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A singular perturbation problem with integral curvature bound
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ABSTRACT. We consider a singular perturbation problem of Modica-Mortola functional
as the thickness of diffused interface approaches to zero. We assume that sequence of
functions have uniform energy and square-integral curvature bounds in two dimen-
sion. We show that the limit measure concentrates on one rectifiable set and has
square integrable curvature.

1. Introduction

The Modica-Mortola functional [12] has been used widely as an approx-
imation of hypersurface area of diffused interface, both in static and time-
dependent models and the functional often being coupled with other interacting
fields. After a suitable normalization it is defined for scalar-valued function
u:UcR" =R by

Es(u)zLj@—&-@ dx, (1.1)

where W : R — [0, 00) is a double-well potential with two equal minima at +1
and ¢ > 0 is a small parameter. In mathematical literature some of the first
rigorous results are given by Modica [11], Sternberg [18] and others who proved
that E, I'-converges to the area functional as ¢ — 0. Namely, consider a
sequence of minimizers {u,} of E,(-), ¢ — 0, among functions with [, u dx =m
fixed. Here —|U| < m < |U| and |U] is the n-dimensional volume of U. One
expects that u, is close to 1 for the most part of U and that it is advantageous
to have as little transition region as possible. It is also straightforward to see
that the transition region should have the thickness of order ¢ for E, to be of
constant order with respect to ¢&. The aforementioned works show that there
exist a converging subsequence and the limit u(, such that uy = +1 a.e. on U
and u¢ minimizes the hypersurface area of U N d{up = 1} among such functions
with equal integral value m. Such area-minimizing hypersurfaces are known to
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be smooth constant mean curvature hypersurfaces (CMC) if the dimension n of
domain U is less than 8 and CMC with possible small singularities for n > 8 [7,
17]. The functional E, approximates the hypersurface area in the sense that

m%Exm):zgﬁm4(Umaw0:19,

where

1
o= J,l VW(s)/2 ds

and #"! is the (n — 1)-dimensional Hausdorff measure. It is also proved [10]
that the limit of Lagrange multipliers

W (ue)

Ae = —edu, +

has the geometric meaning in that
ocH = },0,

where Ao = lim,o A, and H is the constant mean curvature of UNd{ug = 1}.
It is of interest to study the limiting behavior of E, without the energy-
minimizing properties in view of applications to various dynamical problems.
In [8, 19, 20] motivated by the Cahn-Hilliard equation [4] they gave a
geometric characterization of limit interfaces without minimizing property
but with W'? Sobolev norm control of

ﬂz—M%+W§M, (1.2)

where p >4, which corresponds to the chemical potential field in the frame-
work of van der Waals-Cahn-Hilliard theory of phase transitions. The control
of such quantity may be seen as an analogue of control of mean curvature field
in view of above result by Luckhaus and Modica [10] and also Schétzle [16].

Recently there have been much interest in studying limit interface when we
have a control of

1 2
ELUH%’ (1.3)

in dimensions n <3 as ¢ — 0 [3, 9, 14, 5]. If one makes the ansatz that the
internal layer profile is the usual hyperbolic tangent shape, it is reasonable to
relate this quantity to the L?> norm of the mean curvature of interface. In
general one expects as ¢ — 0 that the limit interface should have L’ mean
curvature and that appropriately defined limit of f;, should correspond to the
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mean curvature. For this problem Moser [14] showed for dimension n < 3
with some technical monotonicity assumption that the limit interface is a
rectifiable varifold [1] with L? mean curvature. Bellettini and Mugnai [3]
considered the problem with radial symmetry assumption and showed that the
quantity (1.3) converges to the L? norm of mean curvature for the limit
interface as ¢ — 0.

In this paper we extend the results of [3, 14] in that we make no
assumptions on the sequence of functions {u,} except for the uniform bounds
on the energy (1.1) and L? norm of the chemical potential in the form (1.3),
and conclude essentially the same results as in [3, 14] for the limit interface.
Unfortunately we can prove the result only for » =2. Here we state our main
theorem. A few minor assumptions are made on the function W (see Sect.
2.1).

THEOREM 1.1.  Suppose U < R? is a bounded domain. Suppose a sequence

of functions {u,};2, = W>2(U) satisfies for {&:};2, with lim;_,, & =0

liminf E,(4,) < o0,  liminf lj /o, Pdx < 0. (1.4)
U

I— 00 I— 00 &

Define a sequence of Radon measures on U by

) 2
=] o0 i,

i

for g € C.(U). By the weak star compactness of bounded measures there exist a

subsequence (denoted by the same indices) {u, };~, and the limit Radon measure

uon U.  Then,

(1) u, — 1 locally uniformly on U\supp p.

(ii) There exist a closed countably 1-rectifiable set X and A#' measurable
function 0 defined on X such that u= 04| 5

(iii) 0/(20) is A" a.e. integer-valued on X.

(iv) The generalized curvature [ of u satisfies

1
J |f|2d,usliminf—J | fu| 2.
U =0 & Ju

For the definition of rectifiable set and generalized (mean) curvature see [1,
17]. The function f can be obtained as follows. Define any vector-valued
limit measure of {f;Vu, dx};°, as n. Note that the L' norms are uniformly

bounded by
1 1/2 1/2
dx < (—J Iﬁ;,lde> (&'J |Vug,-|2dx)
SiJu U

J |fﬁ'ivulli
U
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and (1.4). Since # is absolutely continuous with respect to x4 we define f as the
Radon-Nikodym derivative j—z. We show f is indeed the generalized curvature
of x4 with property (iv).

Though it appears to us that it is not stated explicitly in the literature, any
1-dimensional integral varifold [1] with L? (p > 1) generalized curvature should
have support consisting of finite number of C!~1/7 curves possibly meeting at
isolated junction points. The proof should follow more or less from stationary
case studied by Allard and Almgren [2], where they proved that stationary
integral varifold has support which is a fininte number of lines with possible
junction points.

The main point of the paper is to establish a properly scaled monotonicity
formula for the energy density, which was also essential in [8, 19, 20]. There
we assumed the Sobolev W!” norm for some p >4 is bounded:

Hminf || £ [ 1) < 0.
1— 00

Though we do not have any control of derivatives of f; in this paper, we find
that we may still use many of the estimates in [8, 19, 20] if we regularize u,
appropriately. More specifically, we consider the convolution of u,, u, * 1,
where V1.5 is the usual mollifier scaled by &'*#, for a carefully chosen f > 0.
The function still satisfies a similar equation while nonlinear term produces
error terms. The regularization gives some control of derivatives of f, * 1.5,
to which we apply estimates for the so-called discrepancy measure

eVu > W(u,)
Eo(ue) I R (L5)
obtained in [19].

After the main part of the paper is completed we were informed that
Roger and Schétzle [15] obtained the similar results for n < 3 using different
estimates for the discrepancy measure. Since our method is different from
theirs we believe that it should have an independent interest.

2. Assumptions and preliminaries

In the following we set up the assumptions, recall various definitions and
the rectifiablity theorem due to Moser [13] which we use later in Section 4.

2.1. Assumptions

We assume that the double-well potential W : R — [0, ) is a C* function
satisfying the following assumptions:
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(i) w()=w(-1)=0,
(ii) there exists y € (—1,1) such that W’ <0 on (y,1) and W' >0 on (—1,y),
(iif) there exist « € (0,1) and x > 0 such that W"(s) > x for all |s| > o.
Under the assumption (1.4) we may assume that there exist constants Ey and a;
such that
(Al) Eei(uef) < E,
(A2) L[, |fldy<a
for all i=1,2,....

