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ABSTRACT. We show that any of the constant mean curvature tori first found by
Wente must have index at least eight. The proof uses a numerical computation by
Mathematica.

1 Introduction

The Hopf conjecture asked if all closed surfaces immersed in R* with
constant mean curvature A must be round spheres. It was proven true when
either the surface has genus zero by Hopf himself [H], or the immersion is
actually an embedding by Alexandrov [H]. However, it does not hold in gen-
eral, and the first counterexamples, of genus 1, were found by Wente [We].
Abresch [A] and Walter [Wa] made more explicit descriptions for these sur-
faces of Wente, which all have one family of planar curvature lines [Sp]. We
call these surfaces the original Wente tori.

Constant mean curvature surfaces are critical for area, but not necessarily
area minimizing, for all compactly supported volume-preserving variations.
Hence the index—Iloosely speaking, the dimension of area-reducing volume-
preserving variations, to be defined in Section 3—can be positive. If it is zero,
the surface is stable. Do Carmo and Peng [CP] showed that the only com-
plete stable minimal surface is a plane. Fischer-Colbrie [FC] showed that a
complete minimal surface in R> has finite index if and only if it has finite
total curvature, and that the catenoid and Enneper’s surface have index
1. Likewise, for surfaces with constant mean curvature H # 0, Barbosa and
Do Carmo [BC] showed that only round spheres are stable, and Lopez and
Ros [LR] and Silveira [Si] independently showed that they have finite index if
and only if they are compact. This leaves open the question of whether there
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exist surfaces with constant mean curvature H # 0 and low positive index, for
example with index 1.

The third author [R1], [R2] showed numerically that the most natural
candidates for unstable surfaces of constant mean curvature H # 0 with low
index—the original Wente tori—all have index at least 7, and with a numerical
experiment suggested that the sharpest lower bound is either 8§, 9, or 10, and
is most likely 9. This leads one to conjecture that all closed surface with
constant mean curvature H # 0 have index at least 9.

The purpose of this article is to show that the original Wente tori all have
index at least 8, improving the lower bound of [R1], [R2]. The final part of
our argument relies on numerics.

2 The original Wente tori

In this section we shall give a brief description of the original Wente tori,
based on [Wa]. Later, we shall assume that the mean curvature H is 1/2, but
in this and the next section we shall only assume that H is a nonzero constant.

Let X: C/I" — R® be a conformal immersion of class C* where C/I" is
a compact 2-dimensional torus determined by the 2-dimensional lattice I
Note that (x, y) are then isothermal coordinates on C/I'. The fundamental
forms and the Gauss and mean curvature functions are

LN—M? L+N
gLt

2 2 2 2
I =E(dx“+dy~), II =L dx"+2M dxdy+N dy*, K = = ==

Since H is constant, the Hopf differential @ dz> is holomorphic, where & =
I(L—N)—iM and z=x+iy. Thus @ is constant and X has no umbilics
points. Moreover, by a change of the coordinates (x, y), we may assume & =
1 and so M =0, L=ef"+1, N=ef —1, and (x,y) become curvature line
parameters, where F : C/I" — R is defined by HE = ef. We have the equa-
tions of Gauss and Weingarten:

1 1

fxx = EFX%X _EFyxy — (E‘F + 1)%,

1 1
Xy = =3 PX+ SR, - (ef = 1),

1 1
Xy =5 B+ FX,

Ne=H(+e X, A =H(1-e"),

(2) AF +4H sinh F =0,
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2 2

o
the Gauss map. Therefore the problem of finding constant mean curvature
immersed tori in R* reduces to solving the PDE system (1) and (2) by real
analytic functions F, ./, X defined on R? and doubly periodic with respect to
some fundamental lattice I = R

In the case of the original Wente tori, in Walter’s notation, the solution F
of (2) is:

where 4 = and 4" : C/I" — R® is the unit normal vector field, i.e.

(3) tanh (g) =y 7 cem(oax)enz(ay),

where c¢n; denotes the Jacobi amplitudinus cosinus function with modulus k,
and k =sin 0, k =sin 0, for 0,0 € (0,n/2) and 0+ 0 < /2, and

y=+Vtan0, 7= Vtanl, o= 4H.L20_7 5 — 4H.L20_.
sin 2(6 + 0) sin 2(0 + 0)

LemmMma 1 ([A], [Wa]). The set of all original Wente tori are in a one-to-
one correspondence with the set of reduced fractions {/n € (1,2).

