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ABSTRACT. In this paper a billiard problem in nonlinear and nonequilibrium systems is
investigated. This is an interesting problem where a traveling pulse solution behaves as
if it is a billiard ball at a glance in some kind of reaction-diffusion system in a
rectangular domain. We would like to elucidate the characteristic properties of the
solution of this system. For the purpose, as the first step, we try to make a reduced
model of discrete dynamical system having the important properties which the original
system must have. In this paper we present a discrete toy model, which is reduced
intuitively as one of the candidates by use of numerical experiments and careful
observation of the solutions. Moreover, we discuss about the similar and important
points between the solution in the original ordinary differential equation (which
describes the pulse behavior) and the one in the toy model by computing numerically
the characteristic quantities in view of the dynamical system, for example, global and
local Lyapunov exponents and Lyapunov dimensions. As a result, we elucidate that
the system possesses an intermittent-type chaotic attractor.

1. Introduction

In a certain class of reaction-diffusion system in which its stationary pulse
solution loses its stability and a traveling pulse solution arises, as a parameter
changes, if this solution is confined in a rectangular domain, then this solution
moves as if it is a billiard ball at a glance. The self-motion of the camphor
disk is an example of such systems. Let us make the following experiment:
The camphor disk is made of the condensation of camphor and impurities-
(cornstarch). Pour water into the water tank and then float the camphor disk
on the surface of the water. Then the difference of the surface tension arises
from the dissolution of camphor to water. If the purity of camphor is higher
than the critical value, then the camphor disk is pulled to the surface tension
low and moves like a billiard ball repeating the uniform motion and the
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reflection. But this system is quite different from the usual billiard problem in
the point of view of revenue and expenditure of kinetic energy. Unlike the
usual billiard problem with the energy conservation law, there is expenditure of
kinetic energy by friction and is revenue by its solving. In a word, it can be
said that this is a good example of non-equilibrium and nonlinear phenomena.

We can reduce the reaction-diffusion system with such a pulse solution to
the particle model, which is regarded as a singular limit equation as the pulse
size tends to zero. Derivation of the particle model is described in detail in
[1]. As we make a numerical simulation of the particle model, at a glance, the
solution seems also to behave similarly to the usual billiard problem. But if
we investigate the behavior of the solution in details, then we notice that the
solution behaves with more complex motion than in the usual billiard problem
even in a rectangular domain. In fact, we can see a various of behavior of the
solution as the aspect ratio of the rectangular domain changes. Especially in
some parameter intervals, the solution behaves even chaotically, which can not
be seen in the usual problem in rectangular domain. We would like to know
what makes such a kind of differences between them.

In this paper, we study this interesting problem by mainly use of numerical
simulations. In §2, we make a research of the solution of the particle model in
details. We first investigate the relationship of the angle of incidence and of
reflection, in which we can find the primitive difference of the usual billiard
problem. Next, we draw a kind of bifurcation diagram of orbits of the
problem, in which we can see chaotic parameter regions exist intermittently.
These results have been already reported in [4], [5], and [6]. But, as those are
written in Japanese, we report again them here to make sure of them, too.
Moreover, we compute Lyapunov exponents and Lyapunov dimensions for
some interesting parameters and verify that the strange solutions have chaotic
property by numerical simulations.

In §3, we investigate what is the mechanism of the strange behavior of
the system under consideration. For the purpose, we reduce the system of
equations to a discrete-time dynamical system model. As it is very hard to
reduce the system theoretically to the discrete one, we do it with intuitive way
by use of numerical simulation to get a kind of toy model. We first make
observations of the solutions of the particle model, and get a characteristic
property of the solution of the system. Especially, we pay attention to a
strange behavior of the solution near the corners of the rectangle. Next, we
present a toy model of the modified discrete-time model as a candidate which
has the desirable properties of strange behavior of the solution especially near
corners.

Finally we make investigations about this toy model to see this model
possess the very similar properties to the particle model in view of dynamical
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system. Especially this model has the intermittent chaotic behavior of the
solution. Therefore we expect that the strange behavior of the solution which
we found near corners is essential to the interesting behavior of the system
under consideration. We make a conclusion that this strange behavior of the
solution is due to existence of the intermittent-type chaotic attractor in the
system.

2. Particle model

2.1. Mathematical models which describe the motion of camphor disks. To
understand the self-motion of camphor disks theoretically, some mathematical
models have been introduced. The main models are as follows:

(1) Point mass approximation model [3]

(2) Moving-boundary model

(3) Particle model.

