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Numerical simulation of thermal convection in a fluid
with the infinite Prandtl number and its application
to a glass manufacturing problem
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(Received January 13, 1998)

AssTracT. Thermal convection phenomena of fluids with the infinite Prandtl number
are studied via numerical simulations. These phenomena are governed by various
physical mechanisms in a glass melting furnace that affect the quality of glass. As an
extension of the numerical model for thermal convection phenomena with the infinite
Prandtl number, we present an effective finite element scheme that is called a stabilized
method and enables us to carry out stable computation even for the cases of high
Rayleigh numbers. By means of this scheme, transient growth of thermal convection in
a topcooled rectangular domain is studied. This problem is regarded as a model of
cooling process in a glass melting furnace. The computational results reveal the
mechanism of generating debasement of glass quality in the cooling process. Applying
the results of the simulations, we present a new cooling method that enables us to
shorten a residence time that is necessary for cooling without debasement of glass
quality.

1. Introduction

In this paper we study transient thermal convection of fluid flows with
the infinite Prandtl number by applying numerical simulations. This work is
motivated by the study of quality debasement in the glass production in the
glass melting furnace. Figure 1(a) shows a schematic illustration of a typical
glass melting furnace producing the sheet glass. Figure 1(b) shows cross
sectional illustrations of the melting and cooling sections of the furnace. In
the glass melting furnace, glass materials are heated up to about 1500° C in the
melting section and then molten glass is cooled down to about 1100° C in the
cooling section. As shown in Figure 1(b), the molten glass is placed in two
different types of thermal conditions in the furnace. In the melting section
the temperature of the molten glass is high on the top surface and low at
the bottom because it is heated on the top surface and cooled at the bottom
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Figure 1(a): Schematic figure of a typical glass melting furnace for the sheet glass.
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Figure 1(b): Cross sectional figures of the melting section and the cooling section of
the furnace.

through the wall of the furnace. On the other hand, in the cooling section,
molten glass is cooled on both top and bottom surfaces. Especially in the case
of production of dark colored glass, glass manufacturers often suffer from the
growth of Rayleigh-Benard cells near the surface in the process of cooling
section because of top-cooling, which causes an optical distortion on the glass
surface. The purpose of this work is to clarify essential phenomena in the
cooling process in glass furnaces and then present a new operation method
in the cooling section of glass melting furnaces by means of the numerical
approach.

Thermal convection phenomena of fluids with high or infinite Prandtl
numbers are typical physical phenomena that appear in the earth mantle as well
as in the convection of molten glass in glass furnaces. It is noteworthy that
the phenomena in glass melting furnaces is very similar to those in the mantle
in the sense of having high or infinite Prandtl numbers. Numerical approaches
to the study of the mantle convection have been discussed in [8], [9], [19], [22],
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[25] and [26]. These results simulate the internal flows in the mantle, under
the condition of fixed cold boundary on the top and hot at the bottom. The
Rayleigh number of the mantle convection is of order of 10° [19].

Numerical simulations in the process of the glass melting furnaces have been
extensively performed to develop effective methods in optimal furnace designing
and glass production of higher quality and efficiency in glass manufacturing [11],
[12], [18]. Steady [12], [18] or unsteady [11] simulations have been made to
describe the phenomena in the furnace, while it seems to the best of the author’s
knowledge that there is no literature that describes the details of the top-cooled
Rayleigh-Benard convection.

The analysis of Rayleigh-Benard problems has been made in various ways.
Theoretical approaches to the evaluation of the critical Rayleigh number are
considered in [14], [20]. Numerical approaches to the problem are treated in
[4], [17], [21]. In these papers the critical Rayleigh number for the bottom
heated problem are discussed under the condition that temperature is fixed on
the top and bottom boundaries and isothermal initial conditions. However
these results are not directly applicable to our problem.

As for numerical computation, an appropriate finite difference method or
finite element method is usually used. The detailed mathematical studies of
the finite element schemes for thermal convection phenomena are made in [1],
[2] in conventional flow problems and problems for the infinite Prandtl number
are treated in [13].