By defining #,(x) = u,,(&x) and f;(x) = f.(&ix), (1.2), (A.1) and (A.2) are
equivalent to

eif, = — A, + W' (i) (2.1)

and .
A1) [y, W, )dx < &' E,
(A2) [y, 1Sl dx <&l
Throughout this paper, different positive constants will be denoted by the same
letter c. 'We write ¢(s) when it is helpful to write out the dependence of ¢ on s.

2.2. The generalized L’ curvature functional

We find that it is convenient to work in the framework set out by Moser
[14]. In the following we only need results for n = 2.

Let # be the set of all symmetric, positive semidefinite real (n x n)-
matrices. We write .#(U) for the set of all pairs M = (u,v) such that
(1) u is a Radon measure on U,
(2) v is a Radon measure on U with values in % and
(3) there exists a function @ € L*(u, #) such that v = pu|4.

In the following we set M, = (u,,v;) with

2 A
_ 8,‘|V1/l£i| W(us[) af _ 5148’. Uy,
/@--( Il LR ] et [ (2.2)
and
Outy; Oty
& —t
oGS _yw, g
Q)Si - r‘Ti‘VV.cl‘z W (u,,) eL (ﬂ817f) (23)
2 &

so that v, = u,|s . Continuing with general framework, for M = (u,v)e
A(U) define the linear functional

OM(p) = JU (div ¢ du — gi 7 dv“ﬂ> (2.4)
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on C!(U;R"). The usual summation convention is assumed. The functional
O0M is an analogue of the usual first variation [1] and it was introduced by
Moser [13]. Using (1.2) and integration by parts, one verifies that

oM, () = *J ¢1H£ dV;ﬁ» (2.5)
U
where
Jo
Hg = Ouy; * (26)
i&x/‘

Now define the generalized L* curvature functional % as the functional on
A (U) by

G(M) = sup{ M) |pe CLUURY, | 0! 7 < 1}. 27)

%(M) corresponds to the usual L?> norm square of mean curvature when
M = (u,v) is a pair of smooth objects, namely, u is an (n— 1)-Hausdorff
measure restricted to a smooth (n — 1)-dimensional submanifold X and @(x) =
p(x) ® p(x), where p(x) is the unit normal to the tangent space 7,2 at x. By
(2.5)

OM,($)* < J HeHY dv;;ﬂj PP dv?
U U
so that (2.6), (2.7) and (A.2) show

€ (M) < J H!H! dv} = sj |fu|2dx < a. (2.8)
U

U i
Write
CU)={Meu(U)|€M)< w0}
Important subclass of €(U) we need is
€ (U) ={M e €(U) |trace v < u},
which has the following rectifiability property:
ProposITION 2.1 ([14, Propostion 2.2]). If M = (u,v) € € (U), then the set
2={xeU: 0(x)>0}

is l-rectifiable. ~ Moreover,
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1
n=0x"x.

If @ is such that v = |y, then O(x) = projiz(x) for p-almost every x € X.

Here O(x) is the l-dimensional density of u:

o) = i

bl

where B.(x) = {yeR?% |y — x| <r}.

The main task in this paper is to show that trace v < u holds for the limit
measure pair (u,v) of {M,}~, and 6(x) > ¢ > 0 uniformly on supp x, which
follows once we establish the monotonicity formula in Section 3.

3. Monotonicity formula

The main task of this section is to prove Theorem 3.10 which gives the
uniform lower bound of the scaled energy. It is the crucial ingredient for the
application of the rectifiability theorem, Proposition 2.1. In the following we
drop the index i for simplicity.

Lemma 3.1 ([14, Lemma 2.2]). Define pu,, v, and &, (u.) as in (2.2) and
(1.5).  For any 0 > 0 and for Bs(xo) < B.(x9) < U,

(14+0) (B (xo)) — (1-0) - (By(xo)

2 "1
> — ——l—l)ar—J—J E(ug)dxdp. 3.1
(5 : /)2 B,(x0) ( ) g ( )

s L

ProOF. We may assume xp =0 by a suitable translation. Write B, =
B,(0). By (2.4) and (2.5), for any ¢ e C!(U;R?),

J(div ¢ du, — giﬁ dv;ﬁ) + J¢“Hf dv?¥ = 0. (3.2)

Suppose he CX(R) satisfies A(s) =0 for se[l,00). By substituting ¢(x) =
xh(g) into (3.2), we obtain

x%xP

plx|

By the definitions of y, and v* we obtain

2Jh du, — Jh trace dv, +})J x|/ du, — J( W — hx“Hf) v =0. (3.3)
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ZJh du, — Jh trace dv,

2
= [han+ p(@+@>d}c_ [ v

= Jh dy, — Jéx(ug)h dx. (3.4)
Substituting (3.4) into (3.3) and multiplying both sides by —#, we obtain
4 <1Jh du, + 1Jhx“ﬁrf dvgﬁ>
dp \p p
1 J( ,xoxP , ) |
= —— | ==+ |x|Wx*H] |dv? ——thg U, )dx. 3.5
e | CRa E EL A (35)

Integrating over (s,r), we obtain

1 1 1 1
;Jh du, + ;Jhx“Hf vt — ;Jh du, — EJhx“Hf dv??

"1 d x*xF "1
— ~—hd +x*HP |dv? —J —Jh@. u;)dxdp. 3.6
J(Lpdp p)<|x|2 >  pr ) Ied)dp - 3.0)

Let {i};~, = C*(R) be a sequence of approximate functions for the char-
acteristic function of (—oo,1) and use /= /y in (3.6). Since [[} £/ (ij) dp
1

converges to for |x| € [s,7) and otherwise 0, we obtain

1

1 1 1
;ﬂé(Br) +;J x“HF/j d\}gﬁ _?iua(BJ) - —J x“H{’\H dV;X/))
B, E

N

S

x*xP  x*HP "1
— b £ )dv —J —J &, (ug)dxdp. 3.7
J.B,\BS < |x|? |x| ) sP? ), () dxdp 3.7

By @y, =v# and (2.8), we obtain for any ¢ > 0

1/2
£1<J x“xﬁdwﬁd,ua) <J
P \Js, B,
1/2
(J 8|x|2|Vu82dx> all/2
B,

w(8) +=F (3.8)

1
—J x*HF dv?P
B

1/2
H*HF dv??
PJB,

IA

DI D=

<
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and
el 4P
J X v < J %dvgurj HAH v (39)
B\B |X| ’ B\B, |X| B,\B,
Using (3.8) and (3.9) in (3.7), we proved (3.1). O

Later we use the following L* estimates of u, away from 1.

LEMMA 3.2.  For each open set V == U, there exist constants c¢| depending
only on W, dist(oU, V), k, Ey and ay such that

sup [u,| < 1+ ¢/ (3.10)
v

for ¢ < 1.