Here we treat the particle model which is derived as a reduction system of the
moving-boundary model under the assumption that the speed where the
camphor disk moves is very slow. First of all, we introduce it.

The moving-boundary model is described as follows: Let u(¢,x) be the
concentration of dissolved camphor. And d is diffusion rate of dissolved
camphor, u is a viscosity, k is the sum of sublimation rate and dissolution
rate, and o is a dissolution rate of solid camphor. The surface tension is
represented by

)
V(u)_czH—l’

where y, is the surface tension of water and ¢ is a positive constant. The
model equation is described as

o t>0,xeQ(s),
0 >0, xeS\Q),
1V =cJagu rw)ds >0, xe i),

ut:dAu—ku—&—{

where Q(¢) is the disk domain of radius r corresponding to a camphor disk, S
is the domain corresponding to a water tank, and V is the velocity of the center
of a camphor disk. This can be reduced to an ordinary differential equations
under the assumption that the speed where the camphor disk moves is very
slow. See [1] about details. The motion of camphor disk in two dimensional
plane R? is described by its center coordinate and velocity. Let P(f) =
(x(2), y(1)) and V(¢) = (v(¢),w(£)) be its center coordinate and velocity respec-
tively, then we can consider a camphor disk as one point particle. Now
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particle model is described by the following four dimensional ordinary differ-
ential equations:

X =0,

y=w,

b= —(m1|V|zu+mzev), (1)
W= —(m|V[*w + mayew),

where |V|2 =024+ w? and my, m, are positive constants and ¢ is a parameter
corresponding to the purity of camphor.

The system (1) is analyzed in [5]. The motion of a particle described by
(1) has following properties: In the case ¢ > 0, the moving particle will stop
before long for any initial velocity. On the other hand, in the case ¢ < 0,
if [V(0)] =0, then any ¢ > 0 the particle won’t leave an initial position. If
|V (0)] # 0, then the motion of a particle will converge asymptotically to
uniform motion.

Secondly, we consider the motion of two particles which have the inter-
action. Let P;(¢) = (x;(¢), y1(¢)) and Vi(t) = (vs(2),w;(¢)) (I =1,2) be their
coordinate and velocity. Then the motion of these two particles is described
by following eight dimensional ordinary differential equations:

x; = vy — moh™3? exp(—ah)(x;+1 — x7),
y; = wi —moh™3* exp(—ah)(yr+1 — 1), 2)
or = —(ma| Vi) 2o + magvr) — msh™/% exp(—ah)(x;11 — x1),

Wi = —(my|Vi|*wr 4+ myewr) — msh=3/% exp(—ah)(yr1 — y1),

where we agree to interpret / modulo 2, & = |P; — P,| is the distance between
two particles and m; (j =0,1,2,3) and a are positive constants. If 7 > 1, that
is, the distance between two particles is sufficiently large, then the inter-
action term h~%/2 exp(—ah) becomes very small. Hence we can consider that
(Pi(2), V1(r)) and (Px(r), V>(t)) are independent with each other in that
case.

Next, we consider the motion of a particle that approaches the wall. In
this case, let y-axis be the reflecting wall. We assume that there is another
virtual particle at a symmetrical position for the wall and consider the inter-
action between these particles by using 2. Let P;(#y) = (xo, yo) and V(%) =
(vo,wo) be the initial position and velocity of a particle. Then according to
symmetry, the initial condition of virtual particle is P,(f) = (—xo, yo) and
V(ty) = (—vo,wo). Following [5], (Pi(¢), V1(¢)) and (Py(t), Va(t)) are always
located at a symmetrical position for any ¢ > 0. Therefore we can rewrite 2 by
introducing new variables (x, y,v,w) = (x1, y1,v1,w;) as follows:
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% =v+mo(2x)"? exp(—2ax),

y=w,
o= —(m|V| v+ myev) + m3(2x) exp(—2ax),
W= —(m|V|*w + myew).

Notice that (3) is essentially a three dimensional system since x, v and w are
independent of y.

Finally, as an extension of (3), we introduce the model which describes the
motion in a rectangular domain R =[0,¢L] x [0,L]. In this case, we assume
that there are four virtual particles at a symmetrical position for each edge of R
and consider the interaction between five particles. As well as the previous
case, by using symmetry, we get the particle model in a rectangular domain as
follows:

P exp\(/%ax) - exp(j(ziCi x)x)) ’

= wtm exp\(/—2_J2/ay) - exp(—zz(i(f ;)J/)) 7 .
b= —(m|V|*v + myev) + ms eXp\(/_;;x) —m eXp(_zz(Z](ji ;)X))

W= —(m|V[*w + myew) + ms exp\(/%z;aﬁ —m exp(—22(6]i(li ;)y)) .