As shown in Section 4, the Rayleigh number of the cooling section is of
order from 103 to 10°. From this it is seen that some upwind techniques for
numerical schemes are necessary. Based on a scheme for the thermal con-
vection problem for the infinite Prandtl number [13], we present a stabilized
finite element scheme that makes the computation stable for the case of high
Rayleigh numbers. The stabilized schemes we here use for the advection-
diffusion problems have been developed in [5], [10]. By means of this scheme,
transient growth of thermal convection in a top-cooled rectangular domain is
studied. This problem is regarded as a 2-dimensional model of cooling process
in a glass melting furnace.

The contents of the paper are organized as follows. In Section 2, basic
equations for thermal convection flows with the infinite Prandtl number are
formulated. In Section 3, a stabilized finite element scheme for the problem is
presented and the error analysis of this scheme is examined via a sample
numerical simulation. In Section 4, the transient growth of thermal convection
in a top-cooled rectangular domain is studied through numerical simulations.
Using such simulations, we present a new cooling method that enables us to
shorten a residence time necessary for cooling without quality debasement. In
section 5, we give concluding remarks.
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In what follows, 2 is a bounded domain in R with boundary I” for d = 2
or 3. I=(0,T) is a fixed time interval. The boundary I' is divided into
I'i # & and I', where TWUT, =T and I''NT, = . L?*(Q) is the space of
square-integrable functions in 2 whose inner product and norm are denoted by
(-,-) and || - [lo o, respectively. L%(Q) is the space of L2-functions with mean
value zero in Q. H¥*(Q) is the Sobolev space consisting of functions whose
derivatives of order less than or equal to k lie in L?(2). The norm and semi-
norms are denoted by |- ||, o, and |- |, o, respectively. H~'(R) denotes the
dual space of the Sobolev space H((2) whose norm is denoted by | - l-1.0-
L?*(I') is the space of square integrable functions on I. The symbol (-,-)
denotes the duality pairing between H(}(2) and H~'(Q). V is the gradient

operator defined by V = (—a—, - ,i> and 4 is the Laplace operator defined
d 52 axl 6xd
by 4= —.
Y j; asz

2. Basic equations for thermal convection phenomena with the infinite Prandtl
number

We consider the problem of finding a velocity field u, a pressure field p,
and a temperature field 8 that satisfy the following equations in Q x (0, T):

-2V ® D(u) +V p = E0, (1)
V-u=0, (2)
%§+Rau-70=40+f, 3)

subject to the initial condition

0=06° att=0, (4)
and boundary conditions
6=0, u=0, on Iy, (5)
00
6_71 - C» Uu-n= 05
O .Duyn=0, k=1,...,d—1, onTly, (6)

where V ® D(v) is the stress divergence term defined by

d
B F _ 1 fovi o
V® D), = ]Zl: a—ij’J(v)’ Di(v) = 2 (039' * axi) ,
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and E e R? is a unit vector, (0, 1) or (0, 0, 1). The symbol Ra stands for
the Rayleigh number and f:(0,7) — H~!(Q) represents a source term.
{:(0,T) — L*(I';) denotes a heat flux on I',. n is a outward normal vector
on I' and %) k=1,...,d -1 is a set of orthonormal vectors tangent to
I',. The system of equations (1)-(3) is a model of thermal convection
phenomena with the infinite Prandtl number. For the derivation of the
conventional Boussinesq equations, we refer to [13].

Considering the essential boundary conditions and the uniqueness of
solutions to the problem mentioned above, we introduce the three function
spaces below:

V={ve HY(Q)v=00nT), v-n=0onT,},
0 = L§(9Q),
Y={PYeH' (Q);¥=00nT,}.

We seek a solution (u,p,6):(0,7) -V x Qx ¥.

3. A stabilized finite element scheme for the thermal convection problem
associated with the infinite Prandtl number

In this section, we introduce a stabilized finite element scheme for the
system of equations in the previous section. The scheme is also stable for the
problems with high Rayleigh numbers that we discuss in the next section.

