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ABSTRACT. We consider oscillatory travelling pulses with breathing motion, which are

called travelling breathers, arising in a two-component bistable reaction-diffusion system

with a small layer-parameter ε. Applying the interfacial dynamics procedure as ε j 0,

we reduce the system to a 4-dimensional system of ODEs to describe the motion of

front and back interfaces of the pulse. This reduction enables us to reveal the global

structure of standing and travelling pulses as well as travelling breathers, by which

qualitative properties of travelling breathers can be discussed.

1. Introduction

Theoretical understanding of a variety of spatio-temporal patterns in

diffusive medium has been in progress by using several types of models of

reaction-diffusion (RD) systems. Among them, mono-stable RD systems with

excitability describe travelling pulses which correspond to action potential

propagating along nerve fibers [7] or expanding rings or spiral waves in the

Belousov-Zhabotinsky reactions [11]. It is well known that these travelling

pulses and expanding rings stably exist.

However, recently, even if these are generated by mono-stable systems

with excitability, it has been numerically observed that travelling pulses are

not necessarily stable but move with oscillatory velocity [1], [5], [9], [10].

For example, Fig. 1.1 shows an oscillatory travelling pulse arising in the first

step exothermic RD system [5].

As a prototype of RD systems which generate travelling pulses, there is the

following FitzHugh-Nagumo type-system with a sufficiently small parameter

δ > 0 has been intensively investigated by many authors:
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Fig. 1.1 Oscillatory propagating pulse of the exothermic RD system.

du λ d2u

dυ d2v
t > 0, xeR (1.1)

Here f(ύ) possesses cubic-like nonlinearity such as fc(u) = u(\ — u)(u — a) or
fPL = H(u -ά)-u where H{s) = 1 for s > 0, / φ ) = 0 for s < 0, 0 < α <
1/2 and γ (>0) are both constants. When the kinetics in (1.1) takes suitable
mono-stable property, there appear stable travelling pulses but no oscillatory
travelling pulses. On the other hand, if (1.1) takes suitable bistable kinetics, it
is numerically shown in [4] that there appear oscillatory travelling pulses when
d is large, as in Fig. 1.2. A feature of these pulses is that the component u
possesses one front- and one back-layers which move with breathing motion.
We therefore call such pulse a travelling breather, and if it is motionless, a
standing breather. One could expect that such travelling breathers appear
as the consequence of Hopf bifurcation of travelling pulses, as in Fig. 1.3.
However, we should note that travelling breathers do not necessarily persist,
depending on values of parameters. Fig. 1.4 shows the extinction of travelling
breather which develops from the travelling pulse, while Fig. 1.5 shows the
transition from the travelling pulse to a standing breather where the pulse
behaves as if it were a travelling breather in the transient process.

The aim of this paper is to understand how such dynamics of travelling
breathers, as shown in Figs. 1.3-1.5, occurs.
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Fig. 1.4 Extinction of a travelling breather in (1.1) where the parameters are the same as Fig. 1.2

except γ = 10.05 and d = 2.00080.

In order to study this problem, we use /PL(U), which is known as a
prototype of f(u), in (1.1) and write it also as f(u). This simplification of
piecewise linearity reveals the global structure of travelling and standing pulses
when d is varied. As d decreases, travelling pulses secondly bifurcating from
the standing one at d = dτ recover their stability through the Hopf bifurcation
which occurs at d = dTH, as in Fig. 1.6 (For bifuraction argument, see [3],
[4]). This information strongly suggests that travelling breathers appear as a
Hopf-bifurcation from the travelling pulse, although their existence and stability
have been unsolved.

We derive a 4-dimensional system of ODEs from (1.1). The reduction is
carried out in two processes; The first is to reduce (1.1) to a free boundary
problem describing the dynamics of front and back interfaces coupled with
v, and the second is to derive a 4-dimensional system of ODEs describing
the front- and back-interfaces only from the free boundary problem. This
system enables us to draw the structure of travelling pulses as well as
travelling breathers when some parameter is varied, and gives some
information on the dynamics of travelling breathers arising in (1.1) shown in
Figs. 1.3-1.5.
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Fig. 1.6 Schematic bifurcation diagrams of standing and travelling pulses when the parameter d is

varied, where the vertical axis indicates the velocity of the travelling pulse: (a) super-critical case;

(b) sub-critical case. (SSP: stable standing pulse, USP: unstable standing pulse, STP: stable travel-

ling pulse, dπ' Hopf bifurcation value of d with respect to the standing pulse, dj\ translational

bufurcation value of d, dτH Hopf bifurcation value of d with respect to the travelling pulse.)