PrOOF. Let xe V' be arbitrary and set r=1 dist(0U,x). Write B, =
B,(x). First we show

||(up — l)+||L2(B,/2) < Cg3/27 (311)

where (u; — 1), = max{(u; — 1),0}. Let ¢e C”(B,) be a smooth function
with ¢ =1 on B,,. Multiplying (1.2) by (u, — 1) +¢2 and by integration by
parts we obtain

W' (u,)

J e|Vu,|*9* + 2e(u, — 1), ¢Vu, -V + — (4, — 1)+(/ﬁ2 dx
{u,>1}

- L >]}f;(ug —1), 4 dx. (3.12)

By applying Cauchy’s inequality to (3.12), for any ¢ >0

W (ue)

J 8|Vu6\2¢2 +——=(u, — 1)4_¢2 dx
{u;>1} e

14
< | WP 2sl - 1), WP
{u,>1}

€ 20 (_5 _ 2,2
tag e ol —1).]79" dx. (3.13)
By the assumption on W,

W) = x(u, — 1), (3.14)

on {u, > 1} and
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J 2¢](u, — 1), 7|Vl dx < c(K)(sup|V¢|2)eJ W (u;)dx
{u,>1} B,N{u,>1}
< c(r,r)Epe?. (3.15)
By (3.13-15) and (A.2),

EJ ¢ |\Vuy|*dx + <——é> J ¢ [(u, — 1)+]2dx < {CE() +ﬂ}82.
2 usny (w>1} 45

Since J is arbitrary, we choose d =%5. Thus we have
J Gty — 1), 1%dx < c(ar, x, Eo, P)E. (3.16)
B:/Z

With a suitable choice of constant, (3.16) shows (3.11). Next we consider
(x) —u(sx) and f(x) = f(ex) which satisfy (2.1). Set A(s) =s, and let
{h}2, = C3(R) be a sequence of approximate functions for / with /iy (s) =
0 for s € (—o0,0] and hy >0, i > 0. Consider the functions / o (i,(x) — 1).
Using (2.1),

Aly o (it, — 1) = h}l o (@i — 1)|Vit,|* + h}, o (&t — 1)Aii, > h}, o (i@, — 1) A

> Iy o (i, — V(W' (@) — ef,) = —hj o (@ — 1)ef,. (3.17)

By the standard elliptic estimate (cf. [6, Theorem 8.17]) applied to (3.17), we
obtain for any B < U/e

sup .o (= 1) < (|l © (s = Dll 2, + Vo o (e — Defill os))-
1/2

By taking the limit k¥ — oo we obtain

iuP(ﬁs =1, <c(fl(@ - 1)+||L2(Bl) + Hg.f:;HLZ(B]))'
12

VYe have ”(aﬂ*l)Jr”LZ(B])SCElﬂ from (3.11) and Hgf;”LZ(B <a1/2 1/2 by
(A.2). Thus

sup(i, — 1), < cel/?.

By
With a suitable choice of ¢; we have
sup(u, — 1), < c1e'/%.
1%

Repeating the same argument, we obtain supy|(u + 1)_| < ce'/?, which proves

(3.10). O
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REMARK 3.3. In the following we often use the fact that the scaled function
i, has uniform C%7 estimate for any 0 < y < 1. This follows from (2.1) and the
standard W?>? estimate for B, = V /e

HﬂEHWZ«Z(Br) = C(”)(||L~’8HL2(B,.) -+ W/(a8)||L2(B,.) + ||8fe||L2(B,.))
as well as the Sobolev inequality (recalling n=2)
ttel| cor gy < (ryP)lttellazs,)-
REMARK 3.4. In the remaining part of the paper we fix constants as
follows.  First fix
1
0<ﬂ2<§, 0<y<l.

Choose f; >0 to be small so that

1
0<§—ﬁ2_ﬁ1, 0 < B, — 28

hold.  Fix f, so that
0<fy<h
and define

1
z:max{ﬂl +ﬂ2+§a1_yﬁ2+2ﬁlal —ﬁo}-

We note that 0 <1 <1 by above choice. Finally fix f; so that
1< 3 < 1.

We next quote the following from [19], which holds for W with the
properties stated in Sec. 2.1.

Lemma 3.5 ([19, Lemma 3.5]). There exist constants ¢ >0 and ¢ >0
depending only on B,, B, c3 and W with the following properties. Suppose
(A) B.e C¥B,s), ge CY(B, ) and ¢ <& satisfy

—AB,+ W' (B,) = &g

on B, and -r
(B) supy , 1 < 1+ ok, supy , (55— W) <o
Then

Vo,|* N _
m>C;'—Wmﬂsmammmwam+%»

B(l/z)fﬁl
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The above estimate is derived via the Alexandroff-Bakelman-Pucci estimate
and it is essential that W is a double-well potential.

Let us consider the estimate of the discrepancy measure & (u,) =
s\VuC\z W (uy)
T ¢
apply Lemma 3.5 to u, directly. Thus we consider the regularization of u,.
Let € C¥(R?) be a positive radial symmetric function with supp ¢ = B;(0)

and [ y(x)dx=1. For &>0, set Y, (x) %w( x) where f, is

= 204k, b
chosen in Remark 3.4. Next proposition follows from applying Lemma 3.5 to

Uy * lﬁsw/fz.

Since we have no control of the derivative of f,, we cannnot

PrOPOSITION 3.6. Define
Vg = U % Y,11p,. (3.18)

For V cc U there exist a constant 0 < & < ¢ and c4 depending only on W,
dist(V,0U), Ey and a, satisfying that

sup &(ve) < cae™ (3.19)
%

e e
if €<é&. Here & (v,) = (SV‘; _ Wi’-:,)).

ProOOF. By scaling #.(x) = v.(ex) and @,(x) = u.(ex), (3.18) is
Vg = U * Y, p, -
Since #, satisfies (2.1), o, satisfies
— A, + W'(5,) = &g (3.20)
with

* l//{:ﬁz.

~ w'(z,) W' (a
A T

In the following we apply Lemma 3.5 thus we need to estimate W !2-norm of
g on B,y = L. First we consider the estimate of [|g|| 28, BY inserting
W (i) o

the term +—— we obtain

”gHLZ(B‘,/;]) < I fe* dhom ||L2(B.,ﬁl
*' ‘ L5 p)

R S

&

L2(B_p)

&

= (11)+(111)+(1111). (321)
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By (A.2),

1/2

(1) < 1l s,y W lrgs,) < e

By C*7 estimate for i, we have

sup |5, — it;| < ce”2.
By

Thus with this sup bound

12
1 ,
([Il) < E {J (Sup|W”D2|l~)s . ﬁxzdx} < ngﬂzfﬁlfl'

Similarly with

|W’(1}n) — W’(LNIC) w Y| < 681’/5'2’

12
1
<ml>sg{j |W'<a3>—W'(ag>wsﬂz|2dx} < e,
By,

&

Next, we estimate [Vgl|;2(5 ) By inserting the terms iV@,
~ w'(,) W'(a,)
IVall s ) < ||V(J‘2*%ffz)||m(3,gl)+HV( L.
¢ ¢ L(B_p,)

e,

&

L2(B )

&

= (12) + (112) + (1112)

By (A.2),
(h) < ce P12,

For (II,) we have
V(W' (B,) — W'(it,))| < sup|W"| |V, — Vits| + c(sup|W"|)e"2|Vit,)|.