2.2. Numerical simulations. When the camphor disk floats on water, it moves
almost in uniform motion if away from the wall. And if it approaches the
wall, it reflects without collision with a wall. Furthermore, this reflection
has the property that the angle of reflection is smaller than that of incidence.
We confirm that the solutions of (3) show such a reflection by numerical
simulation.

We set parameters m; = 1.0 (i=0,1,2,3), a=1.0, e=-0.06. Then
we can see that the particle reflects without collision with a wall (See
Figure 1).

Next, we observe the relation between angles of incidence and reflection.
But we can’t define angle near the wall since the particle reflects while drawing
a curve without collision with a wall as shown in Figure 1. So we use the
property that particles move almost in uniform motion if it sufficiently away
from the wall. Let (vo,wp) be the initial velocity which is given at the initial
position where sufficiently away from wall and (v, w,,) be the velocity in state
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“pict.dat"

"pic2.dat"

L L L L L
0 5 10 15 20 25 30

Fig. 1. Reflection near the wall (Projection onto (x, y)-plane).

of uniform motion after reflection. Then we define the angle of incidence 6,
and the angle of reflection 6,, by

() (%)
0in = arctan( — |, Oont = arctan| —= .
Wo W

Figure 2 is the relation between i, and Oy, Oout = F(0i), obtained by
numerical experiments. As shown in figure, this reflection is not perfect elastic
reflection but non-perfect elastic reflection and 0y, > Oy for Ooy € (0,7/2).

Then, we simulate the system (4), the particle in a rectangular domain
R=1[0,cL] x [0,L]. First, let the aspect ratio of the domain ¢ be ¢=1.0,
that is, we consider the case where R is a square. We set parameters
m; =10 (i=0,1,2,3), a=10, e=-0.06 and L =20.0. Assume that the
initial condition is (xg, yo) = (10.0,10.0), (v, wo) = (v/—¢ sin 0, —/—¢ cos 0),
then the asymptotic orbit can be qualitatively classified into three kinds for the
value of 0. See Figure 3.



A billiard problem 349

08 .
06 8
04 J

02 | J

0 L 1 L L L L L
0 0.2 0.4 0.6 0.8 1 12 1.4

Fig. 2. Relation between 0;, and Oy (¢ = —0.06).

About quadrangle orbit shown in Figure 3, as shown in Figure 4, there
is a reverse-rotation orbit in the domain. Though two orbits in Figure 4 are
different the direction of the rotation, these are corresponding by reversing. It
is suggested by numerical simulation that the orbit of (4) in a square domain
converges to a certain periodic orbit for any initial condition and orbits shown
in Figure 4 are asymptotically stable periodic orbit.

Next, we consider how the orbit changes when the domain is changed
from the square into the rectangle. Change the aspect ratio ¢ in (4) and solve
the system numerically.

If the parameter ¢ is near 1.0, for almost every initial value the orbit
converges to a certain periodic orbit as shown in Figure 5. As ¢ grows, the
round-cornered rectangle drawn by the stable periodic orbit becomes thin.
However, ¢ grows greater than a certain value, solutions of (4) draw complex
orbits shown in Figure 6.

To know the relation between ¢ and the asymptotic orbit at this parameter
value better, we introduce the following diagrams: Assign the parameter ¢ to
the horizontal axis and the reflection position at the wall y =0 to the vertical
axis. However, since it is difficult to specify coordinates that the velocity in
the vertical direction becomes zero, x-coordinates where the absolute value of
the velocity in the vertical direction becomes sufficiently small are recorded.
And the x-coordinates are divided by ¢ so that the value is between zero and
L. The resulting picture is Figure 7. It was confirmed that depending on the
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& =-0.060000, ¢ = 1.000000 & =-0.060000, ¢ = 1.000000
20 T T T 20 T T T
15 g 15 .
10 g 10 .
5 g 5 4
o . . . o . . .

0 5 10 15 20 0 5 10 15

20

Fig. 3. Three kinds of orbits in square.

value of the parameter ¢ the motion of the particle alternately repeated the
periodic orbit and non-periodic orbit. It seems that typical intermittent chaos
appears. Figure 8 is a set of some periodic orbits in Figure 7. For large c,
such complex periodic orbits appear.