For each //n, we call the corresponding Wente torus #;/,. Following
Walter’s notation, each #;, has either one or two planar geodesic loops in the
central symmetry plane: two loops if # is odd, and one loop if 7 is even. Each
loop can be partitioned into 2n congruent curve segments, and ¢/ is the total
winding order of the Gauss map along each loop.

The conditions for double periodicity of the position vector function X are
expressed in terms of @ and 0. Walter determined that there is exactly one

0 =~ 65.354955°

that solves one period problem. ) The other period problem is solved with the

correct choice of 0 € (0,(n/2) — #), and, for any //n € (1,2), this correct choice
is the unique solution 6 of

) J”/21+tan0tan00052(p dp /7= | sin20

o l—tanOtan0cos? ¢ /1 _ in2 g sin? o " 2\ sin 2(0 + 0)
For any //n ¢ (1,2), there is no solution 0 € (0, (n/2) — 0) of (4). In Table 2
we give some values of 6 with respect to //n.

Now, if xy, (resp. y,,) denotes the length of the period of cmy(ax) (resp.
cnz(&y)), then we have the following lemma:
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Lemma 2 ((Wa]). X:C/I'— W), < R® is a conformal immersion (Wi
denotes the image of X), where

I' = spanz{(nxsy,0),(0, y,,)} when ¢ is odd, and

I = spanz{ (n);f" ,%), (0, y/n)} when ¢ is even.

The curves {[xo, y]| xo = constant} are mapped by X to planar curvature lines of

I/V//n-

The lengths x,, and y,, can be computed as follows:

DY | ]

e ewre T e
I —k?sin” ¢ 1 —k?sin” ¢

3 The definition of index and preliminary results

The Jacobi operator associated to ¥, is —A4; — |II 1> on C/I", with |1I|* =
E2(L*+2M? + N?) =2H?*(1 + ¢ 2F) and 4; the Laplace-Beltrami operator
associated to the metric /. The corresponding quadratic form is

(6) O(u,u) = Jc/r u (u)dxdy,

where
SPu=—Au—Vu  with V = 4H cosh(F)

and 4 the Euclidean Laplacian. Note that in equation (6), we are integrating
with respect to the flat metric on C/I.

Consider a smooth volume-preserving variation X; of the immersion X
with parameter 7 so that Xy is the surface ¥;,,. By reparametrizing the sur-
faces of the variation, we may assume that the variation vector field at t =0
is u/" for some ue C*(C/I'). Then

2

0 0 .
pr area(X,)],_, =0 and e area(X,)|,_, = O(u,u).

Furthermore, the volume-preserving condition implies | i dA =0. Thus, if

V= {ue Cw(C/F);JC/FudA = O}7

then we can give the following definition (see [BC]):
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DEeFINITION 1. We define Ind(¥X(C/I")), the index of the immersion X of
C/TI’, to be the maximum of the dimensions of the subspaces of ¥~ restricted to
which Q is negative definite.

Since the first derivative of area is zero, and the second derivative is
O(u,u), the index in a sense measures the amount of area-reducing volume-
preserving variations.

Let L> = L*(C/I") = {ue C*(C/T)| ¢, u* dxdy < oo} provided with the
inner product {u,v);» = ¢ S uv dxdy. 1Tt follows from the standard spectral
theorem that the operator ¥ = —4 — V on C/I' has a discrete spectrum of
eigenvalues

Bi<pp<-- /oo

and corresponding eigenfunctions
Vi, v € C*(C/T),

which form an orthonormal basis for L2. Moreover, we have the following
variational characterization for the eigenvalues:

B; = infy, (Sup¢e Vil 2=1 J 9L dxdy) :
c/r

where V; runs through all j dimensional subspaces of C*(C/I).

Lemma 3 ([R1], [R2]). If & has k negative eigenvalues, then Ind(W,,) is
either k or k — 1. Furthermore, if there exists a subspace & < L*> such that
S < C*(C/T) and dim(¥) = k and Q restricted to & is negative definite, then
Ind(W;/,) = k — 1.

By Lemma 3, our goal becomes to compute the number of negative eigen-
values of Z.