Since
1
Vits(x — 7) — Vii()] < j V22,(x — 19)] |ylds,

we estimate the L>-norm of the first term of (3.27) as

467

(3.22)

(3.23)

(3.24)

(3.25)

(3.26)

(3.27)
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J V5, — Vit 2dx < jB L Vi (x — ) — Vi () P ()dlyedx
—B1 B

By

& &

1
< J J l//,g/fz(y)|y|2J V2, (x — 1y)|*drdydx
Bg’/;l Bs/fz 0

<& J V24, *dx. (3.28)
Bleiﬂl

By the W?? estimate of &, in Remark 3.3 we have
J Vit,)* + V2| 2dx < ce™ . (3.29)
BZeiﬂ]

Substituting (3.29) into (3.28), we obtain

J V5, — Vit,|*dx < ce?=%, (3.30)
B’/‘l

B

As the L?>-norm of the second term of (3.27) can be estimated by (3.29), we
obtain

(][2) < C(;J-ﬂz*ﬁl*l +£Vﬁzfﬁ1*1) < Cg}’ﬁz*ﬂ*l. (331)
For (IIL,),
V(W (i1s(x))) = V(W (i1 (x)) * )|

< j VW (@) — VOV (ol — )]s (3)dy
Y3

< 2]3 (sup| W)V (x) — Vito(x — )2 ()dly
yi)

eP2

+ 2J (¢ sup| W”’|)282ﬁ27|Vﬁs(x)|2lp€/zz (y)dy. (3.32)
By,

&

In the same way as we obtained (3.31) we have from (3.32)

(1112>gcg—l{JB j Vit,(x) = Vit,(x — ) Wrn ()dlyelx
P B2

1/2
+ J 82ﬂ2V|Vﬁg(x)|2dx}
B,/jl

£

< C(Sﬂziﬁlil + 81’[”2*/}1*1) < CS"/’/}z*ﬂI*l_ (333)
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Estimates (3.21), (3.22), (3.23), (3.24), (3.25), (3.26), (3.31), (3.33) show

gl ) < c(e P12 g grhhimly, (3.34)
Before we apply Lemma 3.5 we need to have a uniform estimate for ||o;||q:.
By the choice of f;, f, and y we have

1
_ﬂz +§>0 and yﬁz_ﬂl >0

so in particular we have [leg|| 125 , ) <c. Since 5, satisfies (3.20), by W*?*-

e Pl . . . .
estimate of the elliptic PDE and Sobolev’s inequality, we obtain a uniform C!
estimate for v, and thus we have e-independent ¢3 such that

<2
sup (Vggl - W(5£)> <.

Bp
Now we are ready to use Lemma 3.5 to conclude with (3.34) that

-2
sup (@ _ W(58)> < c(gl/zfﬁlfﬂz + 8}'/32*2& + eﬁo).
Byt

12z

By scaling,

2
up (8|va| _ M) < (e VP By 1)
V

2 &

We defined ¢ so that the right-hand side is bounded by ce™' thus we proved
(3.19) with an appropriate choice of constant cy. ]

PropoSITION 3.7. There exist constants ¢s > 0 and & > 0 depending only
on W, dist(V,0U), Ey and a, such that for e <& and B, <V

J {Se(ue)} pdx < J {&(ve)}dx + CSSﬂZ/Z{r + u,(Br) }-
B B

Proor. Since |Vu,| < |Vu, —Vuv| + |Vv,|, by considering the square of
both sides and Cauchy’s inequality,

Vi )? < Vo> + |V — Vug|* + 2|V, — Vo | [V,
< Vo> + (1 + & 2)|Vu, — Vo |* + e Vo, |*. (3.35)
Similarly

Vo, |2 < [Vu|* + (1 4 & 752) |V, — V| + P2V, (3.36)

By substituting (3.36) to (3.35) we obtain
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WVue|* < [Vo|* + ce P |Vu, — V> + ceP |V, |*. (3.37)
Using (3.37) we obtain

(&)}, < (&)}, +58 W — Vo)

2
+ [W (o) = W(w)| + ceP <8|Vu6 + W(ug)) (3.38)
& 2 &
Integrating (3.38) on B, for ¢ <r,
J {&,(u)}, dx < J {és(v‘q)}+dx+ce’ﬁzj e|Vu, — Vv, dx
B, B, B,
+J |W(v:) — W (u)| dx
B, &
2
& W €
+caﬂ2J (MJrﬂ)dx. (3.39)
B, 2 €
We estimate each term of (3.39). As we proved in (3.28),
ce™P J &|Vu, — V| 2dx < ceth J V2, | dx. (3.40)
B B

- el B2

We estimate L?>-norm of Vu, in B, ,i.4,. Write 7 =r+¢!*%2. By scaling B;
=2 ’ =2
to B; by X = x/F and applying W?? estimate to Au, = r”;# — ré—f”, we obtain

after scaling back

1 1 1 .
J V2, 2dx < ~—J |u8|2dx+—J (W'(ug))zdx—l——J 2dx. (341)
B; g, & s, & s,
For the second term of (3.41), we split the integral to B, and B;\B,. Since
\W'(u,)|* < ¢W(u;) and |B:\B,| < ce'*Pr, we obtain

W (u,
J \W' (u,)2dx < EJ Wiu) dx + cJ dx < e(u,(B,) +re?).  (3.42)
BF Br € BF\B"

By Lemma 3.2 for the first term and by (3.42) and (A.2), (3.41) is estimated as

2, 2 ‘. ° A
J IV-u,|“dx < 2t 5 (p.(By) +1eP?) + - (3.43)

B;

By (3.40) and (3.43),
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r2

ce P J e|Vu, — V,|*dx < c{ +re?h Pty Eﬁzﬂg(Br')}
B,

< c{reP + P (B} (3.44)
since r >e&. For the estimate of the third term of (3.39),

sup| W"|
| W (ve) — W(ue)| < |ve — u |W/(”é)| JFTWH - “8|2

< ce P2, — u,|* + e\ W (uy)). (3.45)

Since |W'(u,)|* < W (uy),

J | W (0:) — W (us)| dx < cg—l—[)’z/ZJ
B, &

w €
‘U;: - M(;|2dx+ Cgﬁz/2J M dx

B, B ¢

< ca’l’ﬁZ/ZJ |0y — us|*dx + ce®?p,(B,). (3.46)
B,
For the right-hand side of (3.46)

J |u, — v, 2dx < J \us—v8|2dx+J |u, — v,|*dx
B, Br‘\B’_7€l+/)‘2 By781+/f2

< C<r81+ﬁz +82+2ﬁ2J |Vu;|2dx)
B,

< c(re"™ 4 "y, (B)). (3.47)

By substituting (3.47) to (3.46) we obtain

W) — W
JB L‘g(“” dx < re? 1 ey (B,) + ey (B)

< reh? 4 ceh 2y (B,). (3.48)
The claim of the proposition follows from (3.39), (3.44), (3.48). O

Next we estimate the lower bound of the energy density ratio for ‘small’
scale, namely, for ¢ <r < f1¢' with small #; independent of .

THEOREM 3.8. There exist constants c¢ > 0, t; > 0 and e3 > 0 such that if
e<r<te, Bixo) <V, |u(xo)| <o and 0 < & < &3, then

6 < (B, (x0).
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Proor. We may assume xo =0. For #(x) = u,(ex),

1 L[ eV W(u,) Vi, |2 N
—u,(B,) = - | T —dx = | 4 W(i,)dx.
D SL 5t dx Ll 5+ Wii:)dx

Since |i,(0)| < o and @, € C%7 there exists a constant ¢; > 0 satisfying W (i) >
¢7 on B, and thus

1
E,u,g(Bg) > J W (ii,)dx > ¢1.4%(B.,) = cs. (3.49)
B‘7

Let #; > 0 be a constant to be determined shortly. We claim that wx (B,)/r >
cg/2 for ¢ <r <. To derive a contradiction assume that there exists a
constant r; with ¢ < r; < 11¢' satisfying

1 (&

— 1, (B),) ==.
rllul,( 1) 2

By continuity of 1u,(B,) with respect to r, there exists ro with & <rg<r
satisfying ;- u1,(By,) = ¢s and § < 1 4,(B;) < ¢g for ro <r <r. By Lemma 3.1,
Proposition 3.6 and 3.7, for ¢ < s <r < 1€,

(1+0)1 1 (B) — (1 —0) L (B)

2 r I o fa/2 1
> — (5—&— 1>a1r — nJ ey dp — J Cssp {1 —i—/—)ﬂs(B,,)}dp. (3.50)

s N

Using (3.50) with s =ryp and r=r; as well as r} < 1¢' we obtain
Ccg 2 f By/2 118[
?(35— )= - 5+ 1 Jait1e' — meaty — ese”~(1 + ¢g) log ) (3.51)

Set 6 = ¢ so the left-hand side of (3.51) is equal to —%. Choose 7; small so the
8

right-hand side of (3.51) is greater than — 7 for sufficiently small e. This leads
to a contradiction. We set ¢ = cg/2. O

Next we estimate the discrepancy &.(v.) for ‘large’ r, namely, for
t1e' <r. The proof is a suitable modification of [19, Prop. 3.5].