2. Limiting problem as ε [ 0

By taking τ = \[δd and ε — yjδ/d, we conveniently write (1.1) as

du _ 2d
zu

dt ~ dx2

dv _ d2v

[~di~ώέ

t > 0, xeR,

— yυ

with the boundary conditions

(2.1)

(2.2)

We assume ε to be sufficiently small and take τ as a bifurcation parameter

instead of d. We restrict ourselves to a single pulse-solution of (2.1), (2.2),

where two internal layers appear in the w-component, as in Fig. 2.1 (a). Taking

the limit ε [ 0 in (2.1), one can expect that these layers become interfaces, say

zL(ή and ZR(Ϊ), as in Fig. 2.1(b). By using the well known singular per-

turbation method ([12], for instance), the time-evolution for zL(ή and zR(t)

(—oo < zL(ή < zR(ή < oo) can be approximately described by

τzL = -λ(υ(t,zL(ή)),

τzR=λ(v(t,zR(t))),
t>0, (2.3)

where is the first derivative with time t and λ(s) is given such that there is a

bounded solution w(x s) to satisfy the following boundary value problem for
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Fig. 2.1 Spatial profile of a pulse-solution of (2.1), (2.2): (a) 0 < e « 1; (b) e | 0.

V

Fig. 2.2 The graph of v =f{u), where u = /L(t?), w = h+(υ) and w = /io(f) denote three branches of

v=f(u).

fixed constant s

) - 5 = 0, X € /?,

vv(—oo) = h+(s) and w(+oo) = h-(s),
(2.4)

where u = h-(v) and u = h+(v) are given functions of f by the inverse of

v=f(ύ), as in Fig. 2.2. We note that the solution (w(x]s),λ(s)) of (2.4)

is uniquely obtained, where λ(s) is explicitly given by λ(s) = (l—2a — 2s)/

y/(a + s)(l — a — s). The values of υ on the interfaces x = zL(t) and x = zR(t)

are obtained by solving the equations

4 = τ^ + h-(v)-yv, t > 0, x e R\{zL(ή,zR{ή),

2 (2.5)

j t = ̂  + A+W - F> ί > 0, x e (z L (0, zΛ(ί))
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with the boundary condition

lim v(t,x) =0, t > 0
|x|->oo

and the regularity condition

υ{t, )eCι(R), t>0.

(2.6)

(2.7)

For the derivation of (2.3)-(2.7), the reader should refer to [12], for instance.

We note that (2.3)-(2.7) is a free boundary problem, where the interfaces zL(t)

and zR(ή are free boundaries coupled with the unknown variable v. The

convergence of (2.1), (2.2) to (2.3)-(2.7) as ε I 0 is discussed in [12].

50

-25 X

(a)

25

100

zL(t> z,(t)

-25 25

(C)

-25

(d)

Fig. 2.3 Dynamics of interfaces ZR(Ϊ) and z/,(ί) of (2.3)-(2.7) where the parameters are

a = 0.25, γ = 0.99: (a) a standing interfaces (τ = 0.4); (b) a travelling interfaces (τ = 0.33); (c) a

standing breather interfaces (τ = 0.358); (d) a travelling breather interfaces (τ = 0.3432).
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With suitably fixed a and γ, four typical types of the interfaces zL(t) and

zR(ή of (2.3)-(2.7) are shown in Figs. 2.3(a), (b), (c) and (d) for different values

of τ, which correspond respectively to a standing pulse (SP), a travelling pulse

(TP), a standing breather (SB) and a travelling breather (TB) arising in the RD

system (2.1), (2.2). The ε JO limiting system (2.3)-(2.7) seems simpler than

(2.1), (2.2), but it is still difficult to know the complete structure of SP-, TP-,

SB- and TB-solutions when τ is varied.

3. 4-dimensional system of ODEs describing interfaces

The aim of this section is to derive a system ODEs describing two interfaces

x = zL(ή,zR(ή from (2.3)-(2.7). We fix γ suitably close to γ* but satisfy γ <

γ*, where γ = γ* is given such that P and R are odd symmetric with respect to

Q, as in Fig. 2.2.

Assume that the interfaces z^{t) and zR(t) of the limiting problem (2.3)-

(2.7) move very slowly. Then, applying the method in [6] to the limiting

problem (2.3)-(2.7), we can formally obtain the following 4-dimensional system

of ODEs describing the dynamics of zL(ή and zR(ή:

m(zL)zL - n(zR - zL, -zR)zR

= - 1 +2α + M(zR-zL,-zL,-zR) -7V(zL;τ),

m(zR)zR - n(zR - zL,zL)zL

= l-2a- M(zR - zL, zR, zL) - N(zR; τ),

where

12

ΦHP)
m{p)=-J7-, (3.2)

" . Ol3 l ^ r \ / / I / \ . \ / Λ . \ / ' 5 ' 3 \

^ 3 (?) ^4(?) Φ\i))

φ(p)-p φ{q)-q (3 4)

(3.5)

with φ(k) = y/(k2 + 4β) and β = 1 -f γ. The method and approximation used

to derive (3.1) is shown in Appendix.
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By introducing two new variables the center of two interfacial points, x(t) =
{zR{f)+zL(t))/2 and the half length between them, y(t) = (zR(ή -zL(ή)/2, it
is convenient to rewrite (3.1) as

2A(ξ, 2y, η)ξ = (m(ξ - η) + n(2y, -(ξ + η)))Fλ (f, 2y, //; τ)

+ (m(ξ + η) + «(2j, ί - η))F2{ξ, 2y, η; τ),
(3.6)

ιy = (m(ξ - η) - n(2y, -(

- (m(ξ + //) -

η)))Fλ

where

^, //; τ)

, 17; τ ) ,

7, ,̂ q) = m{p - q)m{p + q) - n(s, -p - q)n(s, p-q),

F\ (p, s,q;τ) = l-2a- M(s, p + q,p-q)~ N(p + q\ τ),

F2{p,s,q;τ) = -1 + 2a + M(s, -/? + q, -p - q) - N(p - q τ).