Now, we use a convenient fact: For the flat torus C/I’, with I =
spang{(ai,a2), (b1, bs)}, the complete set of eigenvalues of —Au; = a;u; are

472

m((”lzbz - m1a2)2 + (m1a1 - m2b1)2)7
102 — axDy

with corresponding orthonormal eigenfunctions

2n

emmy - (sin OF cOS) ( (mabs — myas)x + (may — m2b1>y>),

albz — a2b1
where my,my €Z, Cpym = /2/(a1by —arby) if |my|+|ma] >0, cpo=

1/(a1by — azby). With the aid of Lemma 2 we list 17 of the o; and w;
in Table 1.
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Table 1: The first 17 eigenvalues and eigenfunctions of —Au; = ou;.
eigenvalues o; eigenfunctions u; eigenvalues «; eigenfunctions u;
for / odd for / odd for / even for / even
1 V2
o =0 U = ——— o =0 Uy =—
VXY in VXY iy
4n? sin(2zx/(nxsy)) 1672 sin(4znx/(nxsy))
0 === U = ——F——— wn=— u =
n=Xo, nx/ny/n/2 n=xz, nx/’ny/n/4
4r? cos(2mx/(nxsy)) 1672 cos(4rx/(nxsy))
“3:ﬁ Uy = ——— o3 = C) Uy = ————
n=Xoy nx/ny/,,/Z n=xXz, nx/ny/n/4
¢in 2nx n 2ny
4n? sin(2zy/y,,) dn>  4n? X Vo
o4 = — =77 o4 = L) — Ug = ————N2
Yin VlX/y,y/,,/z ne=xz, Yin nx/’ny/n/4
cos 2nx " 2ny
4n? cos(2my/ y,,) 4n?  4n? Xt Vo
Us =5 T =7 U =732 T2 Us = ————
Yin nx/,,y/,,/2 n=Xg, Yin nx/ny/n/4
. (2nx  2my
. sin| — — ——
1672 sin(dnx/(nxz,)) 4z? 4 X Y
6= 02 o = — ———r %= 52 T2 U = — =
X7y NXtnVrnf2 X0 Vin nXpnYyn/d
cos 2nx _ 2ny
167> cos(4rx/(nxsm)) 4n’  4n? nXen  Von
*7 2,2 W === W= T Uy == =
=X nx/ny/n/z n=xXg, Yin nx/ny/n/“
sin <2nx N 27':y>
- 4n? +4712 iy — X Vo s — 1672 _sin(4ny/y,,)
n2x/2n y/zn le/;zy/”/z y/2n nx/ny/n/4
o 2nx 2n y
) — 4n? . 4n? o = nx/,1 o = 1672 _ cos(4ny/y,,)
i’l2X%" ylzn nx/ny/n/z ylzn nx/)ly/n/4
¢in 2nx 27z y
4z’ 4rm C\me v 64n? sin(8mx/(nxsy))
%o =-"53 2 o = 010 = 55 Uy = —r—=-=-
/n Yin nx/,,y/,,/z n=xz, nx/ny/n/4
cos 2nx 2wy
4n>  4An Xt Y 6472 cos(8rx/ (nxs))
o1 T3 Ul| = o1 T3 N
nexz, Yin nx/ny/n/z n=xz, nx/ny/n/4
sin 67x n 2ny
1672 sin(4zy/y,,) 36n%  4n? nXen  Von
o =" R o2 3 Uy = — e
Yin nxfny/n/z =X, Yin I’lX/,,ym/4
cos —67” +27TJ
1672 cos(4ny/y,,) 36n°  4n nXm  Vom
o3 = = 13 73 3 U = ——F———"
Yin nx/ny/n/z n=Xpy, Yin nx/ny(n/4
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Table 1: (Continued)
eigenvalues o; eigenfunctions u; eigenvalues «; eigenfunctions u;
for / odd for / odd for / even for / even
. ([ 6nx n 2ny
. sin
36n2 sin(67x/nxs,) 36n>  4n? X Yo
A4 = —5—> Uy = —F/— o4 = —5—> Uy = ——-or""
2,2 2,2 2
n=XGn NXpnYyu/2 W Xiy Vin NXpn Yy /4
67x n 2ny
cos| — +—
36n? cos(67mx/nxsy) 36n>  4n? nXtn  Vom
15="——75 Uls = ——F——rr x5 = ——>5- 3 Uis = — ——7
n=Xg, NXfn Yyu/2 Xy Vi NXpn Y0 /4
sin 4nx n 2ny sin 4nx n 4ny
1672 4r? X Y 1672 1672 nXm o Yo
%16 = > 3 Ulp = —— —=" 016 = 5 ) Ulp = ———=="
nexg, Yin nX¢n y/'n/2 =Xy Yin nX¢n J//n/4
cos 4nx n 2rny cos 4nx n 4ny
167>  4n® nXp o Yo 167> 167? nXpn YV
w1 =—5+-3 Uy = —— 7 =53 2 7=
n=Xgy, Yin nx/ny/n/z n=Xz, Yin nx/ny/n/4

With the orderings for the eigenvalues as chosen in Table 1, we do not
necessarily have o; < o; for i < j. However, we still have o; / o0 as i / .
Choose «,, (1) %, (25 - - the complete set of eigenvalues with multiplicity 1 of
the operator —4 on the flat torus C/I” reordered by the permutation p,/, of
N so that %y, (1) < O, 2) S v /0.