3.1 A Space-Time Finite Element Scheme

We consider a finite element scheme for the thermal convection problem
associated with the infinite Prandtl number. Let 5, be a triangulation of Q,
where & denotes the maximum diameter of all elements K €J,. Let V, < V,
OrcQ and ¥, < ¥ be finite dimensional subspaces. We consider time
intervals I, = ((n — 1)4t,n4t), where 4t > 0 is a time increment introduced for

. . o T . .
the time discretization n=1,..., Ny = [Z] By using the above notation, we

define space-time finite element subspaces [15], [24] by
Vi={v,: I—- Viv(t) =v, € Vi, Vtel,},
i =i 1 — On;q; (1) = g € On, Ve €L},

Pr={y;: 1 — Vi () =) € ¥y, Viel,}.
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These are subspaces of the space-time finite element spaces that consist of
functions constant in each time interval I,. A finite element scheme for the
thermal convection problem associated with the infinite Prandtl number is
formulated as a problem to find (uf,p},0,;n=0,...,N7) <V} x Qp x ¥y
such that

J a(uy,ve) + b(vp,pp) dt = J (EO@y,vp)dt, Vvye Vi, n=1,...,Nr, (7)
I . .

I,

J b(uy, qn) dt =0, Vg€ Op, n=1,...,Nr, (8)
I

| Racit, 080 + o0 v+ 03 - 05 0)

- j o) i + j o V), dt
I, 1,

Y, € ¥y, n=1,... Nr. (9)

Here a is a bilinear form on V' x V and b is a bilinear form on V x Q defined
by

d .
a(v,w _ZZJ (w) dx, b(v,q) = —ZL} g—;’iqu,

i,j=1

respectively. Furthermore, ¢; is a trilinear form on ¥V x ¥ x ¥ and ¢ is a
bilinear form on ¥ x ¥ defined by

o, Y,9) = ;dj (Zo-v)as  avn=3] X2

respectively. f; is an approximation to f. LZ2-product on the boundary I'; is
defined by

(rn¥)p, = jr ry dx,

and {, is considered as an approximation to {. The initial condition is given
as an approximation to 6° in such a way that 0,? € ¥,. According to the
equations (1)—(4), initial velocity and initial pressure should be determined from
the initial temperature 02. A set of initial velocity u,‘,’ € V) and initial pressure
p,? € O are given as a part of solutions to the Stokes equations:
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) b(vi,pY) = (E6) Ve V)
a(uy, vi) + b(vi, pp) = (EOy, vi), Vv € Vi,

b(ug,qn) =0, Ygn € Oh.

We use the same notation to represent the inner products in L?(2) and
(L2(9)*,

W)= wpds, voel@,  (w =) [ wnds wwe @)

i=1
which will not cause any confusion.

REMARK 1. If ve V satisfies V-v=01in Q and v-n=0 on I', then we
have

a(v,y,9) = JQ(V -Vy)pdx.

In order to treat the case where the incompressibility is satisfied only
approximately, we employ the trilinear form c¢; defined above to ensure that
ci(v,¥,y) =0 for any functions ve V and ¢ € ¥.

REMARK 2. The finite element scheme (7)—(9) is essentially the same as
the backward Euler method employed for the discretization of time deriva-
tive. For the scheme corresponding to the backward Euler method in the case
of I'y = &, error estimates are performed in [13]. The stability and error
analysis in [13] can be extended straightforwardly to the case where I'; # .

3.2 A Space-Times Stabilized Finite Element Scheme

The Rayleigh number becomes high if so does the Grashof number. In
such case, it is known that some upwind technique is necessary for the stable
computation [6], [16], [23]. In this section, we present a stabilized finite
element method for the thermal convection with the infinite Prandtl number by
applying the method of [10] to the energy equation.

The stabilized finite element scheme for the thermal convection problem
with the infinite Prandtl number is formulated as a problem to find
(up, pp, 64; n=0,...,N7) = Vi x Qp x ¥, such that

J a(ug,vp) + b(vp, pp) dt = J (EOy,vy)dt, Nvye Vi, n=1,...,Nr, (10)

In n

J b(uy,qn)dt =0, Vgne Qn, n=1,...,Nr, (11)

n
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j Ra cy(u ™, 00, 0) + o6, ) dt
["

+> zKJ (Ra uf~'Vo} — 407, Ra ul "'V, — AY,) . dt
Ke3, n

+ (6 = 0 ) + Y k(65 — 67" Ra up Vi, — Ay)k

Ke3,
- J, Sovndi+ Y j} (o Ra uf~ Vg, — Ap) g dr +j1 o), dt
n KESI: n n
Y, e ¥ n=1,...,Ny. (12)