(3.7)

(3.8)

(3.9)

Here we note that A(p,s,q) > 0 for any s (>0), p and q and A(p,0,q) = 0,
that is, as far as y > 0 holds, the system (3.6) is not degenerate. Since the
variable x is not included in (3.6), which implies the translation free of
interfaces in space, (3.6) essentially reduces to the following three-component
system for the unknown variables ξ,y and η:

(3.10)

ή =

where

F(ξ,y,η;τ) =
1

- [(m(ξ -η)+ n(2y, -ξ - η))F{ (ξ, 2y, η; τ)
2A(ξ,2y,η)1

+ (m(ξ + η)+ n(2y, ξ - η))F2(ξ, 2y, η; τ)},
(3.11)

G(ξ,y,ψ,τ) =

- (m(ξ + η)- n(2y, ξ - η))F2(ξ, 2y, η τ)].

For the system (3.10), we have to require y(t) > 0, that is, zR(t) > zL(ή for
any t > 0. If there is some t\ > 0 such that y{t) > 0 for 0 < t < t\ and y(t\) =
0, we may say that the pulse becomes extinction at t = t\, while it expands to
infinity, if y(t) tends to infinity, as t goes on.
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Fig. 3.1 Curves of F\ = 0 and F2 = 0 in (£,j>)-plane: (a) τ is large; (b) τ is small.

By Fig. 3.1, we find that the trivial critical point is (ζ, y,η) = (0, y*,0)
with y* = -y/ϊj4βlog(2aβ+ 1 - β), which is independent of τ > 0. This
indicates that (x,ξ,y,η) = (x*,0, j>*,0) is an equilibrium solution of (3.6) for
arbitrarily fixed x* e R, which corresponds to an SP-interfaces solution with the
pulse-length 2y* of the limiting problem (2.3)-(2.7), where the arbitrariness of
x* indicates translation free. We thus call (0, y*, 0) an SP-critical point of (3.10).
The other is of the form (ξ,y,η) = (±ίr> J^ΓJO) with ζT > 0, which bifurcate
from (0,j>*,0) when τ decreases. The corresponding (x* ± ξτt,ξτ, J>r,0) are
solutions of (3.6), which give TP-interfaces solutions of (2.3)-(2.7) where the
velocity are ±ξτ and the pulse-length is 2yτ. We thus call (±ξτ,yτ,0) TP-
critical points of (3.10). Furthermore, suppose that (3.10) has a periodic
solution (ξo(ή,yo(ήi1o(t)) w i t h period θ. If ζo(ή = 0 , it corresponds to an
SB-interfaces solution of (2.3)-(2.7). Writing ζo(t) as ξo(ή = ξ + ξ{ (ή where ξ
is the averaged value of ζo(ή and ξx(t) is a periodic function with $ξx(s)ds =
0, we find that (x* + ξt + ^ξx(s)ds,ξ + ξx(i),yo{ή,ηo(ή) is a solution of (3.6)
where ^ξx{s)ds, ξ\(ή, yo(ή and ηo(t) are all periodic functions with period
θ. This implies a TB-interfaces solution of (2.3)-(2.7). We thus call (£0(0,
yo{ή,rjo{ή) a TB-periodic solution and particularly, if ξo(ή =0, it is an SB-
periodic one of (3.10). The existence of periodic solutions of (3.10) will be
discussed in the next section.

We define the stability of these solutions.

DEFINITION 3.1. Let (ξτ,yτ,0) be a TP-crίtical point of (3.10), and
let (x(t),ξ(t),y(t),η(ή) be a solution of (3.6) with the initial condition
W0),ί(0),^(0),ι/(0)). Then {x* + ξτt,ξτ, yτ,0) with any fixed x* e R is
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exponentially stable if there exists some constant δ > 0 such that under the
conditions,

\ξ(O)-ζτ\<δ, \y(O)-yτ\<δ, \η(O)\<δ, (3.12)

there exist some constants h,C\ > 0 and Cι > 0 such that

Km[x(ή-{x* + ξτt)]=h (3.13)
t—>oo

and

|f (0 - ζτ\ + \y(t) - yτ\ + |//(0| < Ci exp(-C20 (3.14)

Stability of SP-interfaces solutions is similarly defined.