2.3. Calculation of Lyapunov exponents. We consider whether non-periodic
orbits in the particle model (4) are chaos. So we calculate Lyapunov exponents
and quantify the stability of the orbit on the attractor. The numerical calcu-
lation method of Lyapunov exponents is detailed in the references [8], [7], and

20
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e =-0.060000, ¢ = 1.000000
20 T T T

20

20

Fig. 4. Quadrangle periodic orbit in square.

[2]. We calculated exponents for several ¢ from 1.0 to 5.0. The calculation
result is as follows: For simple periodic orbits that appear near ¢ = 1.0, the
sign of Lyapunov exponents is (0,—,—,—) and Lyapunov dimension d is
equal to 1.0. And for periodic orbits at large ¢, the result is the same. For
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Fig. 5. Stable periodic

orbits at ¢ = 1.1 (left) and ¢ = 1.2 (right).
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particle model
20 - T

20

0 1 1 1 1 1 1 1
1.2 1.25 1.3 1.35 1.4 1.45 1.5 1.55 1.6

Fig. 7. Relation between the parameter ¢ and reflection positions (left: 1.0 < ¢ < 5.0, right:
1.2 << 1.6).
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e =-0.060000, ¢ = 1.460000
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Fig. 8. Periodic orbits for several parameters (¢ = 1.46,1.6,2.0,2.9,4.4).

the orbit seen to be non-periodic at ¢ = 1.3, the sigh of exponents is (0,0, —, —)
and dp =2.0. Thus though this orbit fills the domain, this might not be
chaotic. However, for other parameters, a positive exponent might be ob-
tained. In this case, the sign of exponents is (+,0,—,—) and 2 <dp < 3.
Hence it can be expected that these orbits are chaotic.
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e =-0.060000, ¢ = 2.900000
20 T T T T T

e =-0.060000, ¢ = 4.400000

20 T T T T T T T T
15 .
10 + .
5 - -
0 1 | | 1 1 | | 1
0 10 20 30 40 50 60 70 80
Fig. 8. Continued
Table 1. Lyapunov exponents and dimension for several c.
Parameter values Lyapunov spectrum Lyapunov dimension
c¢=1.00 A1 = 0.0000, 4, = —0.0057 1.0000
Az = —0.0093, 14 = —0.1600
c=1.30 A1 = 0.0000, 2, = 0.0000 2.0000
A3 = —0.0102, 14 = —0.1587
c=1.40 A1 = 0.0000, 4, = —0.0006 1.0000
Az = —0.0095, 14 = —0.1593
c=1.85 A1 = 0.0007, 4, = 0.0000 2.0680
Az = —0.0099, 14 = —0.1617
c=2.24 A1 =0.0015, 2, = 0.0000 2.1687
Az = —0.0090, 14 = —0.1633
c=282 A1 = 0.0003, 4, = 0.0000 2.0364
A3 = —=0.0076, A4 = —0.1649
¢=3.00 A1 = 0.0000, 4, = —0.0029 1.0000
Az = —0.0042, 14 = —0.1652
c=3.99 A1 =0.0021, 2, = 0.0000 2.3703
Az = —0.0057, 14 = —0.1675
c=4.88 A1 =0.0013, 4, = 0.0000 2.2510

Az = —0.0052, 14 = —0.1682
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Discrete-time model

3.

Derivation of discrete-time model.

3.1.

reduction system of a certain reaction-diffusion system near the bifurcation
point at which a stationary pulse solution of the system loses stability and a

traveling pulse solution arises.

analyze it.

We are interested in the global bifurcation structure of the solution

of this system that intermittent chaos seems to appear.

of the particle model as a discrete
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We execute the following
oo and consider reflection of the orbit of

Shorten the length of a edge of the square domain L

a limit operation proposed in [4] and [6].

by using

Assume that L

limit operation:

the particle model.

again.

we can consider that the particle is in a state of

3

By such an operation

uniform motion in the squ

and hits the wall and reflects. And 6;,
shown in Figure 2.

are domain

and 0y, are given by the relation gy

(Oin)

It is easy to prove the existence and uniqueness of a stable periodic orbit in

=F

(4] and [6].
, 1t is possible

It is discussed in detail in

time model.
Then, we consider the case in a rectangular domain.