The L,-product in the elements and duality pairing in the elements are denoted
by

(W, 0)x = L Vodx,

(9,0 = J gy dx,
K

respectively. The definition of the stability parameter tx is formulated as
follows [5]:

h h} At 4 2
ol K K n—1 — n—-12
Tk = mln{m,-ﬁ,—z—}, " g = (Z |ugi | ) )

i=1
Ug; = J u,’,’,.dx/J dx,
K K

where hg denotes the diameter of element K. In this paper we do not go into
the error estimates of this scheme, which will be discussed in a forthcoming
work.

3.3 Sample Simulation

In this section we show numerically that the scheme (10)—(12) works well
even for the case of high Rayleigh numbers. A sample problem [13] is defined
in the unit square (—1,1) x (=1,1), and in the time interval (0, 3.2). We
impose the Diriclet boundary condition on all the boundary, i.e. I', = &. The
source term f of the energy equation, initial condition of the temperature, and
boundary values of the temperature are given so that the solutions of equations
(1)—(4) are as follows:
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Figure 2: Domain and its subdivision of N = 10 in a sample simulation discussed in Section 3.3.

up = 0.422(x? — 1)%xp(x2 — 1), (13)
uy = —0.41%x (x? — 1)(x2 — 1)%, (14)
p = 12(0.48x7x; — 3.2x3x; + 4x1x; + 1.6x3x3 — 1.6x1x3),
6 = 12(0.48x;] — 4.8x} + 8x; + 9.6x3x3 — 14.4x1x3 + 2.4x1X3).

For the spatial discretization, uniform triangular elements are employed. The
domain is divided into a union of N x N x 2 triangles. With Figure 2, we
illustrate a subdivision of the domain in the case of N =10. We use the
stabilized finite element scheme (10)—(12) with a P2/P1/P1 finite element
approximation to the velocity/pressure/temperature fields.

Computation is performed for different discretization scales N =15
(Case(3.3A)), 20 (Case(3.3B)), 30 (Case(3.3C)) and 40 (Case(3.3D)). The
discretization parameters in each case are shown in Table 1. The time
increment is set to be At = h?>. Results of the computation are evaluated by
means of relative errors,
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Table 1. Computational cases in Section 3.3.

Case (A) (B) (C) (D)
N 15 20 30 40
h 0.1886 | 0.1414 | 0.0943 | 0.0707
Node w | 961 | 1681 | 3721 | 6561
Number | 5| 256 | 441 961 1681

U — Upl|jeo d
Error_u(Hl) m

”uHIoo((Hl)")’
Error —p(LZ) - llp —Ph||1°°(L2)
||P||1w(L2),
0 — 4|,
Error — §(L?) = l—hm,
00l (1.2
where
Ivall ;= (x) = max {||v;llx;n=0,...,N1}. (15)

We first assume that Ra = 100. From (13)—(14) we see that the element

Ra |ug |hk

Peclet number Peg = is about unity. The relations between the

element diameter 4 and the relative errors are shown in Figure 3. The slopes
obtained from the results in cases (3.3C) and (3.3D) for the velocity, pressure
and temperature are 1.957, 2.129 and 1.978, respectively.

We next assume that Ra = 10000. The element Peclet number Peg is
about 100. The relations between the element diameter /4 and relative errors
are shown in Figure 4. The slopes derived from the results in cases (3.3C) and
(3.3D) for the velocity, pressure and temperature are 2.044, 1.756 and 1.335,
respectively. We remark that in every case the computation for Ra = 10000
by means of the non-stabilized scheme (7)—(9) has diverged.

4. Application to glass manufacturing problems

As an application of the scheme presented in the previous section, we
perform numerical simulations in thermal convection problem associated with
the infinite Prandtl number. As stated in the introduction, the aim of this
simulation is to make an attempt to clarify the mechanism of thermal con-
vection in the cooling section of glass melting furnaces, and then find a new
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Figure 3: The relative error versus element diameter in a sample simulation in Section 3.3 for
Ra = 100.

methods of manufacturing operations in the furnace. In Section 4.2, we
investigate the thermal convection phenomena for different kinds of colored
glass to clarify the reason for quality debasement in dark colored glass. Next
the effect of cooling rates on the convection to avoid the debasement is studied
in Section 4.3. Furthermore, in Section 4.4 we present a new cooling method
that enables us to shorten a residence time without quality debasement.