DEFINITION 3.2. Let (fo(0^o(0»%(0) ^ α TB-periodic solution with
period θ of (3.10), αra/ let (x(ή,ξ(t),y(ή,η(ή) be a solution of (3.6) w/Y/z /Λe

condition (x(0),f(0),^(0),ί7(0)). 7%β/i (x* + Jo foWώ,fo(0,Λ(0^o(0)
xeί/ x* e R is exponentially stable if there exists some constant δ > 0

such that under the condition,

mm|f(0)-fo(OI<4 ^ l ^ - Λ W K ί ,

min to(O)-i/o(ί)|<<$, (3-15)
t E [0,1/)

exώί some constants h, C\ > 0, C2 > 0 am/ 0̂ ε (0, θ) such that

Hm \x(t) - (x* + | o ' + ° ξo(s)ds\ 1 = A (3.16)

\ζ(t) - ζo(t + θo)\ + W0 - yo(t + θo)\ + W0 -%(ί + ̂ 0) | < d exp(-C20
(3.17)

We will find in Appendix that the stability of SP- and TP-critical points
and SB- and TB-periodic solutions of (3.10) is inherited to the corresponding
solutions of (3.6).

4. Global structure of pulse-solutions to the ODEs

In this section, we fix a = 0.25, and numerically draw the structures of
critical points and periodic solutions of the 3-dimensional system of ODEs
(3.10) when τ is globally varied.

We first consider the structures of SP-critical points and SB-periodic
solutions of (3.10). Because of f = 0, these can be obtained by solving the
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Fig. 4.1 Nulclines g(y, η;τ)=0 and solution-trajectories of (4.1) in (>>,//)-plane where

a = 0.25,^= 1.99: (a) τ = 0.4; (b) τ = 0.365; (c) τ = 0.345.

following 2-dimensional system for y and η:

where

\ή(ή = G(0, y,η;τ) = g(y,η;τ),
(4.1)

1

m(η)+n(2y,-η)
{I-2a- M(2y, η, -η) - N(η; τ)}. (4.2)

We note that (4.1) is valid even if y takes negative, though it loses the meaning

of the pulse-length. For different values of τ, solution-trajectories of (4.1) are

drawn in Fig. 4.1, where (y,η) = (y*,0) is the unique critical point. There is

the critical value, say τ = τH, so that an SB-periodic solution (yo(tm,τ),ηo(tm,τ))
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Fig. 4.2 (a) A solution-trajectory of (4.1); (b) the corresponding interfaces where the parameters

are the same as Fig. 4.1 except τ = 0.341.

Fig. 4.3 (a) A limit cycle of (4.1) with negative value y(ή; (b) the corresponding interfaces where

the parameters are the same as Fig. 4.1 except τ = 0.39 and γ = 0.9.

is bifurcated from (y*,0) for τ < τH, where the kinetics of (4.1) is qualitatively

similar to that of the well-known Van der Pol equations.

As τ decreases from τH, we note that the SB-periodic solution disappears

at one of two critical values at which yo(t;τ) tends to infinity: One is τπao

where it tends to infinity as t increases to infinity (Fig. 4.2). The other is %H-

where it tends to zero after finite time (Fig. 4.3). When τ is larger but close to

yo(t:>τ) oscillates with very large amplitude and the corresponding zL(t)
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Fig. 4.4 (a) A limit cycle of (4.1); (b) the corresponding SB-interfaces where the parameters are the

same as Fig. 4.1 except τ = 0.34205.

and zR(ή take saw-toothed shape, as if they move with piecewise constant

velocity, as in Fig. 4.4.

The velocity is approximately determined as follows: Introducing y = y/δ

with a small parameter δ = τ — τπoo into (4.1), we obtain the following

equations for y and η:

= δη,

y (4.3).

For τ very closely to τHθD, the second equation in (4.3) is approximated by

ή = g(co,η;τ), (4.4)

where the function of g(co,η;τ) is drawn in Fig. 4.5. For τ > THOO, (4.4) has

the unique critical point η^ (<0) which is globally asymptotically stable (Fig.

4.5(a)). If η(u) > 0 for some time ί*, then η(t) tends monotonously to η+

(<0). This indicates that zR{t) (resp. zL(ή) changes the direction and moves

with asymptotically constant velocity η* (resp. —η*). On the other hand, for

τ < T/Zoo, there are two stable critical points η* (>0) and η^ (<0), as shown in

Fig. 4.5(c). If y(ή > 0, it tends to η* (>0), which indicates that there are no

longer any periodic solutions and zR(t) (resp. ZL(Ϊ)) moves with asymptotically

constant velocity η* (resp. —η*), respectively.

We note that as τ decreases, which of τHoo and τ//_ first occurs depends on

values of the parameter γ. In fact, when γ = 0.99, the periodic solution of

(4.1) branch first disappears at τ = τHo0, while when γ = 0.9, it first disappears

at τ = τH-
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Fig. 4.5 The graph of ή = g(oo,η;τ): (a) τ > τHoo{τ = 0.345); (b) τ = W τ = 0.34205); (c)

τ < τHuo(τ

We next consider the solution-structure of the full 3-dimensional system
(3.10) when τ is varied. Here we take the SP-critical point (0, y*,0) as the
trivial solution branch, which gives the stationary interfaces ZR — x* + y* and
zL = x* — y* for any fixed x*, as in Fig. 4.6. As the nonlinearities F and G in
(3.10) are rather complicated, we rely on the AUTO software package [2] to
know the global structure of critical points and periodic solutions when τ is
varied. The structure is essentially classified into three cases, depending on
values of γ.