The first of the following two lemmas follows from the variational charac-
terization for eigenvalues, and the second follows from Lemma 3, the Courant
nodal domain theorem, and geometric properties of the surfaces W,),:

Lemma 4 ([R1], [R2]). Choose peZ' so that a, () <4H. Then
Ind(Wy)) = pt— 1.

Lemma 5 ([R1], [R2]). For all ne Z*, n>2 we have that Ind(W,,,) >
2n—2 if ¢ is odd, and Ind(W;;,) >n—2 if / is even.

4 The lower bound 8 for Ind(¥,)
We now show the following:
Numerical Result: Ind(W;/,) > 8 for all //n.

Observe that, although the eigenvalues of .¥ depend on the choice of H,
the number of negative eigenvalues is independent of H. So without loss of
generality we fix H =1/2.
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Table 2:  x.,, y,, are computed using the value H =1/2.

Lemma 4 Lemma 5

lower bound | lower bound
Wi 0 X/n Vin for Ind(W,,) | for Ind(W,,)
Wi | 17.7324° | 2.5556 | 4.2131 2 2
Wa3 12.7898° | 3.2767 | 6.3355 6 1
Ws;s | 21.4807° | 1.7557 | 2.6402 2 4
Wy | 22.8449° | 1.3315 | 1.9447 2 6
Wgis | 20.1374° | 2.0842 | 3.2321 2 3
Wiy | 22.3044° | 1.5150 | 2.2380 2 5
Wis | 19.1243° | 22970 | 3.6514 4 7
Wiepo | 23.2182° | 1.1872 | 1.7208 2 7

By Lemma 5, Ind(#,/,) can be less than 8 only if //n is one of 3/2, 4/3,
5/3, 5/4, 7/4, 6/5, 8/5, 8/7, 10/7, 12/7, 10/9, 14/9, or 16/9. Lemma 4 also
gives explicit lower bounds for the index, since we know the values of x,, and
zn numerically by formula (5), and hence we know the a,, ;) (see Table 1).
Lemma 4 implies that the index is at least 8 when //n is 5/4, 6/5, 8/7, 10/7,
or 10/9. Thus we only need to consider the following eight surfaces:

W2, Waz, Wsyz, Waja, Wyys, Wizyz, Wiage, and  Wigjg.

For these surfaces we list, in Table 2, the corresponding 0, x,,, y,, and lower
bounds for index. These approximate values for 0, x,,, and y,, were com-
puted numerically using formulas (4) and (5) and the software Mathematica.
Recall that always 0 ~ 65.354°.

We will find specific spaces on which & is negative definite, for these eight
surfaces.

Let N be an arbitrary positive integer. Consider a finite subset {i; =
U, ...,y = u;, p of the eigenfunctions u; of —4 on C/I', defined in Section
3, with corresponding eigenvalues o; = o, j=1,...,N. If we consider any
u=", a;ti; € span{ii, ... iy}, ai, ..., ay € R, then J"C/F u (u)dxdy = Z,{Vj:l :
a;(3;0 — by)aj, where by := [, Viliily dxdy. So we have [o . uZ(u)dxdy <0
for all nonzero u € span{iy, ..., uy} if and only if the matrix (&;0; — b;;)
is negative definite. Lemma 3 then implies:

ij=1,..N

THeoreM 1 ([R1], [R2]). If'the N x N matrix (@;0;; — by)
definite, then Ind(W;,,) > N — 1.

ij=1,..,
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DEerFINITION 2. Given A4, B even integers and /,n € Z", we now define the
following basic integrals:

1 Xtn/4 [ Inl4 2\ 272 \8
Iy(¢,n,A,B) = J J V(cos nx) (cos ny) dydx,
nXxX/mYm Jo 0 Xtn Yen

8 nxpm /4 )%/4 4
Ii(4,n) = J V cos( 2% dydx,
nXtnYrn Jo NX¢n
8 nxen /4 }/;1/4
L(/,n) = V cos| 22X dydx,
nXnYm Jo NXyn
8 nxn /4 (/4 16
L(/,n) = J J V cos = dydx,
nXtnYen Jo 0 NXtnYen