4.1 Statement of problem

To investigate the convection phenomena, we discuss a 2-dimensional
simplified model of the cooling section. We consider the (dimensional)
problem of finding a velocity field @, a pressure field p, and a temperature field
6 that satisfy, in @ x (0, T), the equations
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Figure 4: The relative error versus element diameter in a sample simulation in Section 3.3 for
Ra = 10000.

—24V ® D(a) + Vp = gppED,

V-u=0,
0 . - 5
pCp <§ +a- VO) =40,
subject to the initial condition
0=0°= D546, ati=o, (16)

and boundary conditions
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u=0, 9=éb, on Iy,

R diy 06

UI—O, 55&—1—0, &1-—0, onI"s,
o 6 X
_lf'l':O, i‘Z:Oy ?:—é, onrla
0%, 0%y

where p, c,, A, u, B are the density, heat capacity, thermal conductivity,
viscosity, and the thermal expansion coefficient of the fluid, respectively. The
symbol g denotes the gravity acceleration, 6y is the temperature at the bottom
and & is the cooling rate on the top surface.

The dimensional problem is depicted in Figure 5. At the bottom I', the
temperature is fixed to 6, and the non-slip condition for the velocity is
imposed. On both sides I'; adiabatic slip condition is imposed to express a
periodic boundary condition. On the top I'; a free surface condition for the
velocity and a heat flux condition for the temperature are imposed. The initial
condition (16) is derived from the stationary solution to the problem of top-
heated condition with a heat flux &;:

R . 1& (., %\ /(. * A
u=0, p=gp/?{§%q<x§—7°>+9b<xz—7°)}, 0=%x2+9b-

This condition is regarded as the temperature distribution formulated in the
melting process.

The problem to be discussed is to determine the transient growth of
thermal convection in a top-cooled condition, which illustrates a cooling
process in a glass melting furnace. The top surface is cooled by heat flux &in
place of the initial heating condition. The interval [0, T] is the residence time
for glass to pass through the cooling process.

Next we nondimensionalize the problem. We introduce nondimensional
variables for the velocity, pressure, temperature, time, cooling rate and length
as follows:

. 2
u=2 U = xogpﬂ00=Ra A ) (17)
7] u X0pCp
5 0 A
p=2_ g_b(xz —0.5),  po=xogpBbo = Ra f (18)
70 0o XoPCp

_ 6— 91, _ x0&o
0=—% > =7 w2

¢ xgpcp

t=— o =—"—
t’ 0 A7 20
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Figure 5. The depiction of the dimensional problem in Section 4.1

éO = 50,

Uaxy
Il
Q‘ | 1A

(22)

&=

i

X
where xg is the depth of the cooling section. Rayleigh number is defined to be
32
Ra = Y097 Bebo _ _ Xo9p ﬂchfo (23)
HA UA
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Thus we are lead to the (nondimensional) problem of finding a velocity
field u, pressure field p, and temperature field 6 that satisfy, in Q x (0, T), the
equations

-2V ® D(u) + Vp = E6,
V.-u=0,

a—0+Ra u-vo = A0,
ot

with the initial condition
0=0"=x,  att=0,

and the boundary conditions

u=20, 6=0, on Il
6u2 00
= 0 _— —_— s
u  n s 0, onr
%=0, u; =0, ﬁ:—f, on I';.
0x; 0x

Setting I'y =1Iy, I'» =I,UTI, and

0 on I,
f—07 C_{_é OnT,,

the problem is reduced to (1)-(6).