Case I Fix γ to be very close to but less than γ* (that is, P and R are almost
odd symmetric with Q, as in Fig. 2.2). The bifurcation diagram with τ is
shown in Fig. 4.7. When τ is large, (0, j*,0) is stable. As τ decreases,
it is primarily destabilized at τ = τ# through Hopf bifurcation so that a



Dynamics of travelling breathers 237

100

n

zL(t)

(a)
x

(b)

80

Fig. 4.6 An SP-critical point and the corresponding stationary interfaces where a = 0.25,

γ = 0.99, τ = 0.39: (a) A critical point of (3.10) in (£, y, ^)-space; (b) standing interfaces.
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Fig. 4.7 (a) Bifurcation diagram with τ where α = 0.25, γ = 0.99 (SSP: Stable standing pulse, USP:

Unstable standing pulse, STP: Stable travelling pulse, SSB: Stable standing breather, STB: Stable

travelling breather, UTB: Unstable travelling breather.); (b) solution-structure near the secondary

bifurcation point ττ\ (c) solution-structure near the Hopf bifurcation point ΊTH
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Fig. 4.7 (continued)
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Fig. 4.8 An SB-periodic solution where the parameters are the same as Fig. 4.7 except τ = 0.361:

(a) Limit cycle in (£, y, ^)-space; (b) oscillatory interfaces.

n
(a) (b)

Fig. 4.9 A TP-critical point where the parameters are the same as Fig. 4.7 except τ = 0.32: (a) A

critical point of (3.10) in (ξ, y,η)-space; (b) travelling interfaces.

2-dimensional periodic solution (0, yo(ή,ηo(ή) super-critically bifurcates,
which is a stable SB-periodic solution (Fig. 4.8). However, it disappears
as τ decreases to τHoo (Fig. 4.7(b)). A TP-critical point (ir, J>r,0)
bifurcates from (0, y*,0) at τ = τT, but it is unstable for τ near ττ,
because it is the secondary bifurcation (Fig. 4.7(c)). There is a Hopf
bifurcation at τ = τTH so that (ξτ, yτ,0) recovers its stability for τ < τTH

(Fig. 4.9), from which a TB-periodic solution sub-critically bifurcates.
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(a) (b)

(c)
Fig. 4.10 TB-periodic solutions where the parameters are the same as Fig. 4.7 except τ = 0.3435:

(a) Two limit cycles P\(ή and Pι{t) in the (ζ, y,^)-space; (b) The relation between zL\(t) and zR\(t);

(c) travelling breather interfaces.

We remark that this solution branch possesses a limiting point at
τ = TTHL (Fig- 4.7(c)), that is, there are two TB-periodic solutions
ΛW = ( ί i ( 0 ^ i ( 0 , mW) and P2(t) = ( 6 ( 0 , ^ ( 0 ^ 2 ( 0 ) , where Λ(ί) is
stable, while ^ ( 0 ^s unstable (Fig. 4.10(a)). The time evolutions of
ZL\(t) and ZR\(i) corresponding to P\{i) are drawn in Figs. 4.10(b) and



Dynamics of travelling breathers 241

AMP

3 O . _

0 . 3 0 0 0 . 3 2 0

0 . 3 3 0 0 . 3 4 0 0 . 3 5 0

(a)

AMP

o..
0 . 3 3 9 0 TH-OO TTH TTHL 0 . 3 4 2 0 Tj 0

0 . 3 3 9 5 0 . 3 4 0 0 0 . 3 4 0 5 0 . 3 4 1 0 0 . 3 4 1 5 0 . 3 4 2 5

τ
3 4 3 0

(b)

Fig. 4.11 (a) Bifurcation diagram with τ where the parameters are the same as Fig. 4.7 except

γ = 0.9865; (b) solution-structure near the secondary bifurcation point τγ\ (c) solution-structure near

the Hopf bifurcation point XJH\ O is periodic solution of (4.1) where yo(t;τ) has lost its positivity.
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AMP

0.3400 0.3405 0.3410 0.3415 0.3420 0.3425 0.3430

(c)

Fig. 4.11 (continued)

(c). One can obviously see that the velocity of zR\(ή is almost constant,

while zL\(t) is clearly oscillating. This is qualitatively in good agreement

with the behaviors of internal layers in RD system (2.1), (2.2) and

interfaces in the limiting problem (2.3)-(2.7), as were shown in Figs. 1.2

and 2.3(d), respectively.

Case II Fix γ to be slightly smaller than the value of γ for Case I. As in Fig.

4.11, the bifurcation diagram is almost similar to Case I except that the

SB-periodic solution disappears at τ = τH- where y(t) becomes zero at

finite time. If we ignore the positivity of y(t), the branch continues until

τ = τ//-oo. It is noted that there exists some interval (JTHL^H-) where

no stable solution exists.