ProposITION 3.9. Set f, =min{2 — 25,296,,p5 —1} > 0. There exist
constants ¢ >0 and e4 >0 such that, if B.<V and 0 <e¢ <ey, then for
nhe' <r<l,

J {Eo(va)}pdx < eo(re? ™ e+ eluy(By)). (3.52)
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PrOOF. We estimate the integral on three domains,
of ={xeB\B,_}, B ={xeB, u |dist({|u,| <a},x) < b},
% ={xeB, u |dist({|u,] <a},x) =P}
Case 1. (estimate on .o7)
By Proposition 3.6, and £*(.#) < crefs,
L/{és(vg)hdx < e L (A) < ereP (3.53)

Case 2. (estimate on %)

We first estimate #?(#). We apply Vitali’s covering lemma to the family
of balls {B,s(xX)} ey <uyny (Which covers %), so that {B,y (x,-)}fil is a
pairwise disjoint subset of the family and so that 4 <= U,]il Bs.s, (x;). Then
we have

L2(B) < c(56")2N = cNes, (3.54)

Since 1 < 5 (Remark 3.4), ¢/s < f¢' for all sufficiently small e. Thus by
Theorem 3.8

666ﬂ3 < ﬂs(B8ﬁ3 (xi))

holds for each i =1,...,N. Since they are pairwise disjoint, summing over i
we have

NegePs < u,(B)) (3.55)
and (3.54) and (3.55) show that
L B) < ce®u,(B,). (3.56)

Finally, with Proposition 3.6 and (3.56)
J (&)} dx < cas™ LB < Py (B,). (3.57)

Case 3. (estimate on %)
We define a Lipschitz function p as follows;

p(x) = min{1,2¢ % dist({|x| > r — &% /2} U {|us| < a},x)}.

p is 0 on the set {|x| >r—e&f/2}U{|u| <a}, 1 on ¥ and |Vp| < 2eFs.

Using this p, we estimate %SIVUI;|2. By (3.18) and (3.20), v, (without
scaling) satisfies —edv, + Wa(“"') =g where g = f; x Y1, + Wiee) W) W10, .

€ &




474 Yuko NAGASE and Yoshihiro TONEGAWA

Differentiating this equation with respect to the k-th variable, multiplying it by
Div,p* and integrating on B,, we have

W”(Ua)
&

J(EADkUS)D/(ngZ dx = J(

By integrating by parts, the left-hand side of (3.58) is

Dyv, — Dkg> Dyvgp? dx. (3.58)

J(eADkv,;)Dkv,,pz dx = faj |V21J,,\2p2 dx — ZSJDikv(,Dkvngip dx. (3.59)

Since W"” >« on {|u,| > o} and § > sup|W"|e” for sufficiently small ¢ by
Cauchy’s inequality, the right-hand side of (3.58) is

WI/ R
J( g(v,) Dyv, — Dkg> Dyvgp? dx

W”(ug) | W (ve) — W (ue)

> Vo2 — . | Vu2? = 174l Werlo® d
Vu,|? o Vo]
> [Vel gv£| pz—supIW’”Is//fZ—| 1:' P’ dx—JlVgl Voelp® dx
2
y Jfﬂﬁﬁtpzdw-J S vgPp? + e ) . (3.60)
- ¢ K 4¢

y (3.58), (3.59) and (3.60), we obtain

Vu,
JK| U»| 2d +2 J‘V20F|2p dx
4e

SZSJ|va|2|Vp|2dx+£J|Vg|2p2 dx. (3.61)

We estimate the L?>-norm of Vg in a similar manner as in the proof of
Proposition 3.6 and 3.7. Now the scale is different from Proposition 3.6 and
3.7. By inserting the term +VW “) like (3.25),

l,

P32

Wwwsj V(s Uy e

B;'—sﬁ3 /2

|
Br—s/j3 /2
|

= (I3) + (II3) + (11L3). (3.62)

2
dx

V(W’(ug) B ng(””) % lﬁ1+g/f2)

Br—sﬁ3 /2
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By (A.2) like (3.26),
(1) < cg P71, (3.63)
For (II;) we have

V(W' (v,) — W'(u,))| < sup| W"| Vv, — Vuy| + c(sup| W" )™ |Vu,|.  (3.64)

By the similar calculation to (3.28),

l,

Write 7 =r — %+ &'/, We estimate fB;|V2ug|2dx by the same way as the
proof of Proposition 3.7. By scaling By to By by X =% and apply the w22

P ) P, . .
#—ré—:f", we obtain after scaling back,

Vo, — Vu,|*dx < szﬁz“J V2u,|dx. (3.65)

B

r—eP3 /2 r—eP3 /2+el+ﬁ2

estimate to Adu, =

J IV 2u,|dx < %J |ug|2dx+l4J (W’(u;,))2dx+lzj frdx.  (3.66)
B; r s & & )p.

Since |W'(u;)|> < ¢W(u;) and B; = B,,

1 L2 L[ W (u) ¢
1 ey < — [ ) g € (B, :
. LF|W ()Pl < Lf ) < S (8) (3.67)

Since % [, |u,|*dx can be bounded by ce72, by (3.66), (3.67) and (A.2), we
obtain

| v < clan) e o) (3.68)

By (3.65) and (3.68),

Vi, — Vu,|*dx < c(e? + &7y (B,)). (3.69)

Br—e/f3 /2

As the L? norm of the second term of (3.64) can be estimated by u,(B,), we
obtain

(I5) =
B

dx < c(72 4 Y273, (B)).  (3.70)

a3 /2

For (II;),
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VW (u(x))) = V(W (ue(x)) 5 W 0m) |

< j V(W @(x))) — VO tx — 3)) P (1)
<2 j (sup| " )2Vt (x) — Vit — )" (3)ely

+ ZJ (e Sup| ") 27|10y ()] 2o, (1) dy. (3.71)
BlA/;z

In the same way as we obtained (3.69) we have
(II1) < c(e?72 + 273, (B,) + 2773, (B,))
< (e 4 ¥P3y (B)). (3.72)
Estimates (3.62), (3.63), (3.70) and (3.72) show

J VglPdx < (77 4+ &2 4 273, (B)). (3.73)

B .5 2

With |Vp| <275, (3.61) and (3.73), we obtain

Vo2 !
J & 4U€|— dx < ce' = J Vo, dx + < (672 4 21 4 e2B72y (B,)).
((/' K

&
Br'—sﬂB /2

8|VUr|

dx < [, L v < 1,(B,), multiplying above by 267!, we

2
JSWU&\ J
¢ 2

(67 P, (B) + ey (B,) + e 4 2. (3.74)

Since [,
have

)
r—el'3 )2

I/\

R

I/\

Combining (3.53), (3.57) and (3.74), and recalling the definition of §, and f,,
we obtain the desired estimate. ]

Next, we obtain the lower bound of the energy density ratio for
het <r<n.