8 nXnf4 Yo/ 4 4
Li(/,n) = vV cos< nx) cos< ny) dydx,
nXtn Y Jo 0 NXsn Yen

8 nx/4 ¢ Vm/4
Is(¢,n) = V cos dydx,
nXtnYm Jo 0 NnXtn nXsn

] nXinf4 [ Vol 8 4
Is(/,n) = Vcos( nx) s( ny)dydx,

XY Jo 0 NnX¢n Yen

8 nXtnf4 (Vnl# 12
L(/,n) = J J V co ( nx> s< 4 >dydx.
nxX¢n Ve Jo 0 nxX¢n Yen

Now, for each surface W/, given in Table 2, we will fix N =9 and choose
the subset {i,...,i9} such that the matrix (o;0; — bl,),] |y 1s negative
definite. These choices are given in Table 3. With these choices for i;, we
have the following lemma:

LemMMmA 6. With the ciioices given in Table 3, all elements of the eight
matrices M (¢, n) := (8;0; — bj); ;_y o can be expressed in terms of the basic
integrals 1o(/,n, A, B) and Ij({,n) for A,B even and j=1,2,...,7.

ProOF. The symmetries V(x, y)=V(—x,y)=V(x,—y) = V(% —X, y) =

V( % - y) of 7 and the identities cos(a + b) = cos(a) cos(b) F sin(a) sin(b),

sin(a + b) = sin(a) cos(b) + sin(b) cos(a) give the relations shown in Table 4,
proving the lemma.
By numerical methods, we can estimate that all of the relevant ;(/,n) for

j =1 are approximately zero, and that



192

Iy

These values were computed with a Mathematica program using the NIntegrate
and JacobiCN commands, and the program is available at the web site of the
One note of warning is that Mathematica has different conven-
tions than Walter’s paper, and hence cnm; in [Wa] is equivalent to cny2 in
We include a sample of our code in the Appendix.

third author.

Mathematica.

M

Levi Lopes de Liva et al.
Table 3: Eigenfunctions of —A producing 9-dimensional spaces
on which Q is negative definite.
Wen | i | Uiy | G | g | Us | Ue | Uy | us | il
Wip | wr | up | us | ug | us | uz ug uy | w7
Wan | w | up | uz | us | us | ug uy ug Uy
Wspp | wn | up | uz | us | ug | up | us | ug | wrs
Wya | wn | uz | us | us | uz | us ug | uis | Uis
Weys | wn | up | uz | ua | us | uo | un | uip | uis
Wiz | wn | ua | us | ua | us | uo | un | uia | ui3
Wiapg | wn | uz | us | us | us | w0 | un | w2 | w3
Wieo | ur | ua | us | ua | us | o | un | U2 | ui3

16(3,2,0,0) = 0.2968,
1(3,2,2,2) ~0.1947,
1o(4,3,0,4) ~ 0.0667,
16(5,3,0,2) =~ 0.4046,

(12,7,0,0) =~ 0.2652,

16(3,2,2,0) =~ 0.2304,

Iy

)
15(4,3,0,0)
)

~0.1077,

5,3,0,0) = 0.4532,

16(7,4,0,0) = 0.6072,

16(14,9,0,0) =~ 0.0841,

16(3,2,0,2) =~ 0.2408,
1o(4,3,0,2) =~ 0.0776,
16(5,3,2,0) =~ 0.3910,
15(8,5,0,0) =~ 0.1878,
16(16,9,0,0) = 0.3419.

Now we can make approximations for the eight matrices .#(/,n).
The matrix .#(3,2) is approximately

-9.50 0
0 -799
0 0
0 0
(3,2) ~ 0 0
0 0
0 0
0 0
0 0

0
0

—-7.99

0

S O O O O

S O oo o T o o o
(98]
(@)

- O o O

»
[\

(= el =]

BN
(e

]
(o))

3
(o)