Case III Fix γ to be slightly smaller than the value of γ for Case II. The

structure is almost similar to Case II except that the TP-critical point

((Jo,^^) bifurcates sub-critically from (0, j*,0) and there is a limiting

point at τ = τ#, as in Fig. 4.12.
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Fig. 4.12 (a) Bifurcation diagram with τ where the parameters are the same as Fig. 4.7 except

γ = 0.9; (b) solution-structure near the secondary bifurcation point ττ
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Fig. 5.1 Solution-trajectories of (4.1), depending on initial conditions where the parameters are

a = 0.25, γ = 0.99, τ - 0.4.

5. Discussion

In this section, with the help of the bifurcation diagrams obtained in Figs.

4.7, 4.11 and 4.12, we consider the dynamics of solutions of (3.10) and then

give several conjectures on the dynamics of travelling breathers arising in RD

system (2.1), (2.2). We take the initial condition to (3.10) as

ξ(0) = ξ0,

(0) = y0 > 0,

η(0) = f/o-

(5.1)

Let zL(t),zR(ή and υ(t,x) be solutions of (2.3)-(2.7) for suitably fixed initial

functions zL(0),zR(0) and v(0,t). For suitably small ί* > 0, we take the initial

values ξ0, y0 and η0 as

ξ [ λ ( ( ( ) ) ) λ ( (

and

respectively.

Here, we restrict our discussion to Case I (see Fig. 4.7), by which we

consider the dynamics of pulse-solutions of (2.1), (2.2), depending on values

of τ.



Dynamics of travelling breathers 245

Fig. 5.2 Behavior of interfaces zL and zR to (4.1) in (x, t) -plane where the parameters are the same

as Fig. 5.1: (a) Collision of interfaces; (b) SP-interfaces.

(i) Large τ (τH < τ < oo)

In this situation, the SP-critical point (0,j;*,0) of (3.10) is asymptotically

stable. We first discuss the special case when ξ0 = 0. Since F(0, y, η) = 0, we

may simply consider (4.1). Let the curve C be the trajectory (y(t),η(t)) of

(4.1) with (yo,ηo) = (0,0) for t<0 and define S by S = CU \{y,η) e R2 \

y = 0, η > 0} in {(y, η) e R2 \ y > 0, η e /?}, as shown in Fig. 5.1. It turns out

that when the initial value (yo,ηo) is slightly above the curve S, any solution

(y(ή,η(ή) of (4.1) tends to the critical point (>>*,0), while, when (y(0),η(0)) is

slightly below S, y{t) of the solution tends to zero at finite time, that is, the

dynamics of the interfaces zL(ή and zR(ή of (3.1) is separated into two cases,

which is shown in Fig. 5.2. This information tells us the possibility of two

types of dynamics of pulse-solutions in the R D system (2.1), (2.2), depending

on initial conditions. The collision of zL(ή and zR(t) suggests the extinction of

a pulse-solution of (2.1), (2.2) at finite time. When ξ0 ^ 0 , though we can

no longer use the above simple argument and have to consider (3.10), we

numerically confirm that the dynamics of solutions of (3.10) and the corre-

sponding pulse-solutions of (2.1), (2.2) are similar to the aboves.

(ii) Intermediate τ (TTHL < τ < ?//)

If τ satisfies τT < τ < τH, there exist the unstable SP-critical point and the

stable SB-periodic solution. As was stated in Case (i), (4.1) gives a separator S

in (y,^)-plane. When the initial value (yo,ηo) is above the curve S, any

trajectory (y(ή,η(ή) tends to the SB-periodic solution, while when (yo,ηo) is
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Fig. 5.3 Solution-trajectories of (4.1), depending on initial conditions where the parameters are the

same as Fig. 5.1 except τ = 0.361.

(a) (b)

Fig. 5.4 Behavior of interfaces zι and ZR in (4.1) on (x, /) -plane where the parameters are the same

as Fig. 5.3: (a) Collision of interfaces; (b) SB-interfaces.

below S, y(t) tends to zero at finite time (Fig. 5.3). Similarly to the previous
case, (4.1) exhibits two types of dynamics of solutions, which are separated by
S; one is the collision of interfaces at finite time and the other is approaching to
a standing breather (Fig. 5.4). When ζ0 φ 0, numerical calculation of (3.10)
suggests that the dynamics of solutions is similar to the above. These be-
haviors are also confirmed for RD system (2.1), (2.2).

If τ satisfies τTHL < τ < ττ where the stable state is still the SB-periodic
solution only, the situation is almost similar to the above except that the
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• SB-periodic solution
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(d)

Fig. 5.5 Transition from the unstable TP-critical point to the stable SB-periodic solution in (3.10)

where the parameters are the same as Fig. 5.1 except τ = 0.343596: (a) A bifurcation diagram

near limiting point at τ = τTHL; (b) solution-trajectories in (£,>>)-plane; (c) solution-trajectories in

(ξ, ?/)-plane; (d) behaviors of interfaces ZL and ZR.