THEOREM 3.10. There exist constants cyp > 0, to > 0 and &5 > 0 such that if
B.(x0) = V, |u.(x0)| < o and & < ¢s, then for t1e' <r < 1y,

1
o < ;ﬂe(Br(xo))-
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Proor. By Theorem 3.8, ¢ < 14,(B,) with r= 1. The proof of the
claim is similar to that of Theorem 3.8. Let #, >0 be a constant to be
determined shortly. We claim that u,(B,)/r >c¢/2 for ne' <r<t,. To
derive a contradiction assume that there exists a constant r; with f1e' <r; <
t, satisfying

By continuity of 1u,(B,) with respect to r, there exists r» with 118’ <r, < r3
satisfying ;- 1,(B,,) = ¢ and 3 < 1p,(B;) < ¢ for r <r <r3. By Lemma 3.1,
Proposition 3.7 and 3.9, for f1e' <s<r <1,

(14+0) 1 (B) — (1-0) L (B)

2 '
= - ((_S + 1) arr — J pHeolpeh™ + e+ eluy(B,))
N

T ese(p + 1, (B,)) Yp. (3.75)

Using (3.75) with s =1, and r=r; as well as r; <, we obtain

C 2 _ 73 el
ZB0-1)>—-[=+1 — By =
> (30-1) > (54— >a112 C9{8 0g<r2>+ 11

+ eeeP log (’3> } ~ ese log <r3) (1+c).  (3.76)

r r

Set 6 = ¢ so the left-hand side of (3.76) is equal to —%. Choose 7, small so the
right-hand side of (3.76) is greater than — for sufficiently small &. This leads
to a contradiction. We set c19 = ¢6/2. O

Similarly, we can also show the upper bound of the energy density ratio.

ProposITION 3.11.  There exist constants cy; > 0 and ¢ > 0 such that if
B,(x0) < V, |ux(x0)| < o and & < &, then for e <r < t,

1
~Ha(Br(x0)) < cur.

ProOF. By (A.l), we obtain % U (By,) < f—; where ¢, is the same constant
as Theorem 3.10. By using Proposition 3.7 and 3.9 for discrepancy term in
(3.1), and by the similar proof to Theorem 3.8 and 3.10, we obtain the upper

bound. Ol
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Similarly, as the consequence of Proposition 3.7 and 3.9, by Proposition
3.11, we can establish the following monotonicity estimates.

THEOREM 3.12.  For By(xy) = B/(xp) =V, e<s<r <ty

(14+0) (B (x0)) — (1 = 0) L (Bo(xo)

2 "1 W) elVu,|?
>—(=+1 ar—l—J—J — dxdp — K(¢). 3.77
(5 ) o Bﬂ(ﬂ)( N R RGN

Here, K(¢) satisfies lim,_o K(¢) = 0.

4. Rectifiability of limit interface

In this section we show that the support of the limit measure u is a
l-rectifiable set and that it has generalized L> curvature expressed as the
Radon-Nikodym derivative as we described after Theorem 1.1. Define the
(signed) vector-valued measure v# on U

v/(4) = lim J(g 2“2 Z”j;) ¢ dx

for ¢ € C.(U).

THEOREM 4.1. There exist constants 0 < Dy < Dy < oo and t, > 0 which
depend only on Ey, ay, dist(V,0U) and W such that

Dyr < u(By(x)) < Dyr
Jor all 0 <r <t and x € supp u with B,(x) = V.

Proor. The existence of D, follows immediately from Proposition 3.11.
We show the existence of Dy. Let xop € supp u. We claim that on passing to a
subsequence, there exist {x;},2; = V such that u,(x;) € [-a,«] and x; — x( as
i— o0. We show the claim by contradiction. Suppose there exists s> 0
satisfying Bs(xo) = V and By(xo) N{|u,| <o} = & for all sufficiently large i.
Suppose u; > o without loss of generality. Let ¢ e C!(Bs(xo)) be a function
satisfying ¢ =1 on By(xo). Multiplying ¢*(u, — 1) to (1.2) and using
Cauchy’s inequality and (A.2), we obtain

W' (u,,
J M(u&. — 1) + c&i|Vu,, |*dx
o/2(%0)

&

1/2
< all/2 (Jsi(ﬁz(ugi - 1)2dx> + ce Sup|V¢|2J (1, — 1)%dx. 4.1)

Bs(x0)
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Since (u—1)W'(u) > cW(u) for 2>u>o for some c¢>0, (4.1) shows
lim; o, i, (Byj2(x0)) =0, which is a contradiction to xo € supp 4. Thus for
r <ty Theorem 3.10 shows

1 o1 1
JH(By(x0)) = lim —u, (Bary3(x0)) = lim —p, (Bya(xi) = cro/2.

We set Dy = ¢19/2. O
From the proof of Theorem 4.1, next proposition follows.

ProrosiTION 4.2.  u,, — +1 or u,, — —1 uniformly on each compact subset
of U\supp u and supp|0{up =1}|| = supp u, where uo=1lim; ., u, and
0{uo = 1}|| is a measure on U defined by |0{ug=1}||(U) = [, |Duol.
(For the details of the measure [, |Duol|, see [7].)

Proor. For xy e U\supp ¢ take a neighborhood B,(xy) of x satisfying
supp #N B.(x9) = . We first claim that |u,| > o for all large i. For a
contradiction assume that there exists {x;};2, = B,(xo) satisfying u,(x;) €
[—a, o). Since {x;};2, is bounded, there contains a subsequence converging to
a point y € B,(xp). By the similar argument to the proof of Theorem 4.1, for

all sufficiently small s > 0 satisfying B(y) Nsupp u = &,

1 o1 o1 c
—u(By(y)) = lim ;ﬂs[(stﬂ(J’)) > lim —u, (By(xi) > %-

N i— 0 i—o §

Thus y esupp ¢ and this leads to contradiction. If necessary by taking a
subsequence, we may assume u,, > o. Since W' (u,,) is positive for u, > a, we
may repeat the same argument for the proof of Lemma 3.2 and show the
estimate suplu, — 1| < ce,»l/ 2. Thus u,, uniformly converges to +1 or —1.
To show the claim about the support, assume for a contradiction that
there exists x € supp||d{uo = 1}|| satisfying x ¢ supp 4. Then by the definition
of BV function, there exists a neighborhood B.(x) satisfying B,(x) Nsupp u =
&, B.(x)N{ug =1} # & and B,(x)N{ug = —1} # . This contradicts to the
uniform convergence of u,,. O

The proof of next proposition is similar to [19, Proposition 4.3] but we
include it for the convenience of the reader.