The nondimensional problem is depicted in Figure 6. From (17)—(23) the
dependence of the Rayleigh number and scaling values on the thermal con-
ductivity A is expressed as

Ra o 172, O oc A7,
pooc A, ppocdT!,
ty oc AL

The conditions for the numerical simulation is as follows. As for the
spatial discretization, uniform triangular elements are adopted. The domain is
divided into N x 2N x 2 triangles, where N = 40. We employ the stabilized
finite elements scheme (10)—(12) with P2/P1/P1 finite element approximation to
the velocity/pressure/temperature fields. A slight perturbation is added to the
cooling rate £ to induce thermal convection:

&' =E4+0.01 x cos(Zn%).
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Figure 6: The depiction of the nondimensional problem in Section 4.1.

Under the conditions mentioned above, we perform numerical simulations for
different thermal conductivities A and cooling rates &.

4.2 Numerical Simulation (1) — The Effect of Thermal Conductivity

First we investigate the thermal convection of top-cooled problems for
different kinds of colored molten glass. Computation is performed to simulate
typical cooling processes in glass melting furnaces for 4 different glass colors
whose thermal conductivities are:
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Case (4.2A) A=12 (= 60[W/mK]) clear glass,
Case (4.2B) A=12,

Case (4.2C) A =1,

Case (4.2D) A =44, dark gray glass.

The dimensional depth of furnace xy is 1[m]. The dimensional residence time
in the cooling process is 3912[s] in each case. The corresponding Rayleigh
number and time interval of the nondimensional problem are:

Case (42A) Ra=1x10°, T=8x10"2 dr=1x10"*
Case (4.2B) Ra=4x10°, T=4x10"2 At=5x10"7,
Case (42C) Ra=1.6x10% T =2x10"2 At=25x1077,
Case (42D) Ra=64x10% T=1x10"% At=125x1075.

The cooling rate on the top surface is £ = 2 in each case, which is a normal
cooling rate in the cooling section of the standard glass melting furnace.

In Figures 7 to 10, the temperature field, velocity field and streamlines at
t = T in the cases of (4.2A) to (4.2D) are shown, respectively. The streamlines
in each case are loci of particles in (0, 7) initially placed on the line of
x; =0.95. From Figures 7 to 10, the growth of the convection cells is
observed at ¢t = T in each case. In Figure 11 the relation between time ¢ and
the maximum velocity ||uj||,, in case(4.2D) is shown, where |ju}||,, is defined
by

d 1/2
2
liilloe = maxugl, || = (Zu;;_ ) : (24)
i=1

Figure 12 shows the relation between time ¢ and the difference of the maximum
velocity [|u|l, — [l4f~'||lo- In early stage, there exist no visible convections in
each case. At t=0.475T in case(4.2D), the onset of thermal convection
is seen as a sudden increase of the maximum velocity |u}||,, as is shown in
Figure 12. After that the maximum velocity [u]||,, continues increasing,
which indicates the growth of thermal convection. Figure 13 shows the
relation between thermal conductivity A and the onset time ¢.. The onset time
t. is determined as a time when sudden increase of [u)||,, occurs. From
Figure 13, we see that there exists a relation of 7. oc A, which means that the
dimensional time of onset is almost identical for every case. This relation can
be explained from the growth of thermal boundary layer on the top surface
by cooling. In the thermal conduction problem of semi-infinite solid, the
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Figure 13: The relation between thermal conductivity A and onset time ¢, in Section 4.2.

boundary thickness dx and the temperature difference 60 of the boundary layer
are known to be proportional to the square-root of the time [3]. When we
take the local Rayleigh number Ral to be Ra/ = Ra dx336, the local Rayleigh
number enjoys the relation Ra/ oc Ra 2. The onset time is thought to be the
time when the local Rayll;ezigh number attains the critical Rayleigh number
Rac. Hence ¢, oc (%) oc A is obtained in the semi-infinite problem. In
case of high Rayleigh numbers, the boundary layer thickness is dx « 1 at the
onset time, and it is considered that the same relation as in the semi-infinite
problem holds.

In Figure 14, the relation between the thermal conductivity A and the
number N, of roll cells is shown. The number N., which is inversely pro-
portional to the size of roll cells, is almost proportional to A"Y2. This is
explained from the fact that the boundary layer thickness at the onset time
follows the relation of dx oc tcl/ 2 oc 2V 2 and the size of roll cells is thought to
be proportional to the boundary layer thickness at the onset time of the
thermal convection.