unstable TP-critical point exists. It is interesting to consider the case when τ is
fixed to be slightly larger than TTHL- Let the initial value (ξ0, yo,ηo) be close
to the unstable TP-critical point. Then, one can expect that the solution of
(3.10) tends asymptotically to the stable SB-periodic solution. However, as in
Figs. 5.5(a), (b) and (c), one notices that the solution behaves as if it were a
TB-periodic solution as the transient behaviour, though there is no TB-periodic
solution. This can be interpreted as follows: Since τ is close to TTHL, the
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-200

Fig. 5.6 Transition from the unstable TB-interfaces to the stable states of interfaces zL and

ZR of (3.1) where the parameters are the same as Fig. 5.1 except τ = 0.3432: (a) SB-interfaces;

(b) TB-interfaces.

transient behaviour of solutions is similar to that of the TB-periodic solution at
τ = TTHL, by the aftereffect of the limiting point. The behavior of the corre-
sponding zL(t) and zR(ή is shown in Fig. 5.5(d). We recall that this behavior
is qualitatively similar to the one in RD system (2.1), (2.2), which was shown in
Fig. 1.5.
(iii) Slightly small τ {τTH < τ < τTHL)

This situation is rather complicated. There coexist five different types of
pulse-solutions; the unstable SP- and TP-critical points, the stable SB-periodic
solution, the stable and unstable TB-periodic solutions. It is numerically
shown that for fixed τ, the dynamics of pulse-solutions is generically classified
into three types; vanishing of y(t) and approaching to either the stable SB- or
the stable TB-periodic solutions. Under this situation, the unstable TB-periodic
solution plays a role of separator between these two stable periodic solution, as
in Fig. 5.6. This suggests the existence of two travelling breathers in (2.1),
(2.2) where one is stable and the other is unstable.
(iv) Small τ {τHaD < τ < τTH)

In this situation, there coexist the unstable SP- and the stable TP-critical
points and the stable SB- and the unstable TB-periodic solutions. In a similar
way to Case (iii), we find that there are three types of dynamics of solutions;
vanishing of y(t) and approaching to either the SB-periodic solution or TP-
critical point, as in Fig. 5.7. We find that the dynamics of pulse-solutions of
(2.1), (2.2) is also classified into three types, depending on initial conditions.
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Fig. 5.7 Behaviors of interfaces zL and zR of (3.1) where the parameters are the same as Fig. 5.1

except τ = 0.3425: (a) Collision of interfaces; (b) transition to the SB-interfaces; (c) transition to the

TP-interfaces.

(v) Rather small τ (0 < τ < τHoo)

In this situation, the structure is rather simple, that is, there is the stable
TP-critical point and the unstable SP-critical point and the TB-periodic solution.
The dynamics of solutions of (3.10) falls into three cases; y(ή tends to either
zero or infinity or to the TP-critical point, as in Fig. 5.8. Numerical sim-
ulations confirm that the dynamics of solutions of (2.1), (2.2) is also classified
into three cases, depending on initial conditions.
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50

Fig. 5.8 Behaviors of interfaces zι and ZR of (3.1) where the parameters are the same as Fig. 5.1

except τ = 0.342: (a) Collision of interfaces; (b) expanding interfaces; (c) TP-interfaces.

The cases (II) and (III) are similarly discussed, so we omit them. Here

we remark the dynamics of solutions of (3.10) shown in Fig. 4.1 l(b). Suppose

τ is fixed to be slightly larger than TTHL where no stable solution exists. As

in Fig. 5.9, the solution y(ή tends zero, but the transient behavior of

solutions is as if it were a TB-periodic solution by the aftereffect of limiting

point. This resembles the dynamics of pulse-solutions of (2.1), (2.2) shown in

Fig. 1.4.
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(d)

Fig. 5.9 Transition from the unstable TP-critical point to the y(t) = 0 solution of (3.10) where the

parameters are the same as Fig. 5.1 except γ = 0.9865, τ = 0.34145: (a) A bifurcation diagram near

limiting point; (b) a solution-trajectory in (ξ, τ/)-plane; (c) a solution-trajectory in (£,j>)-plane; (d) a

behaviors of interfaces z/, and ZR.

6. Concluding remarks

In order to understand the dynamics of pulse-solutions of a bistable RD
system with a layer parameter ε, we have derived a 4-dimensional ODEs to
describe the motion of the front- and back-interfaces of pulse, taking the limit
ε I 0. The analysis of the ODEs has enabled us to know the existence as well
as stability of standing and travelling pulses, standing and travelling breathers
arising in the RD system. Furthermore, when the time constant parameter τ is
varied, the global structure of these pulses have been revealed. For the



252 Masayasu MIMURA et al.

derivation of the reduced ODEs, we restrict ourselves to the situation that γ is

close to γ*, that is, the pulse-length of solutions is very large. Under this

situation, it is found that when τ decreases, the bifurcation point τ# appears

first and xγ secondly does. However, we should note that when a is close to

1/2 and γ is slightly apart from γ* so that the pulse-length is narrow, xj

appears first and τ# secondly does [4]. This indicates the occurrence of

codimension two singularity when x = χτ = χH for a suitable value of γ. We

thus expect the existence of more complicated structures of pulse-solutions of

the RD system. Unfortunately, our reduced ODEs can not be applied to

this situation. We should need to develop any other tools to investigate it.