PROPOSITION 4.3.

lim JV 1, ()] dx = 0. (4.2)

i— w0
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Proor. Let || be a Radon measure defined as the limit of |&, (). We
need to prove that || =0. First we show

liminf |¢|(B,(x)) = 0 (4.3)

for all x esupp|é| by contradiction. Thus we assume that there exist xj €
supp|é], R>0 and b >0 with |&|(By(xg)) =br for 0 <r< R. Fix ¢ (e.g.
0=1/2) and fix r; = min{R, ,} and

ry =71 exp [_%{<§+ 1>a1r1 +4D2H- (4:4)

By Theorem 4.1 and the definition of |£|, we may choose large enough i such
that t1¢/ <r, and

1 . 1% W(u, 1 b
_J 81|Vu£’ + (u‘gl) dx S 2D2; _J |é£i(uﬂ'i)| dx Z Py
o 2 p "l ?

for all r, <7 <r. By Propositon 3.7 and 3.9 we have for r, <7<nr

lj {és;(“ﬁi)}+dx = 0(1)
By (xo)

T

as i — 00. Thus for all large i and r, <7 <r; we have

1 W) &lVus,|*
q () eV "
T B,(Xo) 81' 2 +

1 1
> o] el
B:(xo) T

T

) ez ey

T

By Theorem 3.12 with s =r, and r =r; and using (4.5) we obtain
2 b
(1+0)2Dy> —(%+1)arr + 2 log L. (4.6)
0 4 r

By (4.4), the right-hand side of (4.6) is estimated from below by 4D,. This is a
contradiction. The claim with Theorem 4.1 shows

L [E(B(x) L [E(Br(x)
llrjllélfmglnrn_}onfoO

for all xesupp|f|. A standard result in measure theory then shows that
€[ =0. O

Next we show that the limit measure x4 has a well-defined curvature.
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THEOREM 4.4. The support of u is a 1-rectifiable set. Moreover, n defined
as the vector-valued limit measure of {f,Vu,}" in Sect. 1 is absolutely

i
continuous with respect to . f:Z—Z € L*(u) is the generalized curvature of
u and satisfies

1
J| fPdu < timinf ;J /i . (4.7)

Proor. We consider the rectifiability of supp u first. By Proposition 4.3
and by recalling the definitions (2.2), we have |u, — trace v¥’| = |&, ()] — 0 in
L} .(U). This shows

trace v = u (4.8)

in the limit. The lower density bound (Theorem 4.1), (4.8) and the rectifi-
ability theorem (Propostion 2.1) show that supp 4 is a 1-rectifiable set and

¢(X) = proj%v(suppy) (X)7 (49)

where Q:j—/‘; € L*(u, 7). The fact that » is absolutely continuous with
respect to u follows from

2
<J¢ d|;7> < liminf H | fo,|2dx lim J¢28,-|Vu,,,|2dx <a Jqﬁz du (4.10)

for ¢ € C.(U), where we used (A.2) and (4.2). Moreover, by taking supremum
of the left-hand side over ¢ with f¢2 du <1, (4.10) shows (4.7). To show that
f is the curvature of u, (2.4) and (2.5) gives

Jdiv ¢ du, — Jgiﬁ dvil = — Jqﬁ Vu, f;, dx (4.11)

for ¢ e C!(U,R*). The limit of (4.11) gives

Jdivqﬁd,u—JZﬁ; dv“ﬁz—Jqs.fdﬂ. (4.12)

By (4.9), the left-hand side is [ divy, (supp® du, where the integrand is the
divergence restricted to the tangent line which exists a.e. on supp . The
relation (4.12) shows that f is the generalized (mean) curvature in the sense of
varifold [1]. O

5. Integrality of the limit interface

The remaining part of the paper concerns (iii) of Theorem 1.1, namely, we
need to prove that the densities of the measure x4 are integer multiple of 2¢ for
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a.e. on supp . The proof is very similar to [8, Section 5] though one needs to
modify the argument as in [15, Section 5]. Thus we write the outline and often
omit the details.

Lemma 5.1. Suppose B, = V. Given s > 0 there exist constants b > 0 and
& > 0 depending only on ay, Ey, W and s such that

2
J fWVuel” W) ) g < (5.1)
Bin{u]=1-b} \ 2 €

Proor. The estimate for fBlﬂ{luPl b} — ") dx can be obtained by the
same argument as in [20, Prop. 4.5]. To estimate the gradient term, one shows
that replacing u, by v, causes a small error, which can be estimated as in
Section 3. One then uses (3.19) to show that the gradient term is also small.

O
We define 7: R*> — R by T(x1,x;) = x; and T+ : R> = R by T (x) = x,.

Also we define n= (n,n) :% where |Vu,| #0 and n=(0,0) where
V| = 0. '

if € < eé.

LemMmA 5.2.  Suppose

(1) N=>=1 is an integer, Y is a subset of R>, 0<R< o, 1<M< w0,
0<a<oo,0<e<],0<yp<],0<Ey< o0 and —o0 <t] < th < 0.

(2) Y has no more than N + 1 elements, T(x) =0 and t; + a < T*+(x) < tr+a
for all xeY and |x — X| > 3a for any distinct x,Xx€ Y.

(3) (M +1)diam Y < R, and denote R = M diam Y.

(4) On {yeR |dist(y, Y) < R}, u, and f, satisfy (1.2), \[BR |fol*dx < ne and
f 5 jB {&o(us)} dxdr <7 for each xe Y.

(5) For each xevY,

Rdr
j—j lea(t) (32 — x2) — ey — %) - VDl d# () <71 (5.2)
0 )N{y2=1}

2 )
for j=1,2. Here e;(u;) =% Wiu,‘.)'
(6) For each xe€Y and a <r < R,
JB,(x) &, (us)| + (1 = (m2)?)e| V| *dy < nr (5.3)
and
JB ( )3|V“£|2dy < Eyr. (5.4)

Then the following hold:
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(A)  There exists t3 € (t1,12) such that |T*(x) — t3] > a and

R
dt
J —ZJ lex (1) (y2 — x2) — &(y — x) - VuyDou|d A ()
0 T7 JB.(x)N{y2=t3}

< 3(N + )NM(n + E)/*n'/?) (5.5)

holds for each xe Y.
(B) Define Y, =YN{x|ti <T*+(x)<t3}, Yo=YN{x|t3<THx)<ta},
So={x|ty < T+ (x) <t and dist(Y,x) < R},
Si={x|ty < T*(x) < t; and dist(Y},x) < R},
Sy ={x|ts < T*(x) < t and dist(Y>,x) < R},
Then Y| and Y, are non-empty and for all 0 <o <1

(50 + (52}

< <1 +%) (ﬁ) {(1 +5)%u£(so) + <§+ 1);7R+ 3;7}. (5.6)

PrOOF. Set S = {1 < T+(x) <1,}. We establish the monotonicity for-
mula restricted on S. Let p(y):R?> — R be a smooth approximation to the
characteristic function of S. For xe Y we may assume x =0 by a suitable
translation. Let { be a smooth approximation to the characteristic function of

(—oo,1). We substitute ¢ = y( (Il_y\) p(y) into (3.2) and multiply the result by

— L After letting { — X(—o0,1) and p — g and by similarly proceeding as in

72
Lemma 3.1, we obtain for 0 <o < 1

(1-0) 1 (B.NS)
R

< (1 +5)%uS(BR ns)+ (% + 1>;7R + L r_ZJ ﬂs{és(us)hdxdr

r

R
+ J 7J |y2e.(u,) — eDouy(y - Du,,)\d%’l(y)dr. (5.7)
B,N3S

s T

By (4) and (5) applied to (5.7) we obtain

(1 —5)%;46(& ns) < (1 —|—5)%/¢8(BR ns)+ (%—l— 1>;7R+ 3n. (5.8)

By the definition of R, S;US; = B Ridiamy) NS = So.  Thus by (5.8) we obtain
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1 1
E{ﬂe(‘gl) +ﬂ8(S2)} = E/’te(B(f(+diam Y) n S)

< % (%) {(1 +5)%ﬂs(so) + (§+ 1>77R + 3;7}. (5.9)

Since R = M diam Y we obtain (B). The proof of (A) is similar to [8,
Lemma 5.4]. O

Next lemma can be proved by using Lemma 5.2 inductively.