From these results we see that in case of low Rayleigh numbers (clear
glass) there exist large Rayleigh-Benard cells whose number is small, while in
case of high Rayleigh numbers (dark glass) a large number of small roll cells
develop under the surface, which would debase the glass quality.
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Figure 14: The relation between thermal conductivity 4 and number of roll cells N, in Section 4.2.

Table 2. Computational cases in Section 4.3.

Case (A) (B) © (D) (E) (F)

& 0.00 0.50 0.75 1.00 1.25 1.50

T(&1)(x10-2) | 3:0000 | 2.0000 | 1.7250 | 1.5000 | 1.3375 | 1.2000

Case (G)* (H) (I () (K) (L)

¢ 2.00 2.50 3.00 4.00 6.50 11.00

T(&1)(x10-2) | 1.0000 | 0.8625 | 0.7500 | 0.6000 | 0.4000 | 0.2500

*. same as (4.2D)

4.3 Numerical Simulation (2)—The Effect of Cooling Rate

Next, we investigate the relation between the growth of thermal convection
and cooling rate ¢ in the case of dark gray glass (case (4.2D)). The purpose of
this simulation is to find an optimal cooling rate for which the appearance of
Rayleigh-Benard cells is avoided. With the same Rayleigh number Ra and the
same time increment At as those of case (4.2D), we perform computations of
12 cases for different cooling rates & = &£, as shown in Table 2. The case of
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&, = 2 corresponds to the case (4.2D). The ending time T'(¢;) is determined
to be

2+1
—T’
& +1 0

where Ty = 0.01 is the time interval for case (4.2D), so that the total amount of
energy consumption in the interval [0, T(£;)] is almost equal in all cases. This

T() =

. . . 0 .
equation is derived in the following way. The heat flux % on I, is con-
2

sidered to be approximately 1 because the temperature gradient at the bottom
remains unchanged, keeping the initial temperature gradient 1 in the whole time
interval [0, 7(&;)]. Hence the total flux that goes out of the domain is nearly
equal to & + 1. Since the total energy consumption in case (4.2D) is
(2 + 1)T,, we obtain the equation shown above.

Figure 15 shows the relation between the cooling rate £; and the maximum
velocity ||upll=(z») in [0, T(S1)] defined in (15) and (24). The maximum
velocity ||uy||j« (L) increases suddenly at {; = 1.25. We now look at the states
of thermal convection in detail. In Figures 16 to 18, the computational results
of the temperature field, velocity field and streamlines at = T in cases of
£ =1, 1.25 and 1.5 are shown, respectively. We also refer to Figure 10 for
the result of &, =2. In case & <1, thermal convection is not seen and
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particles hardly move (Figure 16). When &; = 1.25 particles show a slight
movement (Figure 17). In case & > 1.5, the growth of convection cells is
observed and the movement of particles indicates the formation of roll cells
(Figures 10 and 18). Formation of roll cells like this is a cause of optical
distortion on the surface of glass. Therefore the choice &; < 1.25 is one of the
ways to avoid the debasement of glass quality.

We now introduce the relative onset time y, = ¢./T. Figure 19 shows the
relation between the cooling rate &, and relative onset time y,, and that yx,
takes its minimum value 0.45 at £; = 2.5. That is, for any cooling rate &;, the
onset of thermal convection never occurs before the time 0.45 x T'(&;). This is
an idea of obtaining a new cooling method which can produce glass without
quality debasement in a short residence time. This method is presented in the
next subsection.

4.4 Numerical Simulation (3)—The Time-Dependent Cooling Rate

From the results in Section 4.3, the debasement of glass quality caused by
top-cooling can be avoided if the cooling rate is taken to be &; < 1.25. How-
ever, from the viewpoint of the process design and manufacturing operations,
the decrease of cooling rate brings about the need of the increase in residence
time, for which the magnification of the cooling section is necessary. Our plan
is to perform further simulations to find new cooling methods which may be
applied to the glass production without quality debasement in a short residence
time.