M ooococoo o oo




Table 4:  Elements M;; of the symmetric matrices .4 ({,n) expressed in terms of the basic
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integrals. We have chosen here to index the M;; using the counters associated to o; and u,
rather than &; and i;.
For M1'1 = 73210(3,2,0, O), M4‘4 =04 — 64(10(3,2,0.0) — 10(3,2,0,2))
W3/2 M5'5 =05 — 64[0(3,2,0,2), M7'7 =07 — 6410(3,272,0)
Mi7.17 = g7 — 64(1H(3,2,0,0) — [p(3,2,0,2) — [H(3,2,2,0) + 21,(3,2,2,2))
M; ;= o; —321y(3,2,0,0), for i =2,3,8,9
M;; =0 for i< j with i, je{1,2,3,4,57,8,9,17}.
For M1,1 = —48[0(47 3,07 0), Mz,z =0 — 48[0(47 37070) + 212(4-7 3)
W4/3 M3'3 =03 — 48]0(47 3, 0, 0) - 212(4, 3), M4‘4 = 04 — 4810(4, 3, 0, O) + 214(4, 3)
M5'5 =05 — 4-8[0(47 3, 07 0) — 2[4(47 3), Msvg =g — 48[0(47 3, 07 0) + 214(47 3)
M7,7 =07 — 48[()(47 3, 07 0) — 2[4(47 3)
Mg'g =og — 384(1()(4, 3,0, 2) - 10(47 3, 0, 4))
My g =09 — 96(41(4,3,0,4) — 41y(4,3,0,2) + 1)(4,3,0,0))
M3 = —2V21(4,3), My 9= —48v2(—1y(4,3,0,0) +21y(4,3,0,2))
My ¢ = —48(—1y(4,3,0,0) + 21y(4,3,0,2)) + 21,(4,3)
Ms.7 = —48(~1y(4,3,0,0) + 2Ip(4,3,0,2)) — 21,(4,3)
M3 9 = —414(4,3), all other M;; with i < j <9 are zero.
For M]ﬁ] = —4810(5, 3,0, 0)7 Mg‘z =02 — 481()(57 3‘0,0) + 211(5, 3)
W53 M3 3 =03 —481y(5,3,0,0) — 21;(5,3), Ms s =uas —961(5,3,0,2)
Ms ¢ = a6 —4815(5,3,0,0) + 25(5,3), M7,7 =07 —481y(5,3,0,0) — 215(5,3)
Mgﬁg =o0og — 4—8[0(57 3,0,0) + 2[4(5, 3), Mo g =09 — 4810(5, 3,0,0) - 214(5, 3)
Misis = ays — 961p(5,3,2,0), My 7= —2v2L(5,3)
M3 15 = —2(11(5,3) + I,(5,3)), all other pertinent M;; with i < j are zero.
For | M=o —641(7,4,0,0) for i=1,2,3,6,7,8,9,14,15
W14 all other pertinent M;; with i < j are zero.
For M, = —16nk(/,n,0,0), My = o — 16nly(4,n,0,0) + 21, (¢, n)
Wg/5, M;3 =03 — 16nly(¢,n,0,0) — 2[1([,11), My 4 = a4 — 16nly(4,n,0,0) 4+ 214(Z, n)
W12/7, M5'5 = 05 — 16}’110(/,}1,0,0) - 214(/ I’l)
W14/9, Mo, 10 = a0 — 16}1[0(/7}’1,0 O)+2I3(/,}’l)
Wiepo | M = an — 16nly(Z,n,0,0) — 21;(¢, n)
M12‘12 =012 — 16]’[10(/,}’1,0 0) + 217(/ n)
M13>13 = 03 — 16}1[0(/7}’1,0 O) 2[7(/7}’1), M]_y} = —2\/211 (ﬂn)

My = =2V2DL(4,n), My = —40(/,n) + 415(/,n)
M; 1 = 74[5(/,]1), My 1n = 72[1(/,]1) +2I()(/,I’l)
Ms 3 = =21 (/,n) — 2Is(¢,n), all other pertinent M;; with i < j are zero.
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and all nondiagonal terms are known to be zero by rigorous mathematical
computation, and all nonzero entries have been computed only numerically.
A (4,3) is approximately the nondiagonal matrix

517 0 ¢ 0O 0O 0O 0 0 —323
0 -353 0 0 0 0 0 0 0
¢ 0 -3 0 0 0 0 0 0O
0 0 0 -378 0 -229 0 0 0
MAH~ o 0o 0o 0o -378 0 -229 0 0 |,
0 0 0 -229 0 -378 0 0 0
o 0 0 0 -229 0 -378 0 0
o 0 0 0 0 0 0 -025 0
323 0 © 0 0O 0 0 0 -221

and again here all entries that are 0 have been computed mathematically
rigorously, and all nonzero entries have been computed only numerically. The
symbol (@ denotes an entry that has been computed numerically to be approx-
imately zero, but not mathematically rigorously. We shall continue to use
these conventions in all remaining matrices.