the square for this discrete

Indeed

to prove the unique existence of a stable periodic orbit in a rectangular domain
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e =-0.060000, ¢ = 1.000000 ¢ =1.000000 (N = 16000)
20 T T T 20 T T T
15 1 15 - «
10 F 1 10+ —
5 q 5F 1
o . . . 0 . . .
0 5 10 15 20 0 5 10 15 20

Fig. 10. Stable periodic orbit in the square domain (left: particle model, right: discrete-time
model).

e =-0.060000, ¢ = 1.200000 ¢ =1.200000 (N = 16000)

T T T 20 T T T

L L L L 0 L L L L
5 10 15 20 o 5 10 15 20

Fig. 11. Stable periodic orbit for ¢ = 1.2 (left: the particle model, right: the discrete model).

by using of this discrete-time model. It is discussed in detail in [4], [6]. See
Figures 11 and 12. This discrete-time model reproduces the stable periodic
orbit well in particle model.

However, this attempt fails in the approximation of non-periodic orbit.
Figure 13 is a comparison of the particle model and the discrete-time model for
¢ =1.3. The particle model shows non-periodic orbit for ¢ =1.3. On the
other hand, an asymptotic orbit in the discrete-time model for ¢ = 1.3 is not
non-periodic though it is complex. We compare the dependency of asymptotic
orbits on ¢ for the particle model with that for the discrete model. See Figure
14. Tt shows the relation between ¢ and reflection positions at the wall y = 0.
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e =-0.060000, ¢ = 3.000000
20 T T T T T

15 + -

10 -

0 1 1 1 1 1
0 10 20 30 40 50 60

¢ = 3.000000 (N = 16000)
20 T T T T T

15 -

0 1 1 1 1 1
0 10 20 30 40 50 60

Fig. 12. Stable periodic orbit for ¢ = 3.0 (upper: the particle model, lower: the discrete model).

For the discrete-time model, there seems to be no non-periodic structure. This
discrete-time model cannot be applied to the analysis of non-periodic orbit.

3.2. Observe the particle model. Why does such a difference appear between
the discrete-time model and the particle model? We compare a greatly
different point in two models and enable the application to non-periodic orbit
by adding a proper correction to the discrete model.

The most remarkable difference is pointed out by [6]. When the particle
reflects near the center of the wall, the orbit of the discrete-time model
coincides with that of the particle model. However, when the particle reflects
near the corner of the domain, these orbits do not coincide. In this case, the
particle starts the next reflection before it turn into a state of uniform motion
after the reflection first. Thus the angle of incidence of the second reflection is
different in both models. Two orbits of the particle model toward the same
direction starting from different initial positions is shown in Figure 15.

Though it is incidence at the same angle, the angle of reflection is different.
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particle model

discrete dynamics model
20 T T T T T T L

Fig. 14. The relation between ¢ and reflection positions (upper: the particle model, lower: the
discrete model).
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reflection near the corner
14 T T T T T T

Fig. 15. Motion of the particle near corner.

Before calculating local Lyapunov exponents along the orbit in a rectan-
gular domain, we observe the behavior of exponents when the reflection doesn’t
happen at all. First of all, we calculate along the solution of the model
(1). We set the initial condition xo = yo = 10.0, vy = —+/0.06 sin(7/6), wo =
v/0.06 cos(n/6). Let (x,y) be coordinate of the particle and z-axis corre-
sponds to the value of local Lyapunov exponent. The first and second
Lyapunov exponents A, A, are shown in Figure 16 and the third and forth
A3, A4 are in 17. Figure at the right of each figure shows projection to the
(x,z) plane. In the case of (1), if ¢ <0, then the particle converges to
asymptotically uniform motion. Thus we can consider that the first and
second exponents are always zero corresponding to x, y and the third and
forth exponents are always negative corresponding to the velocity (v, w) which
converges to a certain constant.

Next, we calculate exponents along the solution of (3) to observe the
behavior in the reflection. We set the initial condition xy = yy = 10.0,
vo = —V/0.06 sin 0, wy =+/0.06 cos @ so that the particle approaches the
wall x=0. Figures 18, 19 and 20 show the exponents corresponding to
0 =mn/6,n/4,7/3 respectively. Figures upper in each figure shows the first and
second exponents and lower shows the third and forth.