Lemma 5.3.  Corresponding to each R, Ey, s and N such that 0 < R < o0,
0<E<o,0<s< 1 and N is a positive integer, there exists 1 >0 with the
following property.

Assume the following.

(1) Y = R? has no more than N + 1 elements, T(y) = 0 for any distinct y € Y,
a>0,|y—z|>3a for all y,ze Y and diam Y <yR.
(2) On {xeR?*|dist(x,Y) < R}, u, and f; satisfies (1.2), j|f,;|2dx < ne and

Rar
J r_2J {&(u;)}  dy <nR for each xeY.
B,(x)

a

(3) For each xeY and a <r <R,
J, o e+ )il <
B, (x

J e|Vu,|*dy < Eyr.
B (x)

Then we have

S aBa() < s+ (e dist(Y, ) < RY). (5.10)
yeY

The next Lemma 5.4 is identical to [15, Lemma 5.5].

LeMmMa 54. Given 0 <s<1 and 0 <b <1, there exist 0 <y <1 and
1 < L < o0, depending on W, with the following property. Let 0 <e<1. Sup-
pose u, and f, satisfy (1.2) on Bay(0), with f|ﬁ|2dx <en lu,(0)] <1—>b and

J (1€:(u)] + (1 = (n2)*)elVaeo|*)dy < m(4sL).
Bu,1.(0)

Then we have
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(0, x2)] > 1 —g Sor Le < |x3] < 3Le, (5.11)
€ (Br:(0)) — 20| < (5.12)
2L\ 9= ’
and
Le
J wdxra <s. (5.13)
—Le

Proor. We rescale the domain by & for convenience. Let ¢:R* —
(—=1,1) be the unique solution of the ODE

q'(t) = {2W(q()}'/* forteR, (5.14)
4(0) = u(0). |
We note that

We also identify ¢ on R? by ¢(x1,x2) = ¢g(x3). Let b and s be given. For
large L, we have

2
LJ IVl + W(q)dx — 20
;7

<

L
< J_L W(q(t))dt — o

. (5.16)

0| v

)

0|

2L 2

and
b
lg(1)] =1 ~2 for L <t <3L. (5.17)

We show the claim of the theorem by contradiction. Assume that there exist a
o0

sequence {#;},-, < R and {&;} with #; — 0 as i — oo satisfying for 0 < L < oo,

(0) <1 b, j|eiﬁ|2dxsn,-e,», (5.18)
Br

L &)+ (1 — (m)) Vi 2dx < 4n,L (5.19)

but one of the following fails,

1 Vi)
J Vi + W(w)dx — 20| = s,
By

L
2L 2 J_L W (#:(0,x2))dxs —o| =5 (5.20)
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or there exist x, with L < |x;| < 3L satisfying

(0, x,)| < 1 —g- (5.21)

By W?2?2 bound there exists a subsequence of {i;} (denoted by the same
notation) converging weakly to i, € W22, By (5.18) @, satisfies

—dity, + W'(ii,,) = 0. (5.22)

‘Dlﬁ%‘z

By (5.19) we also have [, —5— dx =0 and |Daiio|* = 2W (ii,,).  As we may
assume Dju., > 0, we obtain Djii,, = {ZW(IJC,:)}I/Z. Thus, #,, = ¢g. Since @,
satisfies (5.15), (5.16) and (5.17), and the convergence is strong in W7 for any
1 < p < oo, we obtain a contradiction to (5.20) and (5.21). O

The proof of Theorem 5.5 proceeds just like [15, Prop. 5.2].

THEOREM 5.5.  The density of the limit measure u is an integer multiple of
20 for #' a.e. on supp L.

Proor. By the rectifiability of supp x and the lower density bound u has
an approximate tangent line for #' a.e. on supp . Fix such a point and
choose coordinates so that the point is the origin and the approximate tangent
line is P = {x = (x1,x2) | x = 0}. We consider the scaling @, (x) = u,,(r;x) and
fgi (x) = fo(rix) with r; — 0. Let & =7. u;, satisfies

.
gy + ) £

&

a. 17: 2 17
Define a sequence of measures ﬂg by @4’ Wé_m dx. By the rectifiability of
supp 4 we may choose a suitable subsequence (by choosing smaller & if

necessary)

lim #(B;(0)) = QJ dx'" =20. (5.23)
i—o0 PNB,
Here, 6 is density of u, that is,
1
= lim — u(B,(0)). 24
0 = lim u(B,(0)) (5:24)

1

Write i, = u; and pu = u,. Since v'' =0, we obtain

2
im [ (1= ) 1L g
B3(0)

1— 00

(Dju, )?
= lim J alDie)” J dv'' =0. (5.25)
=0 Jpo) 2 B5(0)
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Suppose N is the smallest positive integer greater than % Fix an arbitrary
small s > 0. By Lemma 5.1 we may choose b > 0 so that

2
J alVi|” | Wte) ) e o (5.26)
By(0)N{Ju, | > 1-b} 2 &

for sufficiently large i. With those s, b and R =1, we choose # and L via
Lemma 5.3 and 5.4. For large i we define

Gi = B2(0) N {Jus,| <1 —b}

n{x

for all 4¢;L <r < 1}. (5.27)

J )+ (1 ) eV Pty <o
B, (x

By Besicovich’s covering theorem and monotonicity formula,
1 (B2(0) N {[u,| < 1= BI\G) + LN (T(Bo(0) N {Juy | < 1 — BI\G)

< fj 16, ()] + (1 — (12) )l Vi | (5.28)
B3(0)

n
which goes to 0 as i — oo by (4.2) and (5.25). For any x = (x;,0) € B;(0)N P
define ¥ = {x1} x [J,_,{sx} = T-'(x) N G; with 51 <55 <--- <, where m is
the largest integer so the each element of Y is separated by at least 3Lg;. We
prove that Y does not contain more than N — 1 elements. First note that all
the assumptions for applying Lemma 5.3 and 5.4 are satisfied. Since

1 Vg > W (u,,
sup —J eilVi| + (1) dy <0+s (5.29)
xeB](O)ﬂPZ Bi(x) 2 &i

for large i, Y having more than N — 1 elements would imply that
20N <s(N+ 1)+ (1 +5)(0+s) (5.30)

by Lemma 5.4. This would be a contradiction to £ < N for sufficiently small
s depending only on N. Finally

20 = lim 4, (B1(0)) = lim 4, (B1(0) N {Ju,| <1~ B}NG)
+ lim 1, (B1(0) N {Jue| < 1~ D\G))

+lim 1, (B1(0) N {Jue] = 1 b). (5.31)



488 Yuko NAGASE and Yoshihiro TONEGAWA

Note that m <N —1. As T7'(x)NG; = {x1} x | J;_, (s — Le;, sk + Le;), by
Lemma 5.4, we obtain

fim 1, (B1(0) N {Jue] <1~ 5}NG)

. w
< lim Gt )|dy+2J J W) 41 gy
=0 BO)nPJT-1(x)nG; i
N—-1 Sk+Le; w
< lim I |dy+2ZJ J LACON.
1= 1 0)NT(G)NP Jsp—Le; &i
<s+4(c+s)(N-1), (5.32)

where we note that #'(B;) =2. By (5.26) and (5.28), we obtain
lim g, (B1(0) N {lu;,| < 1= b}\G) + lim . (B1(0) N {[u| = 1 - b}) <. (533)

Since s > 0 is arbitrary, 20 < 4g(N —1). By the assumption of N we obtain
0 =20(N —1). This shows that the density at this point is integer multiple of
20. O
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