokes system is generally unknown unless
sufficiently small initial data or large viscosity v is considered. In this paper
we decide to fix the viscosity coefficient v. Hence, in our following studies we
shall get, for small H/ll^β), the semiflow {T(ή} globally defined merely in the
vicinity of zero and on such a 'small' set V, validity of the estimate (8) will be
shown.

2.2. Estimate of the A r

1 2 -norm (rε (ft, oo)) of fractional solutions.

LEMMA 1. Let r e («, oo) and {T(t}} be a local semiflow on X^2 defined in
Proposition 2. If the norm ||/||^βj fulfills the 'smallness' restriction (18), then
there are R>Q and η > 0 (η and R defined, respectively, in (19), (20) below)
such that

(12) \\T(t)uo\\xi/2 < R for each UQ e ^1/2(0,17),

where &χι/2(Q,η) denotes an open ball in x}'2 centered at 0 with radius η.

PROOF. Let r > n. Since (6) is equivalent to the integral equation

(13) u(t) = e-tAruo + [ e-^-s^(Fru(s) + Prf) ds,
Jo
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then taking the .JΓ/ -norm of both sides in (13) and applying (5) we obtain:

(14) \\u(t)\\χw<e-v^\\uϋ\\χw

+ f Q/vii-iJ-^
JO

From (7) and [9, Prop. 1.4] we have:

(15) II^

whereas, since Pr is a projector from <£r(Ω] onto Xr, then

(16) \\Prf \\*W

Estimates (13)-(16) lead to the condition

^ + Cr\\f\\χr(Ω
\ j

which for r(i) := sapseM\\u(s)\\χι/2 gives

/ 2 + A

If further the H / H ^ r - n o r m is required to satisfy:

the determinant 1 — 4>4(||«o||jrι/2 + B) of the quadratic inequality (17) will be
positive provided that

It is thus seen that if MO is taken from the ball Λχ\p (Q,η) then, according

to (17) and continuity of Γ(0«o in ^ 1/2

5 the norm Γ||Γ(Owo||^ι/2 will never
exceed the smaller root of the equation Az2 - z + ||M0||^ι/2 + £ = 0. Therefore
for MO e ̂ 1/2(0,^), Γ(0wo is a global fractional solutionΌf (6) and
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satisfies, for all t>0, the estimate:

(20) _
1 - Jl - 4A(\\uo\\χt,ι + B] j v3/2n,y/2

V - *
The proof of Lemma 1 is completed. Π

On account of the continuity of T(ή (cf. [12, Th. 3.4.1]) Lemma 1 may be
extended to:

LEMMA 2. Let r e («, oo) αwrf {Γ(0} ̂  α ̂ ^ semiflow on x}12 defined in
Proposition 2. If the norm \\f\\&r^ fulfills the 'smallness' restriction (18), ίAew

(21) \\T(ί)u*\\χιι* < R for each MO e clχι/2γ
+(@χι/2(0,η)),

where y+ (^,1/2(0,^)) denotes a positive orbit of 3&χ\ιι(^,η), i.e.

2.3. Restricted global attractors in ^Γ

α(r e (n, oo), α e [ i , 1)).

THEOREM 1. L ί̂ r 6 (H, oo), α e β , 1) αwrf feί {Γ(0} rf^oίβ α focα/ semiflow
on Xf defined in Proposition 2. Let the \\f\\^^Ωγnorm also be restricted by
(18). Then for

all fractional solutions T(t)uQ with MO e Fr

α are globally defined, T(t)(Vf] c Fr

α

(/ > 0) Λwrf ίAβ semigroup {T(t)} restricted to Vf has a global at tractor j^α,r.

PROOF. Let re(n, oo). Choosing Y := X^2 it is easy to see that the
estimates (11) and (21) are the required counterparts of (8), (9). Thus
Theorem 1 is a direct consequence of Corollary 1. Q

OBSERVATION 2. Let ωχ\/ ι(G) denote the ω-limit set of G in A T , i.e.
ωχiβ(G) := Γ\s>odχι/2 Ut>s T(t)G. When r e (n, oo) and α e (±, 1) then Fr

α is
an unbounded, complete (although not linear) metric subspace of X*. For
α = \, the set FΓ

1/2 = clχι/2γ+(38χι/2(Q,η)) is bounded in x}12 and in the presence
of [11, Lem. 3.2.1] the restricted attractor s/ι/2,r from Theorem 1 is then equal
to ωχ\/2(V^2}. Since, as may easily be seen, ωχ\/2(Vr12} coincides with

0^1/2(^1/2 (O,//)), then also

^ι/2,r = 0^1/2(^1/2 (0,17)), r e (n, oo).

We shall prove below that for fixed r e ( n , oo) all attractors si^f with
α e [5, 1) coincide.



316 Jan W. CHOLEWA and TOMASZ DLOTKO

THEOREM 2. Under the assumptions of Theorem 1:

(22) j^α,r = 0^1/2(^1/2(0,;;)), re(/ι , oo), α e [ ^ , l ) .