In this case, if the particle is away from the wall x =0, then 4; =1, =0
and /23,44 < 0 as well as the case of 1. However, when the particle reflects, 4,
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1st and 2nd exponents

"lle_model1.dat" using 1:2:3 ———
"lle_model1.dat" using 1:2:4 -------

1st and 2nd exponents

"lle_model1.dat" using 1:2:3 ———
"lle_model1.dat" using 1:2:4 -------

5 +6 5 © 5 1086 y

Fig. 16. The first and second local Lyapunov exponents along the solution of (1).
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3rd and 4th exponents

"lle_model1.dat" using 1:2:5
"lle_model1.dat" using 1:2

6

3rd and 4th exponents

"lle_model1.dat" using 1:2:5
"lle_model1.dat" using 1:2:6 -------
0 -
-0.05 |
-0.1
-0.15
-02
-15 16 5 © 5 10 86 y

Fig. 17. The third and forth local Lyapunov exponents along the solution of (1).
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1st and 2nd exponents

¢

-0.02
-0.04
-0.06
-0.08

-0.1
-0.12
-0.14

"square_with30.dat" using 1:2:3 —— "square_with30.dat" using 1:2:4 -------

3rd and 4th exponents

0.06
0.04
0.02

-0.02
-0.04
-0.06
-0.08

-0.1
-0.12

"square_with30.dat" using 1:2:5 ——— "square_with30.dat" using 1:2:6 -------

Fig. 21. Local Lyapunov exponents along the stable periodic orbit of 4 with ¢ = 1.0 (upper:
A2, lower: Ay, Aa).



370 Masayasu MiMURA, Tomoyuki Mivyan and Isamu OHNISHI

1stand 2nd exponents 1stand 2nd exponents
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"lle_ap0003.dat" using 1:2:3 ——— 0 "lle-ap0003.dat" using 1:2:3 —— [
"lle_ap0003.dat" using 1:2:4 ------- “lle_ap0003.dat" using 1:2:4 -------

3rd and 4th exponents 3rd and 4th exponents

0.1
0.05

-0.05
-0.1
-0.15
-0.2

4+ §——+6——+2—+4——16——8——2000

"lle_ap0003.dat" using 1:2:5 ——— 0 '"lle-ap0003.dat" using 1:2:5 ——— 0
"lle_ap0003.dat" using 1:2:6 ------- "lle_ap0003.dat" using 1:2:6 -------

Fig. 22. Local Lyapunov exponents with the angle of incidence 6 =7/6 and the particle
approaching to (x, y) = (10,0).

becomes negative while A, does not change. On the other hand, when the
particle approaches the wall, 13 and 14 increase temporarily, and A3 becomes
positive at this time. And when the particle goes away from the wall, 43 and
A4 become negative again.

Then, we observe the behavior along the solution of (4) with c=1.01in a
square domain. Figure 21 shows local Lyapunov exponents along the stable
periodic orbit in a square domain. When the particle reflects at x =0 or
x =1L, A becomes negative and A3 becomes positive. Similarly, when the
particle reflects at y =0 or y=L, A, becomes negative and A4 becomes
positive. If the particle is away from the wall, exponents behave as well as the
case of (1).
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1st and 2nd exponents
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"lle_ap0503.dat" using 1:2:3 ——— "lle_ap0903.dat" using 1:2:4 -
"lle_ap0503.dat" using 1:2:4 ------- o J—
"lle_ap0903.dat" using 1:2:3 --------

3rd and 4th exponents

01
0.05

-0.05
-0.1
-0.15
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20 82

qr
[e o]
e o]

"lle_ap0503.dat" using 1:2:
"lle_ap0503.dat" using 1:2:
"lle_ap0903.dat" using 1:2:

5 —— "lle_ap0903.dat" using 1:2:6 -
O -

(S X}

Fig. 23. Local Lyapunov exponents with 6 ==/6 and the particle approaching to
(x,¥) = (15,0),(19,0) (upper: A1, Az, lower: 23, 4).

Following the above observation, we consider the reflection at some
positions. As it is not essentially related at which wall the particle reflects
to the behavior of exponents in a square domain, we think about especially the
case where it reflects at x < L/2, y=0.
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1st and 2nd exponents
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3rd and 4th exponents
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"lle_ap0506.dat" using 1:2:5 ——— "lle_ap0906.dat" using 1:2:6
"lle_ap0506.dat" using 1:2:6 0
"lle_ap0906.dat" using 1:2:5 --------

Fig. 24. Local Lyapunov exponents with 6=n/4 and the particle approaching to
(x,¥) = (15,0),(19,0) (upper: A1, Ao, lower: A3, A4).