A (5,3) is approximately the diagonal matrix

-218 0 0 0 0 0 0 0 0
0 -203 O 0 0 0 0 0 0
0 0 -203 0 0 0 0 0 0
0 0 0 =332 0 0 0 0 0
M(5,3) ~ 0 0 0 0 -—-161 0 0 0 0
0 0 0 0 0 -—-161 0 0 0
0 0 0 0 0 0 —-147 0 0
0 0 0 0 0 0 0 —-147 0
0 0 O 0 0 0 0 0 247

M (7,4) is approximately the diagonal matrix

~389 0 0 0 0 0 0 0 0

0 -375 0 0 0 0 0 0 0

0 0 -375 0 0 0 0 0 0

0 0 0 -333 0 0 0 0 0
W15~ 0 0 0 0 -333 0 0 0 0

0 0 0 0 0 -270 0 0 0

0 0 0 0 0 0 -270 0 0

0 0 0 0 0 0 0 -263 0

0 0 0 0 0 0 0 0 -263
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A (8,5) is approximately the diagonal matrix

—-150 0 O 0 0 0 O 0 0
0 —13.6 0 0 0 O 0 0 0
O 0 —136 0 0 0 O 0 0
0 0 0 —-109 0 0 0 0 0
M(8,5) ~ 0 0 0 0 —-109 0 0 0 O
0 O 0 0 0 -92 0 0 0
0 0 0 0 0 0 -92 0 0
0 0 0 O 0 0 0 -80 0
0 0 0 0 0 0 0 0 -80

A (12,7) is approximately the diagonal matrix

-297 0 O 0 0 0 0 0 0
0 -283 0 0 0 o 0 0 0
O 0 =283 0 0 0 O 0 0
0 0 0 =215 0 0 0 O 0
M(12,7) ~ 0 0 0 0 =215 0 0 0 O
0 O 0 0 0 =241 0 0 0
O 0 O 0 0 0 -241 0 0
0 0 0 O 0 0 0 -—-187 0
0 0 0 0 O 0 0 0 -187
A (14,9) is approximately the diagonal matrix
—-12.1 0 O 0 0 0 0 0 0
0 —11.7 0 0 0 O 0 0 0
O 0 —-11.7 0 0 0 O 0 0
0 0 0 -9.1 0 0 0 O 0
M(14,9) ~ 0 0 0 0 -91 0 0 0 0
0 O 0 0 0 -106 O 0 0
0 0 O 0 0 0 —-10.6 0 0
0 0 0 O 0 0 0 -83 0
0 0 0 0 O 0 0 0 —-83

A(16,9) is approximately the diagonal matrix
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—492 0 O 0 0 0 0 0 0

0 —-479 0 0 0 0 0 0 0

O 0 —-479 0 0 0 0 0 0

0 0 0 =356 0 0 0 0 0

M(16,9) ~ 0 0 0 0 =356 0 0 0 O

0 0 0 0 0 -437 0 0 0
O 0 0 0 0 0 —437 0 0
0 0 0 O 0 0 0 -328 0
0 0 0 0 0 0 0 0 -328

All eight of these matrices are 9 x 9 and negative definite. Hence
Theorem 1 implies the numerical result.

5 Appendix: the Mathematica code

The following is a Mathematica code for computing the values
1y(4,3,0,0), I)(4,3,0,2), Iy(4,3,0,4), I,(4,3), [(4,3), 14(4,3), and the elements
of the matrix .#(4,3). The seven other needed codes for different / and n
were written similarly.

H=1/2; k1l = Sin[thetal]; k2 = Sin[theta2];

gammal = Sqgrt[Tan[thetal]]; gamma2 = Sqrt[Tan[theta2]];
alphal = Sqgrt[4 H Sin[2theta2]/Sin[2(thetal + theta2)]];
alpha2 = Sqrt[4 H Sin[2thetal]/Sin[2(thetal + theta2)]];

F = 4ArcTanh[gammal gamma2 JacobiCN[alphal x, k1"2]
JacobiCN[alpha2 y, k2"2]1];
V = 4 H Cosh[F];

ell = 4; n = 3;

thetal = 2 Pi (12.7898/360);
theta2 = 2 Pi (65.354955354/360);
x0 = 3.2767; y0 = 6.3355;