PROOF. Indeed, since for re (/i, oo),/?e [α, 1) and G bounded in Vf the
image T(t)G is bounded in Vζ (cf. [12, Th. 3.3.6]), then we obtain by
invariance that 0^1/2(^1/2(0,;;)) c ĵ ,.. To get the converse inclusion, it
suffices to use compactness of the embedding Xζ c Xf. The proof of Theorem
2 is completed. Π

Having obtained «fi/ι/2,r as a restricted global attractor for {T(t}} in Fr

α,
our additional task will be then to prove that *fl/ι/2,r is also a local attractor for
{Γ(ί)}, i.e. .G/ι/2,r attracts some its open neighborhood in Xf. In particular,
the results of [4] will be thus extended to cover the case of local attractors
connected with systems for which global semiflow is known to exist merely on
some neighborhood of zero.

2.4. Local attractor for {T(t)} in X^2 (r e (n, oo)). It has been proved so far
that for each r e («, oo), 0^1/2(^1/2(0,^)) is compact invariant and attracts
J^ι/2(0,^). Strengthening slightly the assumption (18) we shall prove in
Theorem 3 that 0^1/2(^1/2(0,17)) 01^1/2(0,17), i.e. 0^1/2(^1/2(0,;;)) is a local

attractor for {T(t}} in X^2. Recall that ([11]) a compact invariant set is a
local attractor if it attracts some bounded neighborhood of itself.

LEMMA 3. Let r e ( w , oo) and {T(t)} denotes a global semiflow on Fr

1/2

defined in Theorem 1. If \\f\\ <e'(ΩΓnorm & restricted by (18) then, using notation
of Lemma 1,

(23) limsup sup \\T(t)u^\\χι/2 < — .
f^+oo «dε^1/2(0,ι/) Γ 2^4

PROOF. Starting as in the proof of Lemma 1 (see formulae (13)-(16)), for
each MO e Λχ\ιι (0, η) we get:

(24)

f \ p-vλ\(t-s) /MM~> „ \

) cvv f—172 (-̂  H"W t"2 + c'll/ll^w)ώ

T/ y^ί »jy \ /

\ f+ /^r II r\\ \ \ /^rCHI/||jsr(β) I cι/2,r
r y Jf-τ

\ rτ -̂
+ Cr||/||^(Ω) Cι/2,Γ —

/ J o ^

\ V ίβ[0,ι]

^l/2,r

^ ̂ -
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Fixing arbitrarily ε > 0 it is possible to choose τ = τε such that:

(25) sup sup \\u(s) \\χι/2 < lim sup sup ||Γ(ί)Mo||^ι/2 + ε.
je[τ f,f] KB eΛ 1/2(0,17) r ί->+oo

Inserting (25) into the right side of (24), using Lemma 1 and taking the
supremum we obtain that

(26)

s
rlft(0,η)

sup ||tι(*)|| I/2 < e-^η + (^ R2 + Cr||/||^(ω)) C1/2,r Γ e-^-
UQG& 1/2(0,*;) r \ v / Jt—τ y

H-

x C

2
rl/2,r

V

£-vΛι>>

lim sup sup || Γ(ί)«d |Lι/ι + ε

f°°
l / 2 ' rJo

In consequence, the quantity r^ := limsupf_++00||w(ί)||^ι/2 needs to satisfy the
quadratic inequality

(27) Γoo^^Γoo+^+Λ

and, since ε > 0 could be arbitrarily small, (23) follows. Lemma 3 is proved.

D

From Lemma 3 our final conclusion follows.

THEOREM 3. Let r e (π, oo) and {T(t)} denotes a global semiflow on Kr

1/2

defined in Theorem 1. If \\f\\^^Ωynorm satisfies stronger then (18) restriction:

has a l°cal attr actor which coincides with the set £#\/2,r

 =

, introduced in Theorem 2.

PROOF. When (28) holds, then — < —- - B = η so that from
2A 4A

Lemma 3

/ 1 - \/Γ
(29) Λ/ ι/2r = ωvι/2(^1/2(0,^)) c clγι/2&γι/2 0, —

' ' -ΛΓ ^*r ^r ^r X 7>

\ /

In Theorems 1, 2, the set «ί/ι/2,r was shown to be a restricted global attractor
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for {T(ή} in Vf. Therefore, (29) ensures that a/ι/2,r attracts its open
neighborhood and is also a local attractor for {T(t)}. The proof is completed.

D

REMARK 2. We have shown in Theorem 1 that for sufficiently small

ll/lljsf r(β) tf16 Navier-Stokes system (1) generates a C°-semigroup in the
neighborhood of zero, and consequently, on its minimal, positively invariant,
closed superset Vf. This semigroup has a global attractor sί^r which is
independent of α e [5,1). Moreover, under the additional restriction (28), the
n-Ό Navier-Stokes system has local attractor in a neighborhood of zero as
shown in Theorem 3.

REMARK 3. It should be noted finally, that similar considerations remain
true for sectorial problems in a Banach space X having the norm of nonlinear
term F(u) bounded by \\u\\q

χΛ with q> 1. In that case global in time solv-
ability of the problem

ut + Au = F(u), t > 0, n(0) = wo,

for arbitrary initial data MO is usually excluded. Nevertheless, the global
semigroup may be obtained in some neighborhood of zero and, moreover, it
possesses strong stability properties which follow from the existence of the
attractor.
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