This is a future work for us.
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7. Appendix

Appendix A

We formally derive the ODEs (3.1) from (2.3) and (2.5). When f(u) =

H(μ - a) -u, the free boundary problem (2.3)-(2.7) can be rewritten as

follows:

TZR{ή = 1 - 2a - 2υ(t,zR(ή), t > 0, (A.I)

T Z L ( i = = - l + 2 α + 2 φ , z L ( 0 ) , t>0 (A.2)

and

>ι? d2v
^ T + J ' ) I > ' ί > 0 > xeR\(zL(t),zR(ή),

2 (A.3)

with the boundary condition

l i m v(t,x) =0, t>0 (A.4)

and the regularity condition

υ(tr)eCι(R), t>0. (A.5)
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Applying the Fourier transform given by

υq(ή= Γ v(t,x)eiqxdx
J—00

to (A.3), we have

υq{t) = -(q2+ β)υq{t) + ± ( e ^ « - e*z*\ (A.6)

where β = 1 4- γ. The inverse Fourier transform of (A.6) yields

Γ Γ e x PH</ 2 + /?)(' " *) " iqx)eiqz^dsdq
^Jo

- [' exp(-(^2 + jff)(r - s) - iqxy^dsdq. (A.7)

by ignoring the term vq(0) exp(—(q2 +β)t), since we consider the dynamics

after large time. Hence we obtain

Όι(t) = Ό(t,ZR(ή)

= 1 Γ J- Γ e x p ( - ( ^ 2 +β)(t -s)- iqzR(t))e**todsdq
2πJ_ooz# Jo

_ _L Γ I [' exp(-(g2 + jϊ)(ί - J) - iqzR(t)y^dsdq (A.8)

and

= ^ Γ - Γ exp(-(?2 +β)(t -s)- iqzL{t)y^dsdq

_ _L Γ 1 f' exp(-(<72 +β)(t -s)- iqzL{t)y^dsdq. (A.9)

(A.8) and (A.9) indicate that there is a time-delayed interaction between two

interfaces mediated by υ. Therefore, in order to take account of the effect of

the time-delayed interaction in (A.8) and (A.9), we employ the following

expansion:

φ) = Zi(t) 4- Zi(t)(s - t) + zi(t) ̂ L + (i = Λ, L). (A.10)

After straightforward calculation, we approximate (A. 8) ignoring the 3rd and

higher derivatives [8]
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υ^(ή + υf)(ή, (AM)

where

=±Γ 2Γ (2πj_ω2iqW+β+iqzR q2 + β

1 . 1 . '
2βφR

τκ~

where φt = φ(zi) = Jzf + 4β and φi± = φj ± z, (/ = L, R), and

In the above representation of v\(ή in (A.ll), the term of O(exp(—βή) was
ignored, since we consider the dynamics after large time. From (A.9), we may
derive the representation of V2(t) = vψ(i) + vψ{t) in the similar way to (A. 12)
and (A. 13) where

and

+

Thus one may write υ\' and v[ as

vψ = m(zR,zR)zR - n\(zR,zL,zL)zL (A. 16)

and
-vψ = m(zL,zL)zL - n2(zR,zL,zR)zR, (A. 17)

respectively, where

In a similar way to (A. 12), n\ and «2 are defined by



l r
ni=2-nl
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-φR - zL))

- Z L Ϋ , 3 ( z Λ - z L ) ό

2ΨL ΦL ΦL

i r exp(/̂ -z.))

2 π ) ( q 2 + β + i ) 3

Jr) exp(-(z, - zL)fc_). (A.20)

Therefore (3.1) can be obtained.

Appendix B

We show that the stability of (x* + ξτt,ξτ, yτ,0) and (x* +

fo(ί)> .VOMJ^OW) solutions of the 4-dimensional ODE system (3.6) is given by

the stability of SP- and TP-critical points and SB- and TB-periodic solutions of

the 3-dimensional ODE systems (3.10), respectively.

PROPOSITION 7.1. If the TP-critical point (ξτ,yτity ^/ (3.10) is exponen-

tially stable, then (x* + ξτt,ξτ,yτ,O) of (3.6) is also exponentially stable.

PROOF. Since the TP-critical point is exponentially stable, there exist some

constants a\ and ai > 0, such that

\ξ(ή - ξτ\ < axe~a*.

Therefore there exists some constant ho such that

lim \\ξ(s) - ξτ)ds = ho.
^ + ° ° Jo

By using x = ξ, one easily knows that

x(ή - χ(0) - ξτt = \\ξ(s) - ξτ)ds,
Jo

which leads

lim [x(ή - (x* + ξτή] = [x(0) - JC* + Ao] = K
t—^oo

this gives the proof.

In a similar way to Proposition 7.1, we obtain

PROPOSITION 7.2. If the TB-periodic solution ( ί o M ^ o M ^ o M ) o/(3.10)

is exponentially stable, then (x* + ^ξo(s)ds1 ξo{t), J o M ^ o W ) °/(3-6) is also

exponentially stable.
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