Let v* be the maximum velocity |||, =) and T* be the ending time in
the case (4.3E). We consider a problem of finding a cooling rate & = &(¢) such
that the ending time 7 is less than 7" and the maximum velocity ||up||;(z) 18
less than v*. As a choice of £(¢), we present a 2-step time-dependent cooling
method involving 3 parameters &;, & and y:

£ = {é] (0 <1< Ti(&)),
62 (Tl <t< T(élaéZaX)),

2+1 2+1
1 To T@ G =T+ (-5

where &, < 1.25< ¢, and 0< y < 0.45. The reason for the choice of this
cooling method is based on the results of Section 4.3. The thermal convection
does not occur in the first step 0 < ¢ < T,(&;,x) with any &; for y < 0.45. If
larger cooling rates &, are taken, it may be possible to shorten the interval of
the first step. On the other hand, the second cooling rate &, is less than 1.25,
and so the thermal convection may not occur in the whole time interval if we

Tl(él,)() = T()a
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Figure 19: The relation between cooling rate £, and relative onset time y, in thermal convection in
Section 4.3.

Table 3. Computational cases in Section 4.4.

Case (A) (B) (©) (D) (E) (F)
¢ 4.00 6.50 11.00 4.00 6.50 11.00
X 0.2 0.2 0.2 0.3 0.3 0.3

Ty(x10-2) | 0.120 0.080 0.050 0.180 0.120 0.075

Tix102) 1.3250 1.2875 1.2500 1.2375 | 1.1750 | 1.1250

T*:1.3750 x 1072

take an appropriate &,. Thus the cooling method presented above has the
possibility of shortening the residence time [0, 7] without causing thermal
convection. The cooling rate in the second step &, is chosen to be 1 in our
computation.

With the Rayleigh number Ra and the time increment At of case (4.3E),
we perform computation of 6 cases for the different values of &; and y as
shown in Table 3. Results are evaluated by the maximum velocity ||ul|« ;)
in comparison with v*. The relation between time and cooling rate in cases
(4.3E) and (4.4C) is shown in Figure 20. We remark that T of all the cases is
less than T*.
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Figure 20: The relation between time ¢ and cooling rate &(z) in cases (4.3E) and (4.4C).

In Table 4, the maximum velocity ‘|[u]|;« ;=) in different values ¢; and
are presented. When y = 0.2, the maximum velocity |||, =) is less than v*
in each cooling rate. When y =0.3, the maximum velocity [[us|=(=) is
greater than v* in each cooling rate. Therefore we could propose that our
cooling method presented here makes it possible to shorten the time interval
without quality debasement in comparison with constant cooling &; = 1.25 in
Section 4.3, if we take y to be appropriate, e.g., y = 0.2 in our computations.

5. Conclusions

Thermal convection phenomena in fluids with the infinite Prandtl number,
which gives a model of the cooling sections in glass melting furnaces, have been
discussed via numerical simulations. The stabilized finite element scheme for
the thermal convection problem with the infinite Prandtl number was presented
to treat problems with high Rayleigh numbers. By means of this scheme,
transient growth of thermal convection in a cooling process in a glass melting
furnace has been studied. The computational results revealed the mechanism
of the generation of thermal convection on cooling process as shown in the
following:

— A lot of roll cells develop just under the surface in case of dark colored

glass.
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Table 4. Computational results
ll4h]l o1y in Section 4.4.

X

¢ 0.2 0.3

4.00 | 6.309 x 1077 | 8.713 x 10~¢

6.50 | 1.084 x 10~% | 2.068 x 10~3

11.00 | 1.091 x 1076 | 1.959 x 103

V*: 6.959 x 106

— The onset time of thermal convection is almost identical in real time for
any A. The size of rolls is proportional to A2,
— There exists a value of cooling rate & = 1.25 under which thermal
convection does not occur in the cooling interval. To set £, <125 is a
way to avoid the debasement of glass quality.
— For any cooling rate &;, the onset of thermal convection never occurs
before the time 0.45 x T'(&,), where T(&)) is the ending time defined in
Section 4.3. This can be an idea of presenting a new cooling method
which can produce glass without debasement of quality in a shorter
residence time.
Based on the computational results shown above, a new time-dependent cooling
method which has 2 steps of different cooling rates, the strong cooling in the
first step and the mild cooling in the second, was presented. the computational
results made it clear that we can shorten a residence time necessary for cooling
without the debasement of glass quality by using this method.
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