We assume that 0;, = /6 and the particle approaches the point (x, y) =
(10,0). In this case, exponents behave as well as the case of (3) and then the
particle approaches x = L. See Figure 22 this might be a natural result,
because the reflection position is sufficiently away from other walls.
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1st and 2nd exponents
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0 ______
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"lle_ap0509.dat" using 1:2:5 ——
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"lle_ap0909.dat" using 1:2:6 -
0 -

Fig. 25. Local Lyapunov exponents with 6 = z/3 and the particle approaching to (15,0), (19,0)
(left: A1, Ap, right: A3, A4).

Next, we calculate exponents when the particle reflects in the corner of
the domain. We assume that 6, = 7/6 and the particle approaches the point
(x,y) = (15,0),(19,0). The result is drawn in (x, z) plane in Figure 23. When
the reflection position is near the corner in the domain, before A, that be-
came negative by the reflection returns to zero, 4; becomes negative because of
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x = L. Especially, when the particle approaches (19,0), 4; becomes negative
before A, takes a minimal value. And A4 increases again without becoming
negative after it becomes positive by the reflection. These results mean that
the particle already starts reflecting at x = L when reflecting at y = 0.

Even if the angle of incidence is changed, similar results are obtained.
The reflections with the angle of incidence 6§ = n/4 and 8 = n/3 are shown in
Figure 24 and in Figure 25, respectively.

Thus the effect from another wall grows as the reflection position
approaches the corner in the domain. It is thought that the effect from
another wall cannot be disregarded when we reduct it to the discrete-time
system.

3.3. Modified discrete-time model. From the observation above, we modify
the discrete-time model as follows. We suppose that the reflection position
divides reflecting wall into p: 1 — p. Because the angle of reflection depends
on the reflection position, we use p as information of the reflection position.
We determine the angle of reflection by

Hout = G(P, gin) = F(ein)g(p)' (5)

Function ¢(p) should satisfy the following properties:
(1) The reflection angle is not corrected in the middle point of the wall.
g(1/2) =1.

(2) The angle is greatly corrected near the corner in the domain.
Because it is very difficult to derive rigorously the function for the correction,
we use the following function with these properties: Let ¢ and r be positive
constants.

o(p) = { exp(¢(0.5 - p)"), if ris odd, ©)

| exp(g sign(0.5 — p)(0.5 — p)") if ris even.

The graph of this function and that of (5) are shown in Figure 26.

We simulate the orbit of the particle by using this corrected discrete-time
model. However, only periodic orbits appeared though ¢ and r were variously
changed. Figure 27 shows the relation between the aspect ratio ¢ of the rect-
angular domain and reflection positions at y = 0.

There seems to be an important property in the motion of the particle that
we have overlooked. Then, we observe the reflection for various angle of
incidence and modify the discrete-time model more appropriately.

Figure 28 shows the incidence of the particle to a left wall for some angles
and initial positions. In the correction above, we assumed that the angle of
reflection grew more than usually near the corner in the domain. However, it
is not necessarily so. The angle of incidence also effects the correction. That
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Fig. 26. Function ¢(p) and corrected function by (5) with ¢ =100, r=9.

is, the angle of reflection becomes smaller for the small angle of incidence and
it becomes larger for the large angle of incidence. In consideration of this
observation, we use the following function for the correction:

o(7.00) = exp (0 = 0.5 - p) sien05 - ) ). Q
or

9(p,0m) = exp <q <9in - % (0.5 - p)’)) : (8)
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discrete dynamics model
20 T T T T T T T

bifurcation diagram(q1 = 100.000000, g2 = 9.000000)
20 T T T T T T T

Fig. 27. The relation between the aspect ratio ¢ and reflection positions at y = 0 (upper: ¢ =7,
r=238, lower: ¢ =100, r=9).
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discrete dynamics model
20

x/c
>
T

20

18 -

14 +

10

Fig. 29. The relation between the aspect ratio and reflection positions (upper: (7) with ¢ = 175,
r=9, lower: (8) with ¢ =50, r=28).