Print["I 0(4,3,0,0) is ",I0x4c3c0c0x = (1/(n x0 y0))
NIntegrate[V, {x, 0, x0/4}, {y, 0, y0/4}11;

Print["I 0(4,3,0,2) is ",I0x4c3c0c2x = (1/(n x0 y0))
NIntegrate[V (Cos[2 Pi x/x0])"0(Cos[2 Pi y/y0])"2,
{x, 0, x0/4},{y, 0, y0/4}11];

Print["I 0(4,3,0,4) is ",I0x4c3cOcd4x = (1/(n x0 y0))
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NIntegrate[V (Cos[2 Pi x/x0])"0(Cos[2 Pi y/y0])"4
{x, 0, XO/4}I {y, 0, Y0/4}]];

Print["I 1(4,3) is ",Ilx4c3x = (8/(n x0 y0))
(NIntegrate[V (Cos[4 Pi x/(n x0)]),{x, 0, x0/4},

{y, 0, y0/4}]1 + NIntegrate[V (Cos[4 Pi x/(n x0)1]),

{x, x0/4, 2 x0/4}, {y, 0, y0/4}] +

NIntegrate[V (Cos[4 Pi x/(n x0)]1),{x, 2 x0/4, n x0/4},
{y, 0, y0/431)1;

Print["I_2(4,3) is ",I2x4c3x = (8/(n x0 y0))
(NIntegrate[V (Cos[8 Pi x/(n x0)]),{x, 0, x0/4},

{y, 0, y0/4}] + NIntegrate[V (Cos[8 Pi x/(n x0)]),

{x, x0/4, 2 x0/4}, {y, 0, y0/4}] + NIntegrate[V (Cos[8
Pi x/(n x0)]1),{x, 2 x0/4, n x0/4}, {y, 0, y0/4}1)1;

Print["I 4(4,3) is ",I4x4c3x = (8/(n x0 y0))
(NIntegrate[V (Cos[4 Pi x/(n x0)]) (Cos[4 Pi y/y01]),
{x,0,x0/4},{y,0,y0/4}]1+NIntegrate[V (Cos[4 Pi x/(n x0)1])
(Cos[4 Pi y/y0]),{x,x0/4,2 x0/4},{y,0,y0/4}]1+
NIntegrate[V (Cos[4 Pi x/(n x0)]) (Cos[4 Pi y/y0]),

{x, 2 x0/4, n x0/4}, {y, 0, y0/4}1)1;

aa = 0; bb = 0; alphal
bb (4 N[Pi"2]1/(y072));

aa(4 N[Pi"2]/(n"2 x0"2)) +

aa = 4; bb = 0; alpha2 aa(4 N[Pi"2]/(n"2 x0"2)) +
bb (4 N[Pi"2]/(y0"2)); alpha3 = alpha2;

aa = 1; bb = 1; alpha4 = aa(4 N[Pi"2]/(n"2 x072)) +
bb (4 N[Pi"2]/(y0"2)); alpha5 = alpha4; alpha6 = alpha4;
alpha7 = alpha4;

aa = 0; bb = 4; alpha8 = aa(4 N[Pi"2]/(n"2 x0"2)) +
bb (4 N[Pi"2]/(y072)); alpha9 = alpha8;

Print["M(1,1) is ", -48 I0x4c3c0c0x];

Print["M(2,2) is ", alpha2 - 48 I0x4c3c0c0x];
Print["M(3,3) is ", alpha3 48 I0x4c3c0c0x];
Print["M(4,4) is ", alpha4 48 I0x4c3c0c0x];
Print["M(5,5) is ", alpha5 48 I0x4c3c0c0x];
Print["M(6,6) is ", alpha6 48 I0x4c3c0c0x];
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Print["M(7,7) is ", alpha7 - 48 I0x4c3c0c0x];
Print["M(8,8) is ", alpha8 - 384 (IOx4c3c0c2x -
I0x4c3c0c4x)];

Print["M(9,9) is ", alpha9 - 96 (I0x4c3c0OcOx +

4 T0x4c3c0Oc4x - 4 I0x4c3c0c2x)];

Print["M(1,9) is ", -48 N[Sqrt[2]] (-I0x4c3c0c0x +
2 I0x4c3c0c2x)];

Print["M(4,6) is ", -48 (-I0x4c3c0c0x + 2 IOx4c3c0c2x)
Print["M(5,7) is ", -48 (-I0x4c3c0c0x + 2 I0x4c3c0c2x)

(A]
(BC]
(CP]

[FC]

1;
1;
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