379

A billiard problem

16000)

1.480000 (N =

c=

R

Y,
W

R
KRR

%S

X

7
i\

N

KK
NNV

Y,
4
O

AR
\W\o’\,uhow»

1.970000 (N = 16000)

c=

16000)

¢ =2.330000 (N

time model.

periodic orbits in the modified discrete-

Non-

Fig. 30

because of the

10n

ion functi

ly the correct

ive rigorous

But it is difficult to der

property of the particle model of reflecting without collision.

we determine the angle of reflection by

)’

8

By use of (7) or (

©)

le as an essentially two

dynamical system defined by the map

D, Hin)

(

)g

Thus, we can consider the motion of the partic

dimensional discrete-time

( 0in

Hout =F

(10)

)

)
)

) (Gl(goutvp
—
GZ(Houbp

gout



380 Masayasu MiMURA, Tomoyuki Mivan and Isamu OHNISHI

¢ =23.100000 (N = 16000)

¢ = 4.840000 (N = 16000)

0 10 20 30 40 50 60 70 80 90

Fig. 30. Continued

Table 2. Lyapunov exponents and dimension for the modified discrete-time model.

Parameter values Lyapunov spectrum Lyapunov dimension

¢=1.00 A1 = —0.3301, 0.0000
Ay = —0.4502

c=148 A1 =0.0071, 1.0103
A = —0.6914

c=1.97 A = 0.0431, 1.0592
Ay = —0.7276

¢c=1233 A = 0.1444, 1.1977
Ay = —0.7303

c=291 A1 = —0.0050, 0.0000
Ay = —0.6302

¢c=3.10 A = 0.0521, 1.0756
Ay = —0.6900

c=3.12 A = —0.1583, 0.0000
Ay = —0.6372

c=441 A1 = 0.0704, 1.1309
Ay = —0.5381

c=4.84 A1 = 0.2170, 1.3080

Ay = —0.7046




A billiard problem 381

We simulate the orbit in a rectangular domain by using this formula.
Figure 29 shows the relation between the aspect ratio ¢ of the rectangular
domain and reflection positions at y = 0. This modified discrete-time system
shows the fault structure of periodic orbits and non-periodic orbits.

Non-periodic orbits in the discrete-time model are similar to those in the
particle model. Compare Figure 30 and 9. Then, we calculate Lyapunov
exponents for these non-periodic orbits. We consider the modified discrete-
time system as two dimensional system. So we pay attention to the sign of
two exponents. Table 2 shows Lyapunov exponents obtained by using the
correction function (7) with ¢ = 175, r =9. The result is almost the same as
that in the case of the particle model. For a simple periodic orbit appearing

¢ =1.480000 , g = 175.000000 , r = 9.000000(N = 150000) ¢ =1.970000, q = 175.000000 , r = 9.000000(N = 150000)
1 T T T T T T 1 T T T T T T
.
V‘ /
0.8 ' . B 08 Bl
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, !
|
0 L 1 " L \ 1 1 1 1 0 1 1 L 1 1 1 1
0 0.2 0.4 0.6 0.8 1 1.2 1.4 0 0.2 0.4 0.6 0.8 1 1.2 1.4
¢ =23.100000, q = 175.000000 , r = 9.000000(N = 150000) ¢ =4.840000, q = 175.000000 , r = 9.000000(N = 150000)

0.8 B 08 | 4
0.6 - 06 | 4
0.4 - 04 | 4
0.2 - 02} 4
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Fig. 31. Orbits defined by the modified discrete-time model plotted on (6;,, p)-plane.
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Fig. 32. Strange structure observed in the orbit for ¢ = 4.84.

near ¢ = 1.0, the sign of exponents become (—, —) and the Lyapunov dimension
dy =0.0. These are the same for other periodic orbits. On the other hand, a
positive exponent appears for non-periodic orbit. In this case, the sign of two
exponents is (+,—) and d becomes a fractal dimension 1 < di. < 2. Even if
parameters of the correction function ¢,r are changed, a similar result is
obtained.
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Non-periodic orbits in the modified discrete-time model have an interesting
feature. Plot sequence of points (6;,, p) defined by the map (10) on the plane
after a sufficient long calculation. Naturally, when a periodic orbit appears in
a rectangular domain, the attractor becomes a periodic point. On the other
hand, the more complex structure appears for the orbit with a positive
Lyapunov exponent as shown in Figure 31. Furthermore, the nest structure
like the fractal can be observed by expanding a part the orbit for ¢ = 4.84 as
shown in Figure 32.

In the final part of this paper, we again emphasize that the strange
behavior of the solutions of the system is due to the existence of an
intermittent-type chaotic attractor, and we elucidate it numerically at the first
time for this interesting problem. Surprisingly, this is simply because the
reflection rule at the corner is irregular a little. We are a little interested in the
fact that such a small effect raises the serious result in this nonlinear and non-
equilibrium system. We expect in the future that our result is improved and is
made precise more and more especially in mathematically rigorous point of
